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Foundations of the theory of disclinations

R. W. LARDNER (BURNABY)

THE THEORY of continuous distributions of disclinations in non-linear elastic solids is derived.
It is shown that the spatial strain tensor and the coefficients of connection are well defined
state quantities, and the relationships between these quantities and the densities of dislocations
and disclinations are obtained. For a linear elastic material, an expression is given for the
stresses produced in an infinite medium by an arbitrary distribution of these two kinds of defects.

W pracy wyprowadzono teorie cigglych rozkltadéw dysklinacji w osrodkach statych nieliniowo-
sprezystych. Wykazano, Ze przestrzenny tensor odksztalcenia oraz wspolczynniki koneksji sa
dobrze okre§lonymi wielko$ciami stanu; wyprowadzono ponadto zwigzki miedzy tymi wielko-
§ciami oraz gestosciami dyslokacji i dysklinacji. Dla materiatu liniowo-sprezystego podano
wzory na naprezenia wywolane w oérodku nieograniczonym przez dowolne rozklady tych
dwéch rodzajow defektow.

ITpennaraeTcs TeOpHA KOHTHHYJIBHOIO paclpe/ieIeHHA JUCKIIMHALMA B HeJIHHEHHBIX YIIPYTHX
cpenax. IToxkaszano, YTO NpocrpaHCTBEHHBIH TeH30p Aedopmanuii v KoaddHUHEHTEI CBASHOCTH
ABJIAIOTCA XOPOIIO ONpeliefieHHbIMH IIapaMeTpaMH COCTOSHHA. BhIBeJEHBI COOTHOLIECHHA,
CBASHIBAIOLIME 3TH BEJIHYHHEI C IVIOTHOCTAMMU JHCToKauuii # guckianHauuit. ITonyyena dopmy-
Jia pnAa Hanpﬂmclmﬁ B HEOrpaHHYEHHOM J]]-IHeﬁHO-YleYIDM TEJIE, BhIZBAHHLIX IIPOHIBOIBHBIM
pacripefieNlenyeM B rpocrpancTee fedeKTOB OJHOro M APYroro pona.

1. Introduction

THERE has recently been some discussion and a certain amount of controversy relating to
the theory of disclinations (i.e. rotation dislocations), particularly by Mura [1] and de
Wit [2]. One point at issue is whether, in a body containing disclinations, it is permissible
to use quantities such as the elastic and plastic distortion tensors. In this paper we shall
give a foundation for the theory of disclinations based on nonlinear continuum mechanics
which will, we hope, provide an answer to this and other questions. The main discussion
will be applicable to both linear and non-linear elastic materials, although in the last two
sections of the paper we shall specialize to the linear theory to obtain certain further results.
We shall show that, for any material containing disclinations, the fundamental quantities
which remain well-defined are the elastic strain tensor and the coefficients of connection,
introduced for the theory of dislocations by Konpo [3] and BiLBy, BULLOUGH and
SMITH [4]. The usual relationship is found between the dislocation density and this con-
nection, while its curvature tensor is shown to be essentially the same as the density of
disclinations. In the special case of linear materials, this allows us to relate the incompa-
tibility of the elastic strain tensor to the two defect densities. In the final section of the
paper we shall derive the stress and strain fields produced by arbitrary distributions of
dislocations and disclinations, obtaining results which have previously been derived
[1, 2] by other methods. One feature of the derivation presented here is that no use is
made of such redundant quantities as “total displacement field” and “plastic strain”.
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2. Elastic strain tensor

Consider an elastic body containing dislocations and disclinations, whose particles
occupy positions x in space with components (x,, x,, x;) with respect to some Cartesian
frame. Usually in continuum mechanics a second state of the body, called a reference
configuration, is introduced, and the current configuration is viewed as a distortion from
the reference configuration. In particular, for homogeneous elastic solids, the theory
becomes considerably simplified if we choose as reference configuration the natural state
of the body — that is the state in which the stresses vanish identically. However, if the
body contains dislocations or disclinations, this becomes impossible, since no configuration
of the whole body exists for which the stresses are zero.

In order to overcome this problem, NoLL and TRUESDELL [5] construct what they
term a local reference configuration in the following way. Let x, be any particle of the
body and N(x,) a small neighbourhood of that particle. If N(x,) were to be cut out of
the body and the stresses in it allowed to relax, then this small element would assume its
natural state. Such a configuration, which can be found for each sufficiently small neigh-
bourhood of the body, is called the local reference configuration (LRC) of N(x,). The
LRC’s of all the elements of the body cannot of course be joined continuously together
to give a reference configuration for the whole body.

We shall denote the position which the particle x in N(x,) occupies in the LRC of
that neighbourhood by g with components (&,). We can then construct the deformation
gradients between these two configurations, which we denote by M and m, with components

3x; 36*

2.1) My = 3_5’ M = 'B-;j*,
where
22) my My; = Mjcny; = 0y;.

In the usual way we construct the two Cauchy-Green tensors, defined by B = MM and
C = M'M, where M’ denotes the transpose of M. In terms of these, the spatial strain
tensor e and the material strain tensor E are defined by writing B = I+2E and C™! =
= I—2e. In terms of components therefore

1 1
(2.3) Ey = 7 {Mu My — 5;1:}, Cixk = 7 {éex—mitmu}-

So far we have been concerned with the LRC of each neighbourhood N(x,) of the
body considered separately, and we would like to impose some connection between these
configurations for different neighbourhoods. First of all, let N(x,) and N(x;) be two
neighbourhoods which overlap, and let .# denote their intersection. Then the particles in
# will in general have two LRC’s, one coming from N(x,) and one from N(x,). However,
if we suppose that the natural state of the material is unique apart from orientation in
space, it follows that the two LRC’s of # differ only by a rigid rotation. Consequently,
by rotating the LRC of one of the neighbourhoods, say N(x,), we can arrange that the
two LRC’s coincide in the overlap region.



FOUNDATIONS OF THE THEORY OF DISCLINATIONS 913

Now suppose that N(x,) and N(x,) do not overlap. In this case we construct a path
from x, to x, in the body and choose a sequence of points y, = Xo, ¥2, ..., ¥» = X; On
the path with neighbourhoods N(y,), N(y,) ... N(y,) such that each neighbourhood
overlaps the previous one in the sequence. Then the orientation of the LRC of each
neighbourhood of the sequence is fixed in turn in such a way that it coincides with the
LRC of the previous neighbourhood in the overlap region. By means of this construction,
a continuous local reference configuration is found for the whole path from x, to x,,
and in particular a connection is established between the LRC’s of N(x,) and N(x,).

A natural question now arises. Suppose that we choose a complete circuit €, starting
and finishing at x,, and suppose we construct a continuous LRC in the above manner
for the whole path €, will we end up with the same LRC for N(x,) as the one we started
out with? The answer to this is negative if the material contains disclinations: after comple-
ting the circuit, the LRC of N(x,) will be rotated with respect to its original orientation.

Let dx be a small material element at X, which corresponds to an element d§ with
components (@¢&;) in the original LRC of N(x,). After continuing round %, dx corresponds
to an element (d&;), say, where

d&; = Ru(€)d&;.

Ry, (%) are the components of an orthogonal matrix which measures the rotation of LRC’s
corresponding to ¥. This matrix is directly related to the number of disclination lines
threading € and, as we shall see later, provides a definition of disclination density.
From (2.1) we see that the deformation gradients M and m are changed to
G5 = Ru@OMu, iy = S =y Ru()
It follows from (2.3) therefore, since Ry, (¢) is orthogonal, that the spatial strain tensor
is unchanged: e, = e;. Thus we have the very important result that, even in a body
containing disclinations, the spatial strain tensor is a uniquely defined quantity. Clearly
from (2.4), the elastic deformation gradients are not uniquely defined in such a material.
For a linear material, this means that the elastic distortion is not well-defined. We see
also from (2.3) that the material strain tensor changes and is therefore not a well-defined
quantity.

(2.4) M=

3. Coefficients of connection

Let {u,, u,, us} be the orthonormal.basis for the Cartesian coordinates (x;), and let
us define a triad of vectors {e;,e,,e;} at x as

(3]) € = Mkp Up.

This triad forms a basis, since we always assume the deformation gradients (2.1) to be
non-singular. Initially {e;} can be constructed via (3.1) only for the single neighbourhood
N(x). However, using the construction in Sec. 2 of a continuous LRC for a neighbourhood
of any simple curve through x, we can define {e,} at all points along such a curve. Let

3 Arch. Mech. Stos. nr 6/73
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x+dx be a neighbouring point on the curve under consideration. We set de, = e, (x+
+dx)—e,(x). Then, since {e,(x)} is a basis, we may expand

del =, Jill'l el(x)dxmu
where Jy, are certain coefficients. Substituting from (3.1), therefore,
(3.2) dMgP = J“,,,M,,dxm.

We have seen in (2.4) that the gradients M), cannot be globally defined when disclina-
tions are present. These quantities are only defined along paths in the body, and the
differential equations (3.2) may only be integrated along paths. If, however, the body
contains no disclinations, (3.2) may be integrated to give a single field M,,, and using
(2.2) we have that
(3.3) Sum = 252 .

It is possible to define a linear connection or parallelism along any simple curve €
in the body in the following way. Let the triad {e,(x)} be constructed at each point of €.
Let v = v,u; and v' = vju, be two vectors at points x and x’ of &, respectively. Then we
say that v and v’ are “parallel” if they have the same components with respect to the
triads {ex(x)} and {e,(x")}, i.e. if v = w,e,(x) and v’ = w,e,(x’), for some set of coefficients
{w}. Using (2.2) and (3.1), the condition of parallelism becomes that

v = U M (X" ().

Now, taking x’ = x+dx and writing v}—v, = dv,, this takes the form (to first order)

(3.4) vy = — Lijm¥;dXp,
where
(3.5) Lu,.. = _mijkpmMpi-

Equation (3.4) is the usual form for a linear connection, and the quantities L,;,, are called
the coefficients of the connection.
When there are no disclinations present, substitution from (3.3) gives

aMy
Oxm

Lijjm = —mjy

which is the familiar form for the connection found in the theory of dislocations [4].

It is apparent from (3.2) that the coefficients Ji;, cannot be uniquely determined
throughout the body. If after completing a closed circuit in the body, M,; become changed
to My = Ry My, then from (3.2) it follows that Jy, become changed to Jy,, where
Jiim = Rip RjgJ pum. However, from (3.5) it is easily seen that L}, = —mjxJipm My = Lijm-
This gives the second important result that the coefficients of the connection form a uniquely
defined field throughout the body, even when disclinations are present. The significance
of this result lies in the fact, as we shall show, that the dislocation and disclination densities
are directly related to these coefficients.
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From (2.3) we obtain that

68,- 1
(3.6) axk dxy = = = {dmymy +mydm}
l 1 ’ r
= 7 {mprpfmmkl +my My pim Xy = — 2 {Lixm+ Liim } %,
where

Lixm = Ljim[0:j—2e;5].
In the second step here we have used the fact that
3.7 dmy = — My Jyn @,

which may easily be derived from (2.2) and (3.2). In the third step we have used (2.3)
and (3.5). From (3.6) it follows therefore that
(3.8) Lot Ll = —2%-

Let us introduce the following definitions

- 1 58,-,‘ 3e;,‘ 383_,-}
39) e =3 HW %l
1 !
(3.10) Titm = 'E"{Lji'm_ijI}: ikm = 4 jkm [611'—290‘]-

The quantities e,;; are the Christoffel symbols derived from the strain tensor, while T},
is the torsion tensor associated with the connection L;,,. Now, let us rotate the indices
in (3.8) cyclically to obtain two further equations, add one of these to (3.8) and subtract
the other. The result is easily seen to be that

3.11) Ly; = 2epij+ Tiij+ Tij— T -
We shall make use of this result in Sec. 5. Let us simply remark here that it shows that
the strain and the coefficients of connection may not be specified independently. Once

ey and the torsion are given — the second of these being simply the antisymmetric part
of the connection — then the complete connection may be determined from (3.11).

4. Defect density tensors

Let € be a closed circuit in the body, starting and finishing at the spatial point x, and
let us construct a continuous local reference configuration for the points of €. As we have
seen, upon completing the circuit, the orientation of the reference configuration of N(x)
is rotated from its original orientation if € encloses any disclinations. In addition, the
curve % in its local reference configuration (i.e. the curve consisting of the same material
particles as %) will not in general be a closed curve. We may use the closure failure of
€ in its LRC to define the dislocation density tensor in the usual way. (In this context, €
will be called a Burgers circuit.)

3+
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The closure failure of % is caused both by dislocations and disclinations. However,
if € is of infinitesimal dimension /, the dislocation contribution to the closure failure is
of order /2, proportional to the area of surface spanned by €, while the disclination con-
tribution is of order /3. The additional factor / arises since the displacement discontinuity
induced by a disclination is proportional to distance from the disclination line. Thus in
the limit as € shrinks to zero, the closure failure to leading order of magnitude is produced
entirely by dislocations.

For simplicity, we take % to be an infinitesimal parallelogram ABCDA, where A is
X, Bis x +dx™, Cis x +dx™ +dx™ and Disx +dx®). Inthe LRC, 4B = dx{"u, becomes
an element d&{Vu, = dx{Vmy(x)u,. Similarly BC becomes an element

APy (x +dxM)u; = dxf? [my(X) — My (X) Jpm dx ) Tuy,

where we have used (3.7) in writing this second step. Similar expressions are obtained
for the elements in the LRC corresponding to 4D and DC. The difference between the
two legs 4BC and ADC in the LRC gives the closure failure in the reference configuration,

4.1) B = —[ABC—ADCliyncy = —Mindum(dxidx? — dxDdx?)u,.

This quantity is often termed the true Burgers vector of the circuit. The minus sign is
a matter of convention.
Setting ndS = dx() Adx(®) as the vector element of area, we have
B = 'Ekmjmkn*”nimnidsul'

The element of material in the current configuration which corresponds to B in the LRC
is usually called simply the Burgers vector of the circuit, and is given by

b= '—EkmjmknjnlmndeMlp“p = sklﬂ}menjdsuP'
The dislocation density tensor a,; is defined by setting
(4.2 b = a,;n;dSu,,
so that

apj = Lﬁ&msimj = Tpkmstnu'

after using the definition (3.10) of the torsion. This result reproduces the familiar relation-
ship between torsion and dislocation density which is found when disclinations are absent
[3, 4]. It may be inverted to read

1
(4.3) Tp‘fm! = ?apjajm.

Let € again be a closed curve in the body, starting and finishing at x and let v be any
vector at x. We can construct a corresponding vector at each point around % by paralle]
displacement of v, using the connection (3.4). When we arrive at x again, after parallel
displacement all around %, the resulting final vector will be v’, say, in general different
from v. If € is the above parallelogram, we have in fact the following well-known formula
for the difference between v and v':

(44) ”'1 =U— Llnlmﬂn dx(( A dx&l)’
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where
aLh'l;m e aLlni

(45) Lipim = x; %

+Liji Liwm—LijmLini «

These quantities form the components of the Riemann-Christoffel curvature tensor
belonging to the connection (3.5).
Now let v be one of the vectors {e,}, so that v, = M;,. From (4.4) therefore
Ml‘:l = Mkl_Lln[kaudxi(ndxn‘ilz)-

But the change in M;; on completing any circuit is given by (2.4), and comparing these two
gives the following expression for the amount of rotation associated with the parallelogram
circuit:

qu(@) = Myn[01n— Linimdx & )dx!(uz}]mlq .

It is clear from the definition (4.5) that L,,;, is antisymmetric between the pair of indices
(i, m), so that we may replace dx{"dx{? in this expression in favour of the element of
area n,dS = &4, dx{"dx{?, to obtain that

1
My th(g) ng = 6;,,— 7 Eimq le'mnqu‘

Let the infinitesimal rotation Ry, (%) correspond to a small angular rotation vector
w;(%). Then R€) = b, +&,jw; (€). Therefore we have that

1
Myergj Mg w;(€) = — = €img LinimngdsS.

We now use the left-hand side of this equation to define the density of disclination tensor
d.g in the following way (see Sec. 5 for a discussion of this definition):

(4'6) My Exgj Mql wj (@) = dluq nq ds.

Thus finally the density of disclinations is connected with the curvature by the following
equivalent equations,

1
(4‘?) dinq = _2_ sl'mq le’m ’ Lh:im = A dtuq‘sqim .

Equation (3.11) expresses the coefficients L;,, in terms of the strain tensor and dislo-
cation density, after noting from (4.3) that the torsion may be written in terms of dislo-
cation density. Substituing this expression into (4.5) and the result into (4.7) then gives
a relation between the strain tensor and the two densities of dislocations and disclinations.
For a non-linear medium with large strains, this relation is very complicated when expan-
ded in full. For this reason, we shall in the next section consider the case of small strains,
for which the curvature condition (4.7) takes on a very transparent form.

5. Infinitesimal strains

Let us now assume that the strain tensor ¢, and the densities of dislocations and
disclinations, aj, and d,, , are all small, and let us keep only terms of first order in these
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quantities. The torsion tensor is also small, and therefore, from (3.11), so are the connection
coefficients. To first order we may set Ly;; = Ly and Ty;; = Ty, so that (3.11) becomes

1
Gl Ly= 28&:;""7 (@xppjk +\p pix — Ajp Epii

1 Bej (‘—?eik
= ‘Ekf{} [—GM + 7 aajq +£,"GW:} —_— _E;Z’
after substituting from (4.3) and manipulating the permutation symbols. Here a = a,,.
In this approximation, from (4.5),
aLl‘mn aL!ni
ax; Xy

Upon substituting from (5.1), the final term in this equation will not make any contri-
bution to the curvature tensor. Because of the factor &, therefore, L, is antisymmetric
between the pair of indices (/n) as well as between (im). Consequently it suffices to consider
the related Einstein tensor

1
(52) qu il T £pin EqimLhIl'm )
since this definition may be inverted to express the curvature in terms of Lp,:
(5.3) Linim = — EnpEimg Lpq-
Combining (4.7) and (5.2) now gives
1 1 ALyym
(54) qu = _z-spbl dlm] == T splnaqimT;:“_‘
. Ba,,,p __l- da el azerm
Bl 3 Ceet o tpuliem 0xy Ox,

after substituting from (5.1). It is most transparent if we separate this equation into
symmetric and antisymmetric parts. For the latter, multiply by ¢,, and contract
over p, q. This result becomes

da,,

D dx

= —&pqlpq-

For the symmetric part, we note that the second term on the right is antisymmetric in
p and g, while the third term is symmetric, so that we have

2 (s)
(5.6) EgkrEqim ai‘“"é;i = [s,,i,,%“xi_:-z.m] .
Here, the (s) indicates symmetrization over the two free indices.

Equation (5.6) provides an equation for the incompatibility of the strain tensor in
terms of the densities of dislocations and disclinations. In this context we note that for
small strains the Einstein tensor is essentially equivalent to the density of disclinations,
since from (4.7) and (5.3) we have that

(5'7) dhlq = el’ﬂprqs qu =
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Substituting from the second of these expressions into (5.5), this latter condition takes
the simpler form

éa
(5.8) e
ox, pp
Here, we have used the fact that d),, = —d,, for the small strain case. The left-hand side

of this equation physically measures the rate per unit volume at which dislocation lines
terminate within the material, so that this rate is given in terms of the disclination density
by (5.8).

Finally, in this section let us return to the definition (4.4) of dj,,. We can introduce the
polar decomposition m = UQ of the matrix m = (my,), where U is a symmetric matrix
and Q an orthogonal matrix. From (2.3) it follows that U? = 1 —2e and so to first order
U a 1—e. Therefore from (2.2), to first order M ~ Q'(1+e), where M = (M,). If we
substitute these expressions into the left-hand side of (4.6), we may drop the terms in-
volving e to first order, and obtain that

d.lm] ”ﬂ' dS = skqj an qu wj ((g) = slnp ij w; (‘g) .

In the last step we have used the orthogonality of Q. We observe again that for small
strains, d),, is antisymmetric in its first two indices.

The matrix Q measures the average rotation between the reference configuration and
the material at the point x in question. Generally we shall choose the orientation of the
reference configuration in such a way that at x, Q reduces to the identity. (This can only
be done for one point at a time, of course.) In this case

(5.9) ding Mg S = &1,y 0,(€).

Now let us consider a single dislocation-disclination line, I'. I" is a closed curve
bounding an open surface S inside the body across which a displacement discontinuity
has occurred. According to a theorem of Weingarten, this displacement discontinuity
must be a rigid motion of the type

(5.10) ut (X)—ui (x) = b+ (x—x8),

i.e. a translation b; and a rotation £2; about x°. Now, if & is any Burgers circuit, the
rotation w;(€) of the reference frames associated with € is zero unless ¢ links I and is
given by w;(¥) = —£; if € links I" in the positive sense. (The sign convention here is
indicated in Fig. 1: I" is given a sense positive with respect to vectors pointing from the
+side to the —side of S; and € is positive with respect to I".) This then gives, from (5.9),

dtnq (x) = - Elnp-Qp f 6(X T E) dgq )
F i
where E is a point on I'. From (5.7) therefore,

(5.11) Lpy(x) = —pré(x-ﬁ)dfq-
r
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FiG, 1.

The Burgers vector of the circuit ¢, as defined in (4.1) and the related discussion, is
again zero unless € links I', and is given by the displacement discontinuity (5.10) at the
point, where € crosses S in the event that € does link I". From (4.2) therefore, the dislo-
cation density tensor is given by

(5.12) ayi(x) = f[bp+smr94(xr_x9)]6(x_§)d§j-
r
It may be verified [2] that the two densities given by (5.11) and (5.12) satisfy the con-
servation equation (5.5).

6. Internal stresses

In this section we shall investigate the stress-field produced by a given distribution
of dislocations and disclinations in a linear elastic medium. For the case of continuous
distributions of these defects, we shall assume that the two density tensors a,; and d,,
(or equivalently L,,) are specified. Denoting the stress tensor by o,;, we then have the
equations,

30,- i
axj

=0, Tij = Cijki €kl

6.1)

where c;jy is the elastic modulus tensor. In addition, e;; is related to the densities of
dislocations and disclinations by the equations of Sec. 5.
It is convenient to introduce the following definition,

1

Xpln = - 3‘ Epin Lipm.
From (5.4) we then have that
I Apm
(6'2) LN = &gim _Et‘_'

Furthermore, from (5.1) we obtain that

1 ae;j,
Asj = ajs— 7 adjs+&nrs 3_;‘-
n
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. . . . 1
Contracting this equation over s and j gives that 2 = — 5 @ where 2 = 4;;, and therefore
e,
?"'S a

The elastic Greens function Gy;j(x—x") for an infinite medium satisfies the differential
equations

(6.3) = Agj— Adgj—ays.

82
Cijkl~ 3)( ax Gim(x—x') = 51»:6(’( x').

Therefore

& ,

64) e = [ g Gunm(x—X)esn 6V
3 ’ ae “r(x' ae l(x ) r
=f¢'tjkf8—xl6m(x“x)|: Jé‘x;) éxr ]dV

In obtaining this second form we have integrated by parts to switch d/dx; from the Greens
function to e;,. The second term which has been introduced on the right vanishes iden-
tically, since another integration by parts switches d/dx; over to act on e;;, and, from(6.1)

den) _

ax;

together with the symmetry properties of the modulus tensor it follows that ¢;jy;
Equation (6.4) may then be written as

c dej(x')

(65) emr(x) b _J CUM a ka(x X) 5r! Ents — 3 I; dV’

- fssrlfukt 33 Gim(x— x)[;sj(x) ajs(x )]dV’

after using (6.3). (Note that the term Ad,; gives a contribution which vanishes identically).

This result bears a strong resemblance to Eq. (W. 4.12) in de Wit’s paper. The dislo-
cation density terms in the two equations are in fact identical, since we have the relationship
aj; = 95; between our density tensor and de Wit’s. The A-term is not precisely the same as
de Wit’s second term, since A; is not in general equal to the “plastic bend-twist tensor”

% which appears in de Wit’s theory. However, equation (6.2) relating 4,; to the density
of disclinations is the same as de Wit's equation (W. 4.2) between % and the quantity
0., which he terms the density of disclinations. (To be precise, 8,, coincides with — L,,.)
This fact enables us to apply exactly the argument of de Wit’s paper leading from his
Eq. (W. 4.12) to (W. 4.15), and to obtain therefore that

)
66 en® = | [ e g Gun 60,0 ~ [ eI Lat))

where

32 Gim(X') dv’
Trs(X) = fsabissrj‘-‘iikl 8x;ax,; dn|x—x]
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In (6.6), the symbol (s) denotes that the two terms on the right must be symmetrized with
respect to the two free indices. [This symmetrization is not necessary in (6.5).]

The result (6.6) can now be used to find the stress and strain fields caused by a single
dislocation-disclination loop by substituting (5.11) and (5.12) for the two density tensors.
Since (5.11) coincides with de Wit’s equation (W. 5.23) and (5.12) with his (W. 5.21),
the result so obtained will simply reproduce that given in de Wit’s paper, which in turn
coincides with Mura’s result [1].

Finally, we should like to comment on the formalism used by de Wit in deriving his
result (W. 4.12) corresponding to (6.5). The basis of this approach is the introduction
of a displacement field »; between the current configuration and some arbitrary reference
configuration. A corresponding plastic strain, ef; is introduced through the definition:

1 ( 31{,‘ aﬂj
2\ ax; " ox;
trary, it is clear that neither u; nor ¢f; can enter any expressions relating, say, the stress
field and the defect densities. This has turned out to be the case in Eq. (6.6), and an
interesting feature of this equation is that it has been derived here without introducing

the redundant concepts of a displacement field and a plastic strain.

) = ¢;; + ef;. Since the reference configuration for the displacement is arbi-
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