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Non-linear mechanics of constrained material continua. I. Foundations 
of the theory 

cz. WOZNIAK (WARSZAWA) 

THE AIM of the paper is to give as regards continuum mechanics a more general formulation,. 
in which we deal with three-dimensional non-polar continua on the motion of which are imposed 
certain restrictions called constraints. Various engineering theories (such as theories of plates. 
and shells, finite element approaches etc.), which are not consistent with classical continuum 
mechanics, can be treated as exact theories when based on the mechanics of constrained con­
tinua. Moreover, using the concept of constrained continuum, we can give criteria for the applica­
bility of particular en~ineering approaches. In this part of the paper, the foundations of the 
theory are investigated. 

W pracy przedstawiono pewne uog6lnienie mechaniki kontinuum przyjmuj~c. ze na ruch tr6j­
wymiarowego niebiegunowego osrodka ci~glego s~ narzucone wi~zy. R6i:ne uproszczone teorie 
i podej§cia (np. teorie plyt i powlok, metoda element6w skOJ.1czonych itd.), kt6re nie s~ konsys­
tentne z klasyczn~ mechanik~ o§rodka ci~glego, moi:na formulowac w spos6b §cisly na podsta­
wie mechaniki osrodka ci~lego z wi~zami. Na tej drodze moi:na taki:e ustalic zakres stosowal­
no§ci r6i:nych teorii przyblii:onych. W tej cz~i pracy podaje si~ podstawowe zaloi:enia i twier­
dzenia mechaniki o8rodka ci~lego z wi~zami. 

B pa6oTe npe,n;cnumeHo HeKoropo o6o6I.UeHHe MexaHHKH KOHTHHYYM npHHHMaH, 'liTO Ha ,n;aH­
meHHe TpeXMepHo:H: Heno.TIHpHOH crmoumo:H: cpe.zu,r Ha.rromeHLI CB.R3H. PaaHbie ynpoi.UeHHbie 
TeOpHH H DO.ZCCO.ZU,I (HanpHMep TeOpHH IIJIHT H 060JIO'lleK, MeTO,ll; KOHe'l!HbiX :meMeHTOB HT. ,n;.), 
KOTOpbie HeKOHCHCTeHTHbi C KJiaCCH'lleCKOH MexaHHKOH CDJIOIWIOH cpe,n;bi, MO>KHO $opMyJIHpO­
BaTL TO'l!HbiM o6pa30M Ha OCHOBe MeXaHHKH CIIJIOIWIOH cpe,n;bi CO CB.R3.RMH. llo 3TOMY nyTH 
MO>KHO TaK>Ke yCTaHOBHTL o6JiaCTb npHMeH.ReMOCTH paaHbiX npH6JIH>KeHHbiX TeopH:H:. B Ha­
CTO.RI.Ue:H: 'llaCTH pa60Tbl DpHBO,ll;.RTC.R OCHOBHbie DOCTyJiaTbl H TeOpeMbl MeXaHHKH CDJIOIIIHOH 
cpe,n;bi CO CB.R3.RMH. 

Introduction 

Two models of real bodies are used in mechanics; one is a finite or even countable 
set of material points and the other is a material continuum. In what follows we shall 
confine ourselves to such mechanical phenomena only, in which the latter model can 
be used. We assume that the material continuum is non-polar and three-dimensionaL 
However, there are many problems which are too complicated to be solved or even in­
vestigated properly within the classical formulation of continuum mechanics. Dealing 
with such problems, we introduce certain approximations; examples of such approxima­
tions can be found in the known theories of plates and shells or in the finite element ap­
proach. Those approximations, represented by suitable formulas, are not consistent with 
the axioms of classical continuum mechanics. This follows from the fact that in engineer­
ing mechanics we do not usually deal with classical material continua but with certain 
constrained material continua -i.e., material continua on the motion of which are 
imposed restrictions called constraints. The aim of the paper is to elaborate the general 
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theory of constrained continuous media. Various engineering approaches can be treated 
as exact theories when they are based on the mechanics of constrained continua; more­
over, in this way we can also evaluate the criteria of applicability of particular engineering 
approaches. In the special case of bodies with internal simple constraints, we derive from 
the general theory given in the paper the known formulas. In the first part of the paper 
we shall establish the basic axioms and theorems. 

1. Constrained body 

Let f!4 be a continuous body and let us denote by x = z(X, t) the deformation function 
of f!4 from the reference configuration x, where X e x(f!l), t e R, and x is a position vector 
in the physical (three-dimensional and Euclidean) space(1 

). The continuous body f!4 is 
said to be constrained if on the deformation function z (X, t) are imposed certain res­
trictions of a geometrical or kinematical nature, called constraints. In what follows 
we shall assume that the constraints are given by a system of partial differenctial equations: 

(1.1) y;a(X,t,z, Vz, ... , Vkx) = 0; Xex(f!la),teR; i = 1,2, ... ,p,n 

in different parts f!la, a = 1, 2, ... , r, of the body f!l, where f!la n f!lb = ljJ for each a =I= b. 
s 

For an unconstrained body we have U f!la = ljJ; with another special case of a constrained 
a=l 

body we shall deal when r = 1 and f!4 1 = f!l. Examples of constraints (1.1) and their 
·physical interpretation will be given in later Sections of the present paper; for the time 
being, we shall assume that the equations (1.1) are given a priori. 

The mass of the constrained body will be introduced in the same way as for the un­
<:onstrained body; we shall denote by e = e(X, t) the mass density of the body in an 
arbitrary configuration z,, assuming the equation of continuity in the known form 
e + edivx = 0, J = detVx. 

The system of forces for the constrained body in the motion given by the deformation 
function z(X, t), satisfying (1.1 ), will be characterized by the following conditions: 

(i) The field b = b(X, t), X e x(f!l), t eR, of the density per unit mass of the external 
body force is given. 

(ii) The field p = p(X, t), X e x(f!l), t eR, of the density per unit area of the external 
surface loads is given. 

(iii) The stress-tensor field T(X, t) X e x(Pla), a = 0, I, ... , r, t eR, is given (f!40 is 
.a three-dimensional part of the body in which there are no constraints (1.1).) 

The rules of interpretation of the primitive concept of forces introduced by (i), (ii), 
{iii) are the same as in classical continuum mechanics. 

As the basic axiom of the dynamics of constrained bodies we shall take the principle 
of virtual work. To this end, we shall define the virtual displacement field llz = llz(X, t); 
X e x(f!l) = x(f!l) u ox(f!l), t eR, which is continuous in x(f!l) and satisfies in x(&Wa), 
.a= 1, 2, ... , r, for each deformation function X admissible by (1.1), the following system 

e) We shall use the same notations as in [1]. 
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of Jinear differential equations; 

(1.2) oy;a ~ oy;a n(~ ) oy;a rk(~ ) O --ai . uz + -avz- . v uz + ... + avkz . v uz = ; 

a = 1, ... , r,; i = 1, .. . , Pa, 

where the dot between the symbols denotes contraction with respect to all tensor indices. 
We postulate that the principle of virtual work 

r 

(1.3) f p · (jzds + J !? (b- X)· (j7.dv = }; J [T(Vz-l)T] · v(()l)dv; 
ox,<~) x,(~) a=O x,<~a) 

z,([!J) = z( x([!J), t), 9 c £!4, 
holds for any virtual displacement field ()z. 

We shall also assume that a material of a body is simple at each particle X E !!la, 
a = 0, I, . .. , r, postulating the following constitutive equation 

00 

(1.4) T(X, t) = ~ (X , Vz(X, t-s)). 
s=O 

In continuum mechanics of unconstrained bodies, the response functional !F is defined 
for each motion of the body, but in mechanics of constrained material continua, the 
domain of the response functional depends on the character of constraints. To investigate 
the character of constraints (1.1), let us observe that the constraints can be introduced 
either on the basis of certain physical properties of the material of the body (bodies 
made of incompressible materials, for example) or in order to simplyfy the mathematical 
structure of problems under consideration (the hypothesis of normal element in the shell 
theory, for example). In the former case the constraints will be termed real and in the 
latter case we shall call them imaginary constraints. Thus the constitutive functional ~ 
is defined for all motions which are admissible by the real constraints; because all rigid 
motions are always admissible by the real constraints, then we shall assume that the 
constitutive equation (1.4) has to satisfy the principle of material frame indifference. If 
there are no real constraints, then we have to assume that the manifold of all motions 
admissible by imaginary constraints is not an empty set. 

From the formal point of view, mechanics of constrained continua is expressed in terms 
of primitive concepts 14, 1., e, b, p, T and axioms given by (1.1), (1.3) and (1.4). All primi­
tive concepts are interpreted in the same way as in classical continuum mechanics. How­
ever, from the point of view of application of bodies with imaginary constraints to the 
classical problems of continuum mechanics, we have also to establish criteria of approx­
imation of classical continuum mechanics problems by using the suitable constrained 
continua. This problem we shall analyse in the next Section. 

2. Reaction forces 

Let us transform the Eq. (1.3) to the form: 

(2.1) J s. (j"zds+ J er. (jzdv = 0, 
x,{-9') x,(£1) 
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where 9 = u offla is a material surface, where 
a=O 

er= ez-eb-divT for (X, t) E u x(ffla)xR, 
a=O 

(2.2) S = T0 D0 -p for (X, t) E [ox(ffla) n ox(f!l)) X R, 

s = Tana + Tbnb for (X, t) E [ox(ffla) n ox(f!lb)) X R, a ::/= b, 

and where na is a unit exterior normal to the surface o1Affla) and Ta is a limit value on 
oz, (fila) of the stress tensor Tin z,(ffla). The vector field r = r(X, t) will' be called the body 
reaction force and the vector field s = s(X, t) is said to be the surface reaction tract~on 
(for X E u ox(ffla) n ox(f!l)) or the contact reaction forces (for X E u [ox(ffla) n ox(f!lb)J). 
The fields r(X, t), s(X, t) of reaction forces, the deformation function z(X, t) and the 
field of Cauchy stress tensor T(X, t) are the basic unknowns in the mechanics of con­
strained continua. These functions have to satisfy the equations of constraints (1.1), the 
constitutive equations (1.4), the expressions (2.2) for the reaction forces, and the integral 
condition (2.1 ). The Eqs. (2.2) may also be called the equations of motion, the boundary 
conditions and the contact conditions, respectively, for the constrained body. Note that 
the Eqs. (1.1), (1.4), (2.1) and (2.2) do not represent explicitly the system of equations 
for the unknown functions z, T, r, s (Eq. (2.1) is not one equation but has to be satisfied 
by each t5z), but are the starting point for obtaining such a system in different special 
cases. 

The Eqs. (1.1) represent the intrisic constraints; in many particular problems we also 
deal with the boundary constraints - for example, when the deformation function is 
prescribed on a certain part Bx(f!l) of the boundary. In the latter case we have z = i(X, t) 

for X E iJx(fJI); the function l is known and has to be admissible by ( 1.1 ). It follows 
that t5z = 0 on ax(f!l) X R. 

Now, we shall prove two theorems, which are valid for an arbitrary form of con­
straints (1.1 ). 

THEOREM 1. If !!10 is an unconstrained part of the body f!l, then r = 0 for each X E x(£!4o), 
t ERe). 

Putting t5z = 0 for each X ,..., E x(f110), we shall obtain from (2.1) the condition 

I er. t5zdv = o, 
x,<£~> 

which has to be satisfied for any field t5z(X, t), X E x(f110), taking zero values on ox(illo)· 

By virtue of the du Bois-Reymond lemma, we conclude that r = 0 for each X E x(fflo). 
THEOREM 2. For a body without intrisic constraints and with boundary constraints on 

ax(f!l), only reaction tractions on ax(f!l) can be different from zero. 
For a body without intrisic constraints we have f1l = f110 , and by virtue of Theorem l 

we can reduce (2.1) to the form 

J s · t5z ds = I s · t5z ds + J s · t5z ds = 0, 
ox,<~> ~x,<£1) ~~<~> 

(
2

) By a part of a body we always mean the three-dimensional manifold. 
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where on 6z,(PJ) the virtual displacements dx are arbitrary. Putting dx = 0 on ax, (PJ), 
we conclude that the integral over llx (PJ) must disappear. It follows that 

J s · dxds = 0 
~x1(91) 

holds for each dx. Using the du Bois-Reymond lemma, we shall obtain s = 0 for each 
X E ax(PJ). Thus we conclude that in the problem considered, only reaction forces on 
llx,(PJ) can be different from zero. 

Theorem 2 implies that the classical continuum mechanics (i.e. mechanics of bodies 
without intrinsic constraints) constitutes a special case of constrained continuum mechanics. 

Let us confine ouerselves, for the time being, to the case in which all constraints are 
intrinsic and imaginary. To such a constrained body corresponds an unconstrained body 
with the same mass distribution and the same field of response functional, provided that 
the global reference configurations of the two bodies coincide. Let us denote by {f, g}, 

where f = f(X, t), X E U x(Pla) and g = g(X, t), X E U 6x(PJ0), the externalload system, 
a=O a=O 

in which f is a vector field of body forces and g is a vector field of surface and contact 
tractions. Using the same notations as in [1], the pair {x, T} will be called the dynamical 
process. 

Using (2.2), we observe that the dynamical process {l, T} in a constrained body 
subjected to the external load system {b, p} can at the same time be treated, as the dy­
namical process in the corresponding unconstrained body subjected to the external load 
system {b + r, p + s}e). It follows that if the external load system { r, s} can be disregarded 
as sufficiently small with respect to the external load system {b, p}, then the dynamical 
process {X, T} obtained from the solution of the constrained body problem can be treat­
ed as a good approximation of the dynamical process in the corresponding unconstrained 
body. To evaluate the approximation, we have to introduce a suitable norm in the linear 
space of external load systems { f, g}. A simple example of such a norm in the static case 
is given by 

1 

ll{f, g}ll = ( J cxf·fdv+ J ,8g·gds)
2

, 
x,fSI) x1<at) 

where ex = cx(X), ,8 = ,B(X) are given positive real valued functions, and cx,B- 1 has a di­
mension of length. Let us denote by d < 1 the positive number, assuming that in the 
problem under consideration each external load system { f, g} can be disregarded with 
respect to the given load system {b, p} only if 11 { f, g} 11 < dll {b, p} 11 ; the value of b depends 
on the character of the problem and is based on experience. If the value of d is establish­
ed, then the dynamical process {X, T} obtained from the solution of the constrained body 

(l) By virtue of (2.2) and (1.4) we also conclude that any theorem of classical continuum mechanics 
wiJI hold for a contin~um with ima~inary constraints if the system of forces {b, p} is replaced by the system 
of forces {b+r, p+s}. 
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problem can be treated as a good approximation of the dynamical process for the cor­
responding unconstrained body, provided that there holds the following condition 

(2.3) ll{r, s}ll < b 
ll{b, P}ll ' 

in which the reaction forces are obtained from the solution of the constrained body problem 
analysed. In a more general case, the form of constraints (1.1) may be influenced by a certain 
n-th dimensional vector function which is called control; in this case, the norm 11 { r, s} 11 

is a functional which expresses the target function and it is required to determine the 
dynamical process and the control, so that the functional 11 { r, s} 11 will attain its minimum. 
This is a somewhat complicated problem which will be studied separately. 

The concl..tsions given aoove t.:an easily be generalized to the case in which the boundary 
constraints on the part ~z,(&l) of the surface Olt(&l) are prescribed for each t. Denot­
ing by s = s(X, t), X e Bx(&l) the reaction forces in supports maintaining the bound­
ary constraints and putting s = 0 on ox(9)jax(&l), we have to replace the condition 
(2.3) by the following: 

ll{r' s- s}ll b 
ll{b, p+s}ll < · 

To conclude this Section, we shall formulate the three theorems which describe the 
connection between the form of constraints (1.1) and the reaction forces (2.2). To this 
end we denote by .91 the manifold of all functions z(X, t) which are continuous in x(&l) x R 
and satisfy in each x(&la) x R the suitable system of equations (1.1). 

THEOREM 3. If for each deformation function z e .91, the relation l +c e .91 holds for an 
arbitrary constant vector c in the physical (reference) space, then the resultant force of all 
reaction forces acting at the constrained body equals zero. 

If for each z e .91 and arbitrary c we have z +c e .91, then the Eqs. (1.1) are invariant 
under arbitrary translation of the physical space; it follows that the functions Yia are 
independent of argument z : 

(2.4) oyi~ = 0 . 1 1 oz , l = , ... , Pa; a = , ... , r. 

From (2.4) and (1.2), we shall obtain the following equations for virtual displacements: 

(2.5) oy ia ) oy ia 
avz . V(bz + ... +avkz . Vk(tJz) = o. 

The Eqs. (2.5) are satisfied for each bz = c, where c is an arbitrary constant vector in 
the physical space. Substituting llz = c into the Eq. (2.1), we shall satisfy the relation 
obtained only if 

(2.6) J sds + J erdv = 0 
Xt(!Jt) Xt(!At) 

which ends the proof. 
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THEOREM 4. If for each deformation function 1. E .91, the relation Qz E .91 holds for an 
arbitrary orthogonal tensor Q in the physical space, then the resultant moment of all reac­
tion forces acting at the constrained body equals zero. 

If for each X e .91 and for an arbitrary orthogonal tensor Q, we can write Qz e .91,. 
then the Eqs. (1.1) are invariant under all orthogonal transformation of the physical 
space. The functions 'Yia are then hemitropic in the physical space - i.e., they satisfy the 
conditions 

a,ia a,ia 
TfrllnJ + ·a£illnJ,a + . . . = 0, 

1. 1. ,a 
(2.7) 

where zm are components of z, and where the index preceded by a comma denotes partial 
differentiation with respect to material coordinates (all tensor indices run over the sequence 
1, 2, 3, the summation convention holds). From (2.7) and (1,2) it follows that ~1. = Ex,. 
where E is an arbitrary skew-symmetric matrix and 1. is an arbitrary deformations func­
tion, 1. e .91. Substituting ~1. = Ez into the Eq. (2.1), we shall satisfy the resulting equa­
tion for each E only if 

(2.8) I sxzds+ I erxzdv = o, 
Xr(SI') XrC!I) 

which ends the proof of Theorem 4. 
THEOREM 5. If for each deformation function 1. (X, t) E .91, the relation 1. (X, t +c) E d 

holds for an arbitrary constant c, then the work done by all reaction forces acting at the 
constrained body equals zero. 

If for each z(X, t) E .91 we also have z(X, t +c) e .91, then the functions 'Yia are in­
dependent of argument t: 

(2.9) a,ia = 0 
at · 

From (2.9) and (1.1) it follows that 

(2.10) a, ia •• + aria . ~ + = dy;a = 0 
az z avz v z ·.. dt · 

Comparing (2.1 0) and (1.2), we conclude that if (2.9) holds then we can put ~1. = i for 
any admissible motion 1. E .91. Thus we obtain the following relation: 

(2.11) J s· ids+ J er· idv = 0, 
Xr<9'' Xr(!l) 

which ends the proof of Theorem 5. 

3. Principles of conservation 

If the mechanics of constrained continua is based on the dynamical principle of virtual 
work (1.3), then the principle of conservation of momentum and that of moment of 
momentum are not axioms of the theory, but they may be proved, assuming that suitable 
conditions hold. 
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3.1. Principle of consenation of momentum. 

For each part 9 c fila, and an arbitrary fila, a = 0, I, ... , r, the following principle 
.of conservation of momentum holds: 

{3.1) :r f eidv = f t(a)ds + J~ e(b+r)dv, t(a) =To. 
x,<a-> ox,(a') x,<~'> 

Equation (3.1) can be obtained directly from (2.2)1 , using the divergence theorem 
.and taking into account that e is a scalar density in the physical space (i.e., that the 
equation of continuity holds). 

THEOREM 6. If the conditions (2.4) hold, then the principle of conservation of momentum 
for the whole constrained continuum has the form 

(3.2) :r f eidv= f pds+ f ebdv, 
x,<~> ox,<~> x,<~> 

.being independent of the reaction forces. 
To prove the theorem, we have to observe that an arbitrary constant vector c in the 

physical space constitutes now the virtual displacement (cf. Theorem 3). Substituting 
l5z = c into the Eq. (1.3) and after simple transformations, we arrive at the condition 
{3.2). 

Using (3.1) and (2.2h,3 we can prove that if the condition (2.4) is not satisfied, then 
Qn the right-hand side of the Eq. (3.2) there will be an additive term expressing the resul­
tant of all reaction forces acting on the body (cf. also Theorem 3). 

3.2. Principle of conservation of moment of momentum. 

For each part 9 c fila and an arbitrary fila, a = 0, I, ... , r, the following principle 
Qf conservation of moment of momentum holds: 

(3.3) 

provided that the Cauchy stress tensor is symmetric: T = TT. The principle of conserva­
tion (3.3) can be obtained by constituting the vector product of the Eq. (2.2)1 with the 
position vector z, and by integrating the equation obtained over the region z,(9); the 
divergence theorem, the continuity equation and the condition T = TT have also to be 
taken into account. 

THEOREM 7. If the equations of constraints (1.1) are invariant under arbitrary orthogonal 
transformations of the physical space, and if the Cauchy stress tensor is symmetric, then 
the principle of conservation of momentum for the whole constrained continuum has the 
form: 

(3.4) ! f (!i X l dv = f (! X l ds + f (!b X l dv, 
x,<~> ox,<~> x1 >91J 

being independent of the reaction forces. 
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The Eqs. (1.1) are invariant under arbitrary orthogonal transformation of the physical 
space if the relation (2. 7) holds; it follows that bz = Ez, for each z e d and each anti­
symmetric tensor E. Substituting bz = Ez into (1.3), we shall observe that the right­
hand side of the resulting equation vanishes for the symmetric stress tensor T. The left­
hand side of this equation also being equal to zero, simple manipulations lead to (3.4). 

Using (3.3) and (2.2}z,3 we can also prove that if the Cauchy stress tensor is symmetric 
but the equations of constraints (1.1) do not satisfy the condition (2.7), then on the right­
hand side of the Eq. (3.4) the moments of all reaction forces will also be present (cf. 
Theorem 5). 

Let us denote by P the rate at which the stresses do work (the stress power) per unit 
volume of the body in the actual configuration: 

(3.5) P = T · D; D = ~ [gradi+(gradi)T], gradi = Vi(Vz)- 1
. 

Constituting the scalar product of the Eqs. (2.2) 1 with the vector i, after simple calcula­
tions we arrive at the relation: 

(3.6) ~ f ~ elil 2dv+ f Pdv = f t(n)·ids+ I e(b+r)·idv, 
x,C~) x,<~> ax,<~> x,<~> 

which holds for an arbitrary&', &' c t!la, a = 0, 1, ... , r. The Eq. (3.6) can be called the 
principle of conservation of the kinetic energy, represented by the first term on the left­
hand side of (3.6). 

THEOREM 8. If the conditions (2.9) hold, then the principle of conservation of the kinetic 
energy for the whole constrained continuum has the form : 

(3.7) 

being independent of the reaction forces. 
By virtue of (2.9) we have bz = i for any admissible motion z, z e d (cf. the proof 

of Theorem 5). Substituting bz = i into (1.3), we obtain finally the condition (3. 7). 
If the condition (2.9) does not hold, then the rate at which the reaction forces perform 

work has to be added to the right-hand side of the Eq. (3.7); this result can be obtained 
using (3.6) and (2.2)2 ,3 • 

The connection of the theorems 6, 7, 8 with the theorems 3, 4, 5, respectively, can 
be seen. 

4. Lagrange's equations of the first kind 

The axioms of the constrained continuum mechanics, which were given in Sec. 1, 
do not represent, in explicit form, the system of equations for unknown functions. In 
this section, we shall obtain such equations in the form which corresponds to the form 
of Lagrange equations of the first kind, well known in analytical mechanics. Thus the 
equations we are to obtain will also be called Lagrange equations of the first kind for the 
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constrained continuum. To simplify the calculations, we shall confine ourselves to the 
constraints of the form. 

(4.1) Yi(X, t, z, Vz, ... , Vkz) = 0; i = 1, 2, ... ,p; X E x(PJ), t ER, 

which are given for the whole constrained body. The special case of (4.1), in which k = I 
(simple constraints), has received a great deal of attention in many papers on incom­
pressible bodies or bodies reinforced with inextensible cords (cf. [1, 2]). 

We shall use the index notation of the tensor calculus; indices ex, ex 1 , fJ, y, y 1 , .•• , 

will refer to material coordinates (components of the vector X E x(PJ)) and "m" will refer 
to ortonormal Carthesian coordinates in the physical space; all tensor indices run over 
the sequence 1, 2, 3. Moreover. 

for L=1,2, ... ,k, 

andf.aL = f, aPL =a for L = 0. 
Let us denote by A,i = A.'(X, t), X E x(PJ), t ER, i = 1, 2, ... , p, Lagrange multipliers 

not determined for the time being. Multiplying the Eqs. (1.2) termwise by scalar mul­
tipliers A.1 and taking into account the form (4.1) of constraints, we shall write the sum: 

(4.2) 

After many manipulations, we shall transform (4.2) to the form 

(4.3) 
k-l 

(am+Nma.,a)bxm- (~ Nma.pL bxm,pL),a. = 0, 
L=O 

where we have denoted: 

(4.4) 

O~L~k-1. 

Let us integrate ( 4.3) over the region x(PJ) occupied by the body in the reference configura­
tion. Adding termwise the resulting equation to the Eq. (2.1) (we have to remember 
that r = 1, Pl1 = PJ and PJ0 = l/J), we obtain: 

k-1 

(4.5) J (f!RTm-am-Nma.,rr.)bxmdvR+ J (smbxm+ ~ Nma.pLbxm,pLna)dsR = 0, 
IC(M) OK(M) L=O 

where f!R, sR = (sm), oR = (nrr.) are, respectively, the mass density in "' the surface reac­
tion traction related to x and the unit vector normal to 8x(PJ). Since in the Eq. (4.5) 
there are p undetermined Lagrange multipliers, then we can treat the virtual displacements 
bx in (4.5) as, from the formal point of view, as arbitrary differentiablle functions in­
dependent of each other. It follows that the Eq. (4.5) holds for all functions bz that satisfy 
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on the boundary ox(PJ) the conditions IJxm.a.L = 0, L = 0,1, ... , k-1. Thus the Eq. (4.5) 
will be satisfied only if the volume integral in (4.5) equals zero: 

(4.6) J (eRrm-am-Nma.,o.)IJxmdvR = 0. 
x(~) 

Using the du Bois-Reymond lemma, we obtain: f!R'm = am+Nma.,a. or 

p k 

(!Rrm = 2 2 ( -1)M(A,i 0 0~; M) M. 

i=l M=O X ,a. ,ex 
(4.7) 

Because of e = det(Vx)eR, we also have 

(4.8) 

Thus the basic system of the field equations for the constrained body under consideration 
is given by the equations of constraints (4.1) and by the equations of motion (cf. Eqs. 
(2.2)1): 

(4.9) divT+eb+er = e"i, 
where the stress tensor T is related to the deformation x(X, t) by means of the consti­
tutive equations {1.4), and the body reaction force r is related to the deformation and 
to the Lagrange's multipliers A.i, i = 1, ... , p, by means of the Eq. (4.8). This is a system 
of 3 +p equations for 3 +p unknown functions ~(X, t), m = 1, 2, 3, A.i(X, t), i = 

= 1, 2, ... , p, and can be determined only if p ~ 2; in the case p > 3 the Eq. (4.1) are 
over-determined with respect to the unknowns x\ x2

, x3
, and the eouations (4.9) (after 

taking into consideration (1.4), (4.8)) are under-determined with respect to the unknowns 
.i1,1, ••• , .i1,P. 

Let us investigate now the boundary conditions for the system of field equations (4.1), 
(4.9), {1.4), (4.8). Let on the portion Bx(PJ) of the boundary oxf(PJ) the values of functions 
Xm,fJL, L = 0, 1, ... , k-I, be known (these values cannot be prescribed independently 
of each other). It follows that ~Jxm./JL = 0, L = 0, I, ... , k-I, on Bx(PJ). Thus the rela­
tion (4.5), after taking into account (4.6), reduces to the form: 

(4.10) 
k-1 

J smiJxmdsR + J .,2; Nma.fJL(JXm,fJLna.dsR = 0, 
~x(~) L=O 

where on the portion ax(PJ) of the boundary ox(PJ) the external surface tractions p(X, t), 
X E ax(PJ) are prescribed. To simplify the calculations, let us confine ourselves to the 
cases k = 2, k = 1 . 

4.1. The case k = 2. 

Let us denote by nR = (na.) the unit normal to ox(PJ) and let ox = VxnR be a normal 
derivative on the boundary. Morever, let ~: Bx(PJ) ~ R 2 be a local coordinate system 
on ox(PJ), where ~ = (~..4) and the index "A" runs over the sequence 1, 2. We shall also 

8* 
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denote by a...t = ea:) the contravariant base vectors on Bx(PA). Using these denotations 
we are able, after some calculations, to transform (4.10) to the form 

(4.11) J {[sm +Nmcxncx- (NmcxPafncx)l..t] t5xm+NmaPnanflo(t5xm)}dsR 
~(~) 

where B[ox(PA)] is a boundary of ax(PA) with the unit normal u = (ucx) (vector u being 
tangent to ;}x(PJ) ), and where the vertical line denotes the eo variant differentiaton on 
Bx(PJ) with respect to the surface coordinates ~...t and in the metric a..t ·as, &...t being eo­
variant base vectors on Bx(PJ). Since on the portion -ox(PJ) of the boundary ox(PJ) the 
values of functions X and ox are known, then t5x = 0 on ax(PJ) and the last term in 
(4.11) must be equal to zero, provided that ox are continuous. Moreover, the functions 
ox and 8( t5x) on ax(ti) may be treated as independent of each other and arbitrary when 
the Lagrange multipliers approach is applied. It follows that on ax(PA) the following 
conditions hold: 

(4.12) 

Using (2.2)2 we arrive finally at the following boundary conditions: 

(4.13) 
(Tmcx+Nm«)ncx-(NmcxPaffncx)IA = p~, 

X= x, ox=~ 

Nm «Pnanp = 0 on 

on ax(PJ) X R, 

ax(PA) X R, 

where j, ~ are known. All quantities in (4.13) 1 are related to the reference configuration. 
Since the equation of motion ( 4.9) can also be written in the form 

(4.14) 

then the sums Tm ex +Nmcx can be interpreted, from the formal point of view, as "total" stress 
components if the conditions (Nm«Paffncx)l...t = 0 hold. The quantities in the Eqs. (4.11}­
( 4.14) are related to the reference configuration. 

4.2. The case k = 1. 

This is a case of simple constraints y;(X, t, x, Vx) = 0. The boundary conditions 
( 4.13) reduce to the form: 

(Tmcx+Nm«)na = p~ on Bx(PJ) X R, 

X = i on ax(PA) X R' 
(4.15) 

and the sums Tma.+Nma. can always be interpreted, from the formal point of view, as com­
ponents of a certain "total" stress tensor. Such an approach is commonly used if the 
simple constraints are taken into account; the stress tensor T determined by the history 
of the deformation gradient, in accordance with (1.4), was called in [1] "the extra stress" 
and the tensor N = (JNm«X,..a.) was interpreted as a part of stress that does no work in 
any motion satisfying the constraints. The latter condition holds only if the functions y; 
do not depend explicitly on t and l; it follows that am = 0 in the equations of motion 
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(4.14). Moreover, if the functions 'Yi are also invariant under arbitrary rotation of the 
physical space, then the tensor N in the case of simple constraints is symmetric. This 
special case of simple constraints, in which they are assumed to be frame indifferent, 
has been investigated in several papers (cf. [1, 2]). 

The Eqs. (4.14), which are valid for an arbitrary k, where Nmrz, am are given by (4.4), 
will be called Lagrange equations of the first kind for the constrained continuum. The 
alternative form of these equations, which is related not to the reference but to the actual 
configuration, will be obtained after substituting the right-hand side of (4.8) into (4.9). 

5. Examples of constrained continua 

The well known examples of constrained continua are those of incompressible bodies 
(given by detVz-1 = 0), bodies which are inextensible in the direction of e in x (equations 
of constraints have the form (vzrvze) · e-1 = 0) and rigid bodies, where Vzrvz-1 = 
= 0, [1]. Those constraints are simple and real. An example of simple imaginary con­
straints can be given by a rod-like body with cross-sections which are inextensible; denoting 
by e a vector normal to the cross-section and putting eA· e = 0, (Ve)eA = 0, we shall 
obtain the equations of constraints (Vzrvze .. - eA)· e8 = 0; A, Be {1, 2}. Examples 
of non-simple constraints given by V(V'ze)e = 0, where (V' e) e = 0, are used in the 
theory of shells, e being the direction of the material fibre normai to the midsurface of 
the shell in the reference configuration. In the separate parts (which are called the finite 
elements) of discretized bodies, we introduce constraints of the form V(vzTvz) = 0. 
In rod-like bodies which are assumed to preserve plane cross-sections, normal to the 
vector e in the reference configuration x, we have to introduce the constraints V(Vze)eA = 

= 0, (vze) · e .. = 0. In shell-like bodies preserving straight-line material fibres in the 
direction given by a vector e in x, the constraints have the form V(Vze)e = 0, where 
(Ve)e = 0. The special cases of constraints given above are of great importance mainly 
in engineering mechanics and will be studied in a separate communication. Other kinds 
of constraints, including integrable constraints, we shall investigate in a further part 
of this paper. 

Appendix 

Alternative form of basic axioms for the constrained continuum mechanics 

The formulation of the mechanics of a constrained continuum is given in Sec. 1 in 
terms of primitive concepts f1A, z, (!, b, p, T and the axioms given by the equation of 
constraints (1.1), the dynamical principle (1.3) and the stress relation (1.1). Now, we shall 
give an alternative formulation of constrained continuum mechanics, by introducing 
other primitive concepts and basic axioms; both approaches, however, will be equivalent. 

As the primitive concepts we shall take f!J, 1., (! and the system of forces which will 
be characterized by the conditions (i) and (ii) of Sec. 1 and by the following two condi­
tions: (iii). There exist in l.t(f!Ja), a = 0, 1, ... , r the vector valued functions tc,J(X, t), 
defined for each unit vector n, which are called stress vectors. The stress vector is inter-
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preted as acting across the oriented surface element with normal n, which is situated 
at the place x = z(X, t) in the physical space. 

(iv) There exist fields r = r(X, t); X E x(&ia); a= 0, 1, ... , r; t ER, of the density 
per unit mass of the reaction body force. 

As the kinematic axiom we shall take the existence of manifold d of admissible mo­
tions, zEd, which is given a priori by the equations of constraints (1.1). More general 
manifolds may also be taken into account. 

As the dynamical axioms, we shall take the principle of momentum (3.1) and that 
of moment of momentum (3.3). 

We shall also assume that the stress relation holds in the form (1.4); to this end we 
have to prove, by means of the two dynamical axioms, the existence of the symmetric 
Cauchy stress tensor T such that t<n> = Tn. 

From the principle of momentum the equations of motion follow in the form (2.2) 1 • 

We shall also define the fields of the surface reaction forces by means of (2.2h,3 • 

The meaning of the system of reaction forces { r, s} is obvious; it has to maintain the 
motion z of the body in the manifold d of admissible motions(4

). If the manifold d 
constitutes an uncountable set of admissible motions, then there is an infinite number 
of systems of reaction forces which may satisfy this condition. Thus, following the known 
approach of analytical mechanics, we assume that the constraints are ideal - i.e., that 
(2.1) holds for every dz; this is final axiom of the formulation of the constrained contin­
uum mechanics given in this Appendix. 
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(
4

) Following [1] we denote motion 11 x R- E 3 and the deformation function x(gj) x R-- E 3 by 
the same symbol X· 
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