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Insensitivity of materials to the exchange of deformation paths 

Part I. Insensitivity semigroups 

J. RYCHLEWSKI (WARSZAWA) 

THE MAIN object of theory of materials (theory of constitutive equations) is to direct and to 
arrange the mechanical macroexperiment. In this paper a definition of the insensitivity semi
group of a material is given. It is a set of such all mappings of deformation paths, which do not 
influence the final value of stress. The algorithm for deriving the general constitutive operator 
insensitive with respect to prescribed semigroup is given. 

Podstawowym celem teorii material6w (teorii r6wnan konstytutywnych) jest ukierunkowywa
nie i porzc:tdkowanie makroeksperymentu mechanicznego. W pracy podano definicj~ p61grupy 
niewraiJiwosci materialu. Jest to zbi6r tych wszystkich przeksztalceti dr6g odksztalecnia, kt6re 
nie wplywajc:t na koticowc:t wartosc napr~:ienia. Podano aJgorytm znajdowania postaci og6lnej 
operatora konstytutywnego niezmienniczego wzgl~dem z g6ry danej p61grupy. 

0CHOBHOH IJ;eJThiO TeOpHH MaTepHaJIOB (TeOpHH onpe~emiiOI.l.UIX ypaBHeHHH) HBIDieTCH Ha
npaBJIHBaHHe H ynop~o'tJHBaHHe MexamrqeCKoro Mai<poollb:rra. B pa6oTe ~a.Ho onpe~eJieHHe 
no.nyrpynllbi Hel.JYBCTBHTe.m.HoCTH MaTepuana. 3ro MHomecrao acex Tex npeo6paaoaamm 
nyreif ~ecl>opMHpOBa.HHH, KOTOpbie He BJIHHIOT Ha KOHetmoe 3HaqeHHe HanpH>KeHHH. ,Ua.H 
anropu<l>M nocrpoeHHH onpe~eJIHIOIIJ;HX oneparopoa HHBapHaHTHbiX OTHOCHTe.m.HO sa~a.HHOH 
nonyrpynllbi. 

Contents. Part I 

1. Introduction 
2. Definition of an insensitivity semigroup of material 
3. Representation theorem 
4. Exact insensitivity semigroup 
5. Configuration insensitivity (Noli's isotropy groups) 

1. Introduction 

THE NOTION of a material is a fundamental concept in the theory of continuum. In mech
anics or' continuous bodies, by a material we mean an operator called a constitutive 
operator, which assings a stress state to motion of a body. The theory of materials deals 
with properties and classification of such operators based on mechanical macroexperiments 
and general principles of physics. In recent decades, this theory has been developing 
intensively: we need mention but a few of numerous papers, ILYUSHIN [1, 2], NoLL [3, 4], 
RIVLIN and ERIKSEN [5], and SEDOV [6]. 

A demand for the theory of materials arises from a turbulent increase of various 
substances in contemporary technology as well as from the constantly increasing require-
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120 J. RYCHLEWSKI 

ments concerning the more and more exact description of deformation and flow 
processes. 

A fundamental aim of the theory of materials is the ordering and guiding a mechanic
al macroexperiment. This aim is attained by individualization of typical classes of materials 
and typical classes of processes. In the present paper, we wish to consider some further 
unexplored possibilities in this direction, relying on a more exact analysis of the invariance 
of constitutive operators. 

In Part I of this paper a fundamental definition for the entire work, of an insen
sitivity semigroup of material is given. 

That semigroup consists of all those mappings of deformation paths which preserve 
unchanged the final value of stresses. An algorithm is presented for deriving a general 
form of a constitutive operator, invariant with respect to a semigroup, given a priori. 

One of the most important particular cases- namely that introduced by Noli, called 
isotropy groups of materials -is quoted herein. 

Part 11 will propose a precise definition of a concept commonly used in mechanics 
and known as material viscosity. 

2. Definition of an insensitivity semigroup of material 

To focus our attention, we confine all considerations to purely mechanical theory of 
simple materials, which constitutes the nuckleus of the theory of materials and possesses 
most applications. We shall, herein, use a description based on a fixed reference config
uration. All ideas of the present paper can be carried over to theories not purely me
chanical, to non-simple materials, and even to non-local materials or to materials with 
microstructure. They can also be stated on the basis of a description without any reference 
configuration 

Thus the starting point is a constitutive equation (cf. (7], Sec. 28): 

(2.1) T(X, t) = tfK[F(X, t-s)]. 

Here T(X, t) is the stress tensor evaluated at the particle X at the instant t, F(X, t-s) 
is the deformation gradient from a fixed local configuration K into a local configuration 
at the instant t-s, at the particle X under consideration, s ~ 0 is the time measured 
backwards from the instant t e (- oo , + oo ). We assume that the stress unit E0 and the 
time unit t0 have been chosen, and we agree to understand by T, t, s dimensionless 
quantities referred to them. Then we omit the explicit appearence of the symbol X for 
a fixed particle. We are also assuming, up to § 18, that the time t is fixed and, as a rule, 
we omit its appearence in all formulas. 

Denote by f/ a set of tensors of the second-order, and by .;V c f/ a subset of tensors 
whose determinant is positive. By R we mean the set of all non-negative real numbers, 
R = [0, oo ). The set of non-singular tensor curves, parametrized by means of the 
dimensionless time s running over R, we denote by .91, 

(2.2) .91 = {f: R-+ .A'IDomf= R}. 
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INSENSffiVITY OF MATERIALS TO THE EXCHANGE OF DEFORMATION PATHS. PART I 121 

Curves from d are called deformation processes or deformation paths. In accordance 
with the convention assumed, we write: 

T = T(X, t), /(s) = F(X, t-s). 

Thus, for a fixed time t, we consider a constitutive operator as the operator tJK: d ---. !7. 
and we write: 

(2.3) 

The constitutive operator depends on the reference configuration according to the formula 

(2.4) 

where P E .K denotes local deformation from a local configuration K into the local config
uration PK, (cf. [7]). We know, moreover, that for every orthogonal tensor curve Q E d
i.e., one that satisfies the condition QT(s)Q(s) = 1 for each sE R- the following formula 

(2.5) 

holds true (principle of material objectivity, [7]). In the foregoing formulae, JP, Qf denoted 
the product of tensors for each s E R. 

In studying mechanics, insufficient attention is paid as a rule to defining a domain 
of operators with sufficient rigor, particularly the case with constitutive operators. 
In every concrete case, any information concerning the domain Dom tlK c d - i.e., the 
set of permissible deformation paths - is essential information about the material 
under consideration. In what follows, and particularly in Part 11, assumptions on the 
domain of an operator will play an essential role. For the time being, let us cite the 
following important properties: 

(i) for every f E d and every number s E R, 

(2.6) .f E Dom tlK => f; E DomtJK, 

where.f~(s) = f(s +s), sE R; 
(ii) for every f E d and every P E .K, 

(2.7) /E DomflK => fP E DomtJK. 

(iii) for every fEd and every orthogonal curve Q E d, 

(2.8) f E DomtJK => Qf E DomtJK. 

Property (i) follows from the manner in which we introduced tlK: d ---. !/, since formula 
(2.1) holds for each t E (- oo , + oo); property (ii) is implicitly assumed in (2.4), and 
property (iii) in (2.5). 

Conditions (2.4), (2.5) are, it seems, the only conditions which must, in purely mechanic
al theory, satisfy a priori, every constitutive operator. If we postulate further properties 
of the operator, then we are led to individualization of classes of simple materials. Studies 
concerning continuity of tlK by taking into account (2.5) and a suitable choice of 
topology in the set of deformation paths, lead, for instance, to materials with fading 
memory ([8, 9, 10, 11], and others). Considering the invariance of tlK with respect to 
exchanges of local reference configuration. NoLL [4, 7] achieved a fundamental clas-
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sification of simple materials. The present paper is devoted to a broader conception of 
invariance of constitutive operators. 

Consider all the following physical situations: 

(2.9) f ¥= g and ilK[(] = ilK[g]. 

We shall say that a material does not feel any difference between two distinct deformation 
paths. Let us introduce an equivalence relation (!!_ c Dom ilK x Dom ilK, defined by: 

(2.10) j@g 

This equivalence relation decomposes a domain of an operator into a set of cosets 
Dom ilK/@, which are level sets for ilK, [12]. 

In elaborating and presenting this work, we were guided by the following conviction: 
assumptions about level sets of a constitutive operator constitute the primitive and most 
fundamental information concerning a material. The individualization of distinct classes 
of materials should begin with a description of level sets- i.e., sets of such, differing 
from each other, deformation paths which lead to the same final value of stresses. 

Information about level sets is usually hidden in the information about invariance 
of an operator with respect to certain operations. For instance, formula (2.5) states that, 
if there exists an orthogonal curve Q e d such that Q(O) = 1 and/= Qg, then/, g belong 
to the same level set. This is a universal property of all constitutive operators; of course, 
we shall be interested in more special properties. With a view to discovering the nature 
of level sets in experiments, we proceed, in general, as follows. Choose a process f, say 
a one-dimensional tension test with constant velocity, or a class of processes ~, say cyclic 
tests. Further, we define a class A of operations of exchange processes- for instance, 
accelaration or retardation, the change of frequency and amplitude of cycles, super
position of prestrain, change of principal directions of deformations, and so forth. Taking 
a process/and an operation y, we arrive at a new process; denote it by the symbolf•y. 
We compare the response of the material on f as well as on f• y. 

To precise this idea, we introduce the following set of mappings: 

(2.11) F = {y: d-+ diDomy = d}. 

A composition of mappings y, 13 er is a mapping y o 13 er. Of course, (y o IJ) o e = 
= y o (IJ o e). Thus r is a semigroup [13]. The result of the operation y er on fed 
we agreed to denote by f• y e d, l• (y o IJ) = (f•r)• 13. 

As a matter of fact, we are always dealing with subclasses of deformation paths. Firstly, 
the domain of the constitutive operator is always a subset of d. In fact, the structure 
itself of ilK can restrict the domain of its action - for instance, in the case of a viscous 
Newtonian fluid one may accept only continuous and differentiable deformation paths. 
However, even when the formal domain of the operator ilK is the entire set d - as is 
the case for elastic materials- in reality it is reasonable to consider it on a certain class 
of deformation paths only. This class can be defined a priori by conditions of the type 
which restrict the magnitude of deformations, the magnitude of stretching, and so on, 
or, a posteriori by conditions of the type restricting the mean pressure (positive pressure 
in fluid), the stress deviator modulus (Huber-Mises yield condition), their combinations 
(models of soil media), and so forth. Secondly, in numerous situations we are interested 
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only in a certain class of deformation paths- for instance, plane flow. Finally, we make 
experiments on subclasses.@ c d only. 

Let !!) c d and .@•y = {f e dlf = g•y for a certain g e.@}. In addition to r, we 
introduce 

(2.12) rf!} = {y eFI .@•y c.@}. 

It is obvious that this is a subsemigroup in r. 
We can now introduce the main object of this work. 
DEFINITION 1. An insensitivity semigroup of a material relative to the reference 

configuration K, a class of deformation paths .@ c DomifK and a subsemigroup of the 
exchange of deformation paths A c room 'ijK is a semigroup: 

(2.13) .Q(K, .@,A) = {ye AI iiK [f* y] = iiK[f] for every f e.@}. 

Then the condition r f!} c r Dom 'ijK is satisfied by q} a semigroup 

(2.14) .QK,f!J = .Q(K, .@,Ff!J) 

is called an insensiti'z.'ity semigroup of a material relative to the configuration K and the 
class .@. A semi group 

(2.15) .QK =: .Q K, Dom 'ijK 

is called a specific insensitivity semigroup of a material relative to the configuration K. 
The name introduced is correct, since for every y, ~ e .Q(K,.@, A) we have y o ~ e 

E .Q(K,.@' A). 
Every statement about insensitivity semigroups is a certain implicit statement con

cerning level sets. Notice that for every f e Dom iiK 

(2.16) f•.Q(K,f, Foom'ijK) c Dom iJK 

is a level set represented by the deformation path f. In fact, the semigroup Foom'ijK' by 

definition, is transitive on Dom ttK- i.e., for every f, g e DomiJK there exists yE Foom iYK 

such that g = f•y; if y runs over .Q(K, f, r Dom 'ijK), then f *Y runs over the whole level set 

containing f 
In what follows, we shall be interested mainly in insensitivity semigroups of the type 

QK, !!J. Every such semigroup contains identity on .@. The condition which defines QK, !!J 

can be stated somewhat differently. Denote by M the set of all constitutive operators 
with a common domain Do m iJK. Every mapping y e r nom 'ijK generates a new mapping 

(2.17) iJK -+ iJK o y, 

where, of course, (iiK o y)[f] = iJK[f•y]. Thus a condition in (2.13) for QK, !!J can be 
stated in the form; 

(2.18) iiK o y = iiK on .@. 

We see that the operator iJK is to be a fixed point in M with respect to the semigroup 
QK, !!J. In other words: iiK is to be invariant with respect to y e QK, !!J. 

The function Q is defined on the triple Cartesian product of the family of sub
semigroups of the semigroup r, of the family of all subsets of the domain of the operator 
DomifK, and of the set of all local configurations. We may study properties of Q from the 
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view-point of algebraic structure of those sets. We confine our attention to one theorem 
only. 

Let P be a non-singular tensor which transforms a local configuration K into a local 
configuration PK. Let us introduce the following notation: 

PAP-1 = {<5 eFI there exists ay eA, such that/•<5 = [(fP)•y]P- 1 for everyfe d}, 

.@P-1 = {g E dl there exists af E.@, such that g = .fP-1 }. 

THEOREM 1 

(2.19) 

in particzt!ar, 

(2.19') 

(2.20) 

(2.21) 

.QKP = p.QKP- 1 • 

AI c ./12 => .Q(K,.@' A1) c .Q(K,.@' ./12), 

.@1 c P)2 => .Q(K,2}1,A) => .Q(K,2}2,A). 

P r o o f. The first formula follows from the identity 

(2.22) tJPK [fP-1] := tJK[f] = tJK[/•y] := tJPK [(f•y)P-1] := tJPK [(((fP-1) )•y )P-1], 

for every f E 2} and every yE .Q(K, 2}, A). The second formula is a particular case of 
the first one, since due to (2. 7) 

(Dom tlK)P- 1 = Dom tJK, PFoomilKp- 1 = FoomilK. 

The third and fourth formulae are obvious. Q.E.D. 
If all operations of the semigroup A commute with the right-hand side tensor con

traction, and if 2} is stable with respect to P- i.e., when 

(2.23) 

-then the insensitivity semigroup relative to A is independent of the reference configu
ration 

(2.19") .Q(PK, 2}, A)= .Q(K, 2}, A). 

The specific insensitivity semigroup .QK is always nonempty. What is more, it is even too 
rich, since it contains previously mentioned operations of the left-hand side contraction 
with orthogonal curves Q E d, which give no information about a material. That can be 
avoided in the way described in paragraph 4. There arise two questions: 

1. Do there exist materials with the trivial insensitivity specific semigroup (i.e., composed 
of operations of multiplication by Q E .91, Q(O) = 1)? 

2. Do there exist materials with the maximal specific insensitivity semigroup (i.e., 

.QK = FoomilK)? 

THEOREM 2. If there exists a configuration K such that .QK = FoomiJK' then .QL = FoomilL 
for every configuration L. This takes place i.ff (if and only if). 

(2.24) T = cxl, ex= cx(X) 

for all K and all f E Do m tlK. 
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P r o o f. The first statement follows from (2.19) and (2. 7). Necessity (2.24) is proved 
as follows. If QK = r Dom liK' then the domain Do m tfK is the single level set, since 

r Dom 'iJK acts inside it transitively. Thus tfK[!J = G = const. From the principle of ma

terial objectivity (2.5), we obtain G = RGRT for every orthogonal tensor R, and this 
means that G = ex 1. Q.E.D. 

A hypothetic, completely insensitive material (2.24) would be a fluid which would 
not transfer shear stresses, and could exist only for strictly defined (at a particle X) pressure 
value. This material is valued by specialists dealing with closed crack, they prefer to fill 
up these cracks with this material rather than real fluids or gases. 

R e m a r k 1. On programming experiments and analysing their results, very often 
not the operator tfK itself is of interest to us but rather different operators generated by 
it - for instance, 

(2.25) 

Here, tr denotes the operation of taking the trace, and dev stands for the operation of 
taking the deviator of a symmetric tensor. 

For anisotropic materials, we may be interested in operations of the type 

(2.26) 

where cp is the orthogonal invariant of the arguments indicated, and L 1 , .•• , LM is a system 
of tensors that define the group of material symmetry [14]. For instance, for transversally 
isotropic material L 1 = a ® a, where a is the versor of the symmetry axis, and we 
may be interested in stress in the direction a 
(2.27) a tfK[f]a. 

As an example of a more complicated operator may set ve stress work done along the 
deformation path f. It is a functional W on DomtfK defined by 

(2.28) W[/] = ~ tr{(tfK[/T])D(r)}d T, 

-00 

wherefT(s) =f(r+s), re(-oo,t], and D(r) is the stretching tensor at theinstant r, 
corresponding to the path f, in accordance with a known formula. 

For all such operators the concept of an insensitivity semigroup- defined by the 
exchange of ~K, in definition 1, into the operator under consideration - is resonable 
and useful. For operators (2.25), and, in general, for every operator of the type a o ~K, 

where a is an arbitrary function defined on the set of symmetric tensors, we shall have 

(2.29) Qa(K, ~, .t1) => Q(K, ~,A) 

- i.e., performing an additional operation on the operator tfK, we do not diminish 
the insensitivity semigroup. The first of the operators (2.25) provides numerous examples 
of situations in which Qa will be essentially a wider semigroup than Q. 

R e m a r k 2. The concept of the insensitivity semigroup, for greater clarity stated 
above for a purely mechanical theory of simple materials, is particularly significant for 
the theory of not purely mechanical, and for materials which are not-simple. Since then, 
we deal with constitutive operators of several variables 

(2.30) T = tfK[/t' ... ,fN]' 
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where fi are: deformation gradient, temperature and its gradient, other mechanical fields 
and their gradients, internal parameters describing a structure, etc. Thus there arises 
a possibility of an exchange operation of the type 

(2.31) 

A description of insensitivity to exchanges of this type is the correct manner in which 
to state what are called temperature-deformation analogies, and others. 

3. Representation theorem 

Investigation of the insensitivity semigroup of a given constitutive operator is, in 
general, not too difficult, and sometimes even trivial. For instance, for an elastic material 
the insensitivity semigroup comprises all the exchanges of deformation paths which do 
not influence the final value of deformation- i.e., QK :::::> {y e FoomffK 1(/•y)(O) = f(O) 

for every f e DomtfK}· Of course, this property may serve as a definition of the elastic 
material (in the Cauchy sense). For isotropic, elastic material. referred to an unaltered 
configuration, it suffices to assume a weaker property U/*r (0) = U JCO), where U 1 is the 
stretch tensor corresponding to f. For a Newtonian incompressible viscous fluid, it 
suffices to take Df*Y (t) = DJ(t). For more complicated known operators- for instance, 
those in the theory of "visco-elasticity" and "visco-plasticity" - the situation is, in 
general, much more involved. 

The aim of the theory of materials consists, however, not so much in analysis of existing 
constitutive equations as in elaborating a methodology to enable us to derive constitutive 
equations based on a "technological card" of the constitutive operator- a list of its fun
damental pruperties found in a mechanical macroexperiment. From this point of view. 
the following question possesses a fundamental meaning: 

What conditions, in the form of a constitutive operator, do inclusion of a subsemi
group of mappings of the domain of an operator imposed, in advance, on its insensitivity 
semigroup? We shall give an answer to this question for the most important case, viz., 
for the semigroup !JK,!I· 

As frequently happens, it is simpler to pass to a more general language. Take, therefore, 
the operator 

(3.1) 2 : 9 ---+ T, Do m 2 = 9. 

We assume nothing special either about the operator 2 or the sets 9, T; they should, 
however, posses sufficiently rich structure in order that the subsequent considerations 
may not become trivial (£ =F const, 9 contains more than a single element, and so on). 
Denote 

(3.2) II = {y: 9---+ 91Domy = 9} 

and introduce the insensitivity semigroup of the operator 2 

(3.3) Q = {y ei112oy = 2}. 

We give to the question asked above greater precision as follows: determine all operators 
2 that satisfy the condition Q :::::> A -i.e., the following condition 

(3.4) 2 o y = 2 for every y e A, 
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where A is a subsemigroup in IT given in advance. This means that we are concerned 
with "general solutions" of some functional equations. We present an algorithm of finding 
such solutions based on the notions of A-orbit and A-separator. Similar, but weaker, 
algorithms have been used, explicitly or implicitly, in all problems of this kind (cf. [15, 
16, 17]). An essential difficulty, in the present case, is implied by the fact that we are 
considering invariance with respect to a poor algebraic structure - semigroup. 

Begin with a still more general situation. Let be given an equivalence relation E c: 

c: &' x &'. Consider the condition: 

(3.5) 2[a] = 2[b] if aEb 

for all a, bE&'. Let us introduce the canonical mapping 

(3.6) () : &' __. &' /E 

which assigns to every element a E &' E-coset (an equivalence class with respect to E), 
to which it belongs, a E O(a). 

Condition (3.5) simply means that each E-coset is contained in some level set of 
the operator 2- i.e., the partition into level sets is not finer than the partition into 
E-cosets. From this observation follows, at once, a "solution" of the functional equation 
(3.5): 
operator £ satisfies the condition (3.5) iff there exists an operator S: 9/E-+ T such that 

(3.7) 2=So0. 

Let us notice that E-cosets coincide with level sets - i.e., E = C if S is an injection. 
It is not easy, in general, to pass to the operator S since this passage requires a con

struction of some calculating apparatus on cosets. If one can find a suitable auxiliary set 
...lt such that E-cosets may be identified with elements of ...lt - i.e., if there exists a bijection 

(3.8) t:&'jE-.Jt 

- then, by introducing !-" = t o () and operator X = S o t- 1
, we write ··solution" (3. 7) 

of the Eq. (3.5) in an equivalent form: 

(3.9) 

Finally, when neither (3.7) nor (3.9) is suitable, we proceed as follows. 
We introduce an arbitrary mapping {} E IT which satisfies the following conditions: 

a*{} = b.{} iff aEb, 
(3.10) 

{}o{}={}. 

Let us call every such mapping £-separator. The existence of E-separator is, like the 
existence of the set J(, based on the axiom of choice. In accordance with it, there exists 
a set of representatives for E-cosets, C c: &'. Let A be an arbitrary E-coset. Taking 
e:&'jE-. C defined by the formula e(A) =A fl C, we obtain £-separator{}= eoO. 
Every set of representatives C designates its own E-separator {}, and inversely. Now, if 
the formula (3.7) holds, then 1! =So() = 2 o {}. Inversely, if 2 = 2 o {} then 1! = So 0, 

where S = 1! o e. Our result can be stated int he equivalent form: 
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Operator 2 satisfies the condition (3.5) iff every E-separator {} belongs to its insensitivity 
semigroup- i.e., when 

(3.11) 

Let us pass to the situation described by condition (3.4), where the information con
cerning level sets of the operator is hidden in its invariance with respect to some semigroup 
A c TI. We reduce it to the situation (3.5) by introducing a suitable equivalence relation. 
We now give a definition which is essential in all the subsequent results stated as theorems 
1-VIII of Part 11. 

First, let us take the following relation in f!J x f!J: 

(3.12) 

(3.13) 

EA = { (a, b) e f!J x f!JI there exists a y e n , such that a = b•y}. 

E.1 = {(a, b) e f!J x f!JI there exists a yen, such that a.y = b}. 

Since, by hypothesis, the semigroup / l possesses an identity element on fJ', then both 
relations are reflexive. It is also obvious that both relations are transitive, but neither 
of them is symmetric in a general case. 

We introduce the relation 

(3.14) 

~· This is a tolerancy( 1) -i.e., a reflexive and symmetric relation. In a general case, EA 
is not transitive. Let us introduce the minimal reflexive, symmetric and transitive relation 

+-+ 
containing EA· That will be what is called, the transitive closure of a tolerancy [19], 

(3.15) 
~ ~ ~ 

EA = E,1 u E~ u ... u E~ u .... 

This relation we shall call A-equivalence. In other words, we are assuming the following 
<iefiniti on: 

DEFINITION 2. Elements a, b e f?lJ are equivalent with respect to the semi group with 
identity A c TI, or briefly, A-equivalent, if 

(3.16) 

Instead of aEAb, we shall write, in what follows, aAb. 
An explicit form of the definition reads: aAb; this means, according to (3.15), that 

for the pair (a, b) there exists a finite sequence c1 , ... , eN e.~. called A-connecting 
sequence, such that 

(3.17) 

(3.18) for every i = I, ... , N -1, the pair (ci> c;+t) is 

e) This concept was introduced by ZEEMAN [18]. Powers of tolerancy are defined as follows: 
- ~ ~ 

E ~ = {(a, b)lthere exists a c E P/, such that aEAc and cEAb}, ... 
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A-connected- i.e., there exists y eA such that 

Cosets with respect to EA- i.e., elements of f!JjE11 - are called A-orbitse). Every 
E11-separator is called A-separator. By using definition 2 and the foregoing statements, 
we obtain the following "solution" of the problem posed at the outset. 

THEOREM 3. A given subsemigroup A c rr is a part of the insensitivity semigroup !J 
of the operator 2: f!J -+ T- i.e., 

(3.19) 

for every a e f!J, y e A, if! there exists a set .A and a mapping fl: f!J -+ Jt with the property 

(3.20) ft(a) = J-l(b) iff aAb, 

and an operator X : jf -+ T such that 

(3.21) 

Another formulation: A c !J if! every A-separator{} belongs to !J- i.e., 

(3.22) 

P r o o f. The only statement that requires to be proved is the equivalence: A c !J, 
iff for every a, b, e f!J 

(3.23) .C[a] = .C[b] if aAb. 

Suppose A c !J. The condition aAb means, according to (3.15), that there exits a 
A-connecting sequence c 1 , ••. , eN e f!J. It now follows from (3.17), (3.18), (3.19) that 

(3.24) 

Inversely, suppose that the implication (3.23) holds. Then for arbitrary a e &' and ye A 
we have aA(a*y); hence follows (3.19)- i.e., A c !J. Thus, we have reduced the con
dition of invariance with respect to A, (3.4), to the condition of constancy (3.5) on cosets 
of a certain equivalence relation. Therefore we may apply formulae (3.9), {3.11). Q.E.D. 

"Solutions" (3.21 ), (3.22) will be called, in what follows, the representation formulae. 
They provide, as always in such situations, a manner of procedure only. In every concrete 
situation, the heart of the matter and the essence of the difficulty, for given &', 2, A, 
consists in the construction of the pair (Jt, ft), or A-separator {}. 

4. Exact insensitivity semigroups 

An attempt to get rid of "dispensable" operations of a rotating deformation path in 
the past is quite troublesome and, therefore, it was not performed before the introduction 
of the definition of an insensitivity semigroup. 

e> A corresponding construction for groups of mappings is well known [28]. When A is a group, 
- -+ ~ 

then EA = EA = E.A = EA. 

9 Arch. Mech. Stos. nr 1/74 
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Denote the set of those operations by (Q , 

( 4.1) (Q = {e E Fl there exists an orthogonal curve Q E d, Q(O) = 1, 

such that f•e = Qf for every f E d}. 

This is a group in the semigroup r. In agreement with the principle of material objectivity (2. 5) 

(4.2) 

for every material and every reference configuration. 
Let us decompose every deformation path/into rotation R1 and stretch U1,/ = R1U1 . 

Take the operation n E r defined by 

(4.3) 

where .sJ = d •n is the set of deformation paths with constant rotation. It is obvious, 
that: (i)f •n = g•n iff f(Jlg (i.e.,/= Qg for some Q(s), Q(O) = 1); (ii) non = n- i.e., 
it is ~-separator. According to the representation theorem (3.22), ( 4.2) is equivalent to 

(4.4) ilK= ~K 0 71:, 

where Dom ijK = Dom ilK n d: 
In this way we have used that part of the information contained in the principle of 

material objectivity which concerns level sets of the constitutive operatore). 
It follows from the formula obtained, that in general, we might restrict our consider-

ations of invariance to the cutoff operator ~K, and to study the exchanges from r .ri 
only -i.e., exchanges of deformation paths with constant rotation into paths with constant 
rotation. 

DEFINITION 3. By a precise insensitivity semigroup of a material we mean every semi-

group .Q(K,!!), A) if!!} c Dom ijK c .si. By an exact insensitivity semigroup of a material 
we mean one which is isomorphic with a certain precise insensitivity semigroup of that 
material. 

Precise insensitivity semigroups are inconvenient in use. Numerous useful operations
for instance, the operations of multiplication of deformation path by a constant non-

orthogonal tensor - do not enter into those semigroups since they lead out from .si. 
A study of the exactness of insensitivity semigroups requires, in the general case, quite 

complicated algebraic constructions. None of the natural equivalence relations in r, 
connected with the projection n- for instance, the following relations E1 , E2 , E3, E4: 

1. yE1 t5 iff there exists a e E 0., such that y = t5 o g, 

2. 'Y Ez t5 iff there exists a e E (Q' such that 'Y = e 0 t5' 
3. yE3 t5 iff y on = t5 on, 
4. y E4 t5 iff n o y o n = n o t5 o n, 

- are not two-sided stable relations [13], and none of them make it possible to construct 
a natural factor semigroup, dual to the partition of d into @.-orbits. 

e J That principle contains, of course, additional information which does not concern level sets: 

ilKlRJ(O)Uj(s)] = Rj{O)iJx [UJ(s)JR1 (0) 

which, for the present, will not be needed. 
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5. Configuration insensitivity (Noli's isotropy group) 

A specially important type of insensitivity of material was under another name and 
in somewhat different context, introduced and studied by NOLL [4, 20]. His idea was to 
study equivalence relations in a set of local reference configurations of a material, intro-

duced in the following way: local configurations K, K are equivalent if a i = aK and 

ei = eK . One can say that i and K are indistinguishable in a mechanical macroexperiment, 
since only stresses T, deformations J, and density e are the quantities measured in such 

experiments. Since i = PK for P = iK- 1
, then the central notion of Noli's theory is 

an isotropy group of a material gK relative to the local configuration K, introduced by the 
formula: 

where 0/1 is a group of unimodular tensors. 
Let us consider this fundamental idea from our point of view. According to formula 

(2.4), the exchange of configurations K --. PK is equivalent to the exchange f--. JP, where 
detP = I -i.e., equivalent to the superposition of prestrain P, which does not change 
the density (of shear prestrain) on any deformation path f. 

Let us introduce a mapping of the group 0/1 into the semigroup of all exchanges of 
deformation paths r, 
(5.2) x: ou--. r, f•x(P) =JP. 

Iff is obvious, that 0/1 is isomorphic to its image X( 0/1) (in fact, x(P 1 P 2 ) = x(P 1) o x(P 2); 

x(P1 ) = x(P2 ) iff P 1 = P 2). The formula (5.1) may be written in the equivalent form: 

(5.3) 

In other words, 

(5.4) 

-i.e., Noli's isotropy group of a material is (isomorphic to) a special type of insensitivity 
semigroup. The group x(gK) can be called a configuration insensitivity group of a material 
relative to K. Then the name of the "isotropy group" of a material relative to K will be 
suitable for the orthogonal part of x(gK)· 

A comprehensive description of groups KK has been developed in the papers, [4, 20, 
21, 22, 23]. Those results constitute an important part of the description of insensitivity 
semigroups of a material. Note that Noli's theorem: gpK = PgKP- 1 is but a particular 
case of (2.19). 

For illustration of the representation theorem (3.21), we give a slightly modified proof 
of the basic Noli's theorem concerning simple fluids. 

A simple fluid is, by definition, a simple material for which reference configurations 
with the same density are indistinguishable experimentally. In others words, a simple 
fluid is defined by the equality: 

(5.5) .Q(K, Dom aK, X(~))= x(OU). 

9* 
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It is obvious that two deformations paths J, g are x(Cf/)-equivalent iff 

(5.6) f(s)[J(0)]- 1 = g(s)[g(0)]-1, detf(O) = detg(O). 

Hence x(Cf/)-orbits in Dom ifK may be identified with the pairs Fm(s) = f(s)[J(O)r 1
, 

e(t)/(!K = det/(0). Applying the representation formula (3.21), we obtain: 

(5.7) T = XK[Fm(s), e(t)/eKl. 

Applying the polar decomposition Fm(s) = R~g(s)u~g(s), R~g(O) = 1 and the formula 
(2.5), we obtain Noli's theorem: A simple material is a simple fluid iff 

(5.8) T = XK[Um(s), e(t)/eK], 

where the operator is isotropic with respect to its tensor argument. 
We shall consider arbitrary configuration insensitivity groups .Q(K,!!), x(Cft) ). 

If f e si- i.e., f is a deformation path with constant rotation, and P e Cft is not an 
orthogonal tensor- then, in general, JP will not be a path with constant rotation. We 
introduce, therefore, a mapping 

(5.9) p: r-+ r .ri' p(y) = y 0 n 

(cf. equivalence relation E3 in§ 4). Now x(P) on: d-+ .ri. 
LEMMA. The groups x(Cft), x(Cft) on are isomorphic. 
P r o o f. First we show that 

(5.10) x(P) o n = n o x(P) o n 

for every P e Cf/, (i.e., the relations E3 and E4 from§ 4 coincide with each other on x(Cf/)). 
In fact, let us write (5.2) in the equivalent form: 

(5.11) 

for every f e .91. This means that for every f e .91 we shall have 

(5.12) 

Since U J•n = U" then 

(5.13) U}p = [JPf[JP] = pTjT JP = pTu}P = pTu}.nP = uf,•n)P 

and 

(5.14) R1p(O) = /(O)U:;:;(O) = (/•n)(O)U(,~n>P(O) = R<J•n)P(O). 

By now, the theorem is obvious since, firstly, 

(5.15) p[x(Pl) o X(P2)] = x(Pd o x(P2) on= x(P1) ono x(P2) on= p[x(Pl)] o p[x(P2)]; 

thus p is a homomorphic embedding x(Cf/) in F. Secondly, if p[x(P1)] = p[x(P2)]- i.e., 

(5.16) 

-then, letting/= 1 = const, we have P 1 = P 2. Q.E.D. 
THEOREM 4. Every configuration insensitivity group .Q(K,!!), x(Cft)) is an exact one, 

for 

(5.17) .Q(K,!!), X(~)) on = .Q(K, f!)•n, x(Cft) on). 

http://rcin.org.pl



INSENSITIVITY OF MATERIALS 10 THE EXCHANGE OF DEFORMATION PATHS. PART l 133 

Proof. It fo1lows from the foregoing Lemma that the image D(K, !lJ, x(OU)) on of the 
group D(K, !lJ, x(OU)) under the mapping pis a group. We now show that it is a precise 
group of configuration insensitivity written out on the right-hand side of the equality 
(5.9). 

Let x(P) E .Q(K, !lj, x(OU) ). Then for every f E !lJ, 

(5.18) «iK[(/•n)•(x(P) on)] = tJK[(f•n)•x(P)] = tJK[f•n] = tiK[/•n] 

-i.e., x(P) 0 nE D(K, !lJ•n, x(OU) 0 n ). Inversely, if this inclusion is fulfilled then for 
every fe !lJ 

(5.19) tJK(f•x(P)] = tJK[f•x(P)•n] = tjK[/•(x(P) 0 n )] = fiK(f•(n o X(P) on )J 

= fiK[/•n] = tJK[/]~ 
i.e., 

x(P) e D(K, !lJ, x(OU) ). Q.E.D. 
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