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Dislocation lines in nonlocal elastic continua 

D. ROGULA (WARSZAWA) 

A NONLOCAL elastic medium containing dislocation lines is considered. The basic geometric 
and static equations are given in terms of distributions, and the corresponding general 
solution is found. A condition for the energy of dislocation line per unit length to be finite 
is derived. 

Rozwa.Zono nielokalny osrodek spr~zysty zawieraj~cy linie dyslokacji. Podstawowe zwi~zki 
geometryczne i statyczne wyra.Zono za pomoc~ dystrybucji oraz znaleziono odpowiednie roz
wi~zanie og61ne. Wyprowadzono takze warunek na to, by energia linii dyslokacji, przypadaj~ 
na jednostk~ dlugosci, byla skonczona. 

B pa6oTe paccMOTpeHo HeJioi<aJihHoe ynpyroe Teno, co~epma~ee ~HCJIOI<aQHOHHbie JIHHHH. 

B TepMHHaX TeOpHH ~HCTpH6yQHH CcpOpMyJIHpOBaHbi OCHOBHbie reoMCTpHtieCI<He H CTal'HlleCI<He 
coornomeHHH H ~aH o6~Hii BH~ HX pemermii. BhiBe~eHo ycJIOBHe I<OHeqJIOCTH y~eJibHOii: :mep
rHH e~HHHQbl ~JIHHbl JIHHHH ~HCJIOI<aQHH. 

1. Introduction 

THE PRESENT paper is a continuation of [1] which will be referred to as I. It was shown 
there that equations of the form 

(1.1) 

or, more generally, 

(1.2) Lu = f 

cannot be applied directly to media which contain dislocations. For, in that case, there 
is no uniquely defined displacement field u, and the left-hand sides of those equations 
have no clear meaning. We shall examine this problem more thoroughly in the case of 
an elastic medium containing dislocation lines. 

2. Geometric relations 

Consider a dislocation line L with the Burgers vector b. Such a dislocation can be 
regarded as created by cutting the medium along a surface G, the glide surface, and shifting 
the sides of the cut with respect to each other by the Burgers vector b. In consequence, 
the resulting dislocation can be described by a displacement field defined everywhere 
except the line Land the surface G, and subjected to the condition: 

{2.1) ut(x)-u£(x) = b1 on G, 
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where the superscripts ±refer to the corresponding limits from the opposite sides of G. 
This field, when continued across the surface G, results in a multivalued displacement 
field such that 

(2.2) 

where the integers n and m refer to the corresponding branches. 
Since the differences (2.2) do not depend on x, we have 

(2.3) 

i.e. the gradient ui,J (x) does not depend on the branch. Thus we have 

(2.4) ui,J(x)ln = ui,i(x), x 1: L, 

where ui,1(x) is single-valued and defined for x 1= L. In place of the Eqs. (2.1) or (2.2), 
we can write: 

(2.5) J ui,1(x)dxi = bi, 
B 

where B denotes an arbitrary closed contour which encircles the dislocation line L exactly 
once (orientation as in Fig. I). 

The displacement gradient (2.4) still has a great disadvantage: it is not defined-on the 
dislocation line. Therefore, we assume that it can be extended to a distribution defined 

FIG. 1. 

over the entire space, including the dislocation line. This distribution, denoted by f3o(x), 
will be called the distortion field. We shall regard it as a basic mathematical object 
describing the physical state of a dislocated medium. This is justified, for if we know the 
distortion field, we know the displacement gradient, since these two coincide in their 
common domain of definition - i.e.: 

(2.6) 

The displacement gradient, in turn, determines the displacement field except for a constant 
term, which can be dispensed with as conveying no physical information. 

On the other hand, two distortion fields which give the same displacement gradient 
do not necessarily coincide: they may differ by a distribution concentrated on the dislo
cation line. This opens the possibility of more detailed modelling of the dislocation core 
in continuum theory. This circumstance, useless in local theories, is of real significance 
in nonlocal ones. 
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Now consider the curl of the distortion field, which will be denoted by cxik: 

(2.7) 

It follows from the Eq. (2.6) that cxik must be a distribution concentrated on the dislocation 
line L. Moreover, formal application of Stokes's theorem to the Eq. (2.5) yields the 
following condition on cxik : 

(2.8) 

where S is a surface bounded by contour B. This can be made rigorous, by considering 
regularizations of the distributions cxu and flu. For, fixing contour B for a moment, 
we have 

(2.9) J cxu * q;dsk = J flu * q;dxi = b;, 
S B 

provided that q; is an infinitely differentiable function with a sufficiently small support 
and such that 

(2.10) J q;d3x = 1. 

Thus, the integral in (2.8), defined as the limiting value of the left-hand side of the Eq. (2. 9) 
when q;(x) ~ ~<3>(x) and supp q; ~ {0}, exists and equals the Burgers vector. 

The Eq. (2.8) shows that cxik has the form: 

(2.11) cx;k(x) = J b; J(3>(x- x')dx~ + cx;k(x), 
L 

where the term cx~k does not contribute to the integral in (2.8) and, in consequence, must 
be a combination of derivatives of Dirac delta distributed along the dislocation line. 
The simplest model of a dislocation line consists in assuming 

(2.12) cxu(x) = J b; l5< 3 >(x-x')dx~, 
L 

i.e. cx~k = 0. More detailed models of the dislocation core can be created by choosing 
particular forms of cx;k # 0. Possible forms of cx;k(or cx;k): are restricted by the condition: 

(2.13) 

or its equivalent; 

(2.14) 

which is a direct consequence of the Eq. (2.7). 
With cxik given, the Eq. (2.7) can be considered the fundamental geometric equation 

for dislocated media. It has the same form as that given by KRONER [4] for continuous 
distribution of dislocations, and does not depend on the nature of interactions in the me
dium. When there are many dislocations, the resulting cx;k(x) equals the sum of the terms 
corresponding to single dislocations. Or, more generally, the line L can be regarded as 
consisting of all the dislocation segments and nodes of a dislocation net. 
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3. Kinematic relations 

Although basically we are interested here in problems of statics, a brief discussion 
of kinematics of dislocated media is necessary. We shall find it useful in calculating the 
work done in a deformation process, a problem which wm be dealt with in the next section. 

In a medium with no dislocations, the fo11owing relation between the velocity field 
vi(x) and the distortion field f3ik(x) is valid: 

(3.1) 

This is a simple consequence of the displacement field ui(x) being defined in the whole 

medium. In a medium containing dislocations, vi,k and Pik do not necessarily coincide 
on the dislocation lines. Therefore, we can write in general 

(3.2) 

where Jik is another distribution concentrated on the dislocation lines. This quantity was 
introduced by KosEVITCH [2] and, since it vanishes for stationary dislocations, called the 
dislocation current. 

Combined. the Eqs. (3.2) and (2. 7) yield: 

(3.3) &ik +eklmlim,l = 0. 

This equation shows that whenever the dislocation lines move or the dislocation core 
changes its structure, the dislocation current cannot vanish. 

4. The fundamental static equation for a dislocated medium 

Now we need an equation of static equilibrium to be applicable to dislocated media 
with nonlocal interactions, and to replace the Eq. (1.1). As a generalization of the latter 
we assume an equation of the form: 

(4.1) M/3 = f, 

where f3 stands for the distortion field {311(x) and M is again a certain linear operator. 
More specifically, we write this equation in the Fourier representation as 

(4.2) 

{311 (k) being the Fourier transform of the distortion field and MiJk(k) a continuous tensor 
function of the wave vector k. For a medium with no dislocations, this equation must 
be compatible with the Eq. (1.3.14). As 

(4.3) p~,(k) = ik,u1(k), 

when there are no dislocations, the corresponding compatibility condition is 

(4.4) 

In the particular case, in which Mu1(k) is a tempered distribution, the Eqs. (4.1) and (4.4) 
can be written as 

(4.5) 
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and 

(4.6) a, 'Po, = (/Ji} 

respectively, where 'Pil1(x) is a distribution whose Fourier transform equals Mu1, i.e.: 

(4.7) 

From the form of the condition (4.4), it is clear that the operator M determines uniquely 
the operator L. In particular, this refers to the kernels lf'u1 and '1>0 . The converse, however, 
is not true since any term M[11 (k) such that 

(4.8) k1M[11(k) = 0 

can be added to M 01(k) with no resulting change in Au(k). 

5. The energy of a dislocated medium 

Consider now the energy of a dislocated medium. Here, again, expressions of the form 
(1.4.1) or (1.4.2) are not applicable. The corresponding generalized expression is 

(5.1) 

where Ku1m(k) is another tensor function of the vector k, such that 

(5.2) 

In order to establish the relation between KiJtmand Milm, we shall consider the work 
done in the elementary process 

(5.3) flu ~ flu+ ~flu, ~flu = Pii ~~ · 
From (5.I) and (5.2) we have 

I j"' " " I I ;.. " (5.4) ~ W = (2n)3 d3k~fJ~Kwmflim = {2n)3 d3kfl'fjKi)rmfllm~t · 

Taking into account the Eq. (3.2), we obtain: 

(5.5) ~ W = (2!)3 J d3kvr(- ik1)Kiltmfl~m & - (2~) 3 J d3k}i1 KurmP,m & · 

In the particular case in which dislocations are stationary, the second term in this expresion 
vanishes. The first term must be compatible with the expression (1.4.2); thus, by the Eq.(4.2) 
we have 

(5.6) 

which is the relation we are seeking. Now, the expression (5.5) can be written as 
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where, by definition, 

(5.8) 

D. ROGULA 

The second term represents the work resulting from dislocation motion and determines 
the force on a dislocation line. 

6. The general expression for the distortion field in a dislocated medium 

The Eqs. ( 4.1) and (2. 7) enable us to determine the distortion field created by an 
arbitrary distribution of dislocations and an arbitrary force field, provided that such a so
lution exists. Because those equations are linear, the distortion fields produced by forces 
and by dislocations can be considered separately. 

Consider first the convolution case. By corresponding differentiation of the Eq. (4.5), 
we obtain [3]: 

(6.1) 

From the Eq. (2.7) we have 

(6.2) 

'Pill* fJJl,m = h,m• 

which after substitution into the Eq. (6.1) yields: 

(6.3) 

or, by the Eq. (4.6): 

(6.4) 

Provided that a fundamental solution of the Eq. (1.1) exists, the solution to the Eq. (6.4) 
can be represented as 

(6.5) 

In general, the corresponding equation in the Fourier representation, 

(6.6) 

is valid. By inverse transformation it yields the solution whenever the result is a tempered 
distribution. 

7. The energy of dislocation line per unit length 

On substituting (6.6) into (5.1), we obtain an expression for the energy in terms of 
hand rxu. For pure dislocation fields- i.e., when.fi = 0- we have: 

(7 w = 1 1 f d3kK A -1 A -1 ". 1\ .1) 2 (2n)3 i'm'im.ditnt Mn,i'l' .ain Mnjlel,mtkelmk fXjtk'fX]k • 

In the case of a single straight dislocation line with ~ik given by the Eq. (2.12), the 
corresponding expression for ~ik is 

(7.2) 
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where ).. denotes the unit vector parallel to the dislocation line. The energy per unit length 
of the dislocation line equals: 

(7.3) 1 1 f 
Wlin = l (2n)2 d2kKi'm';mA:;;;, Mn'i''' A~1 MnJ1e1,m'k'e1mk b1, hi .Ak, A.k. 

A·k = 0 

The integral in the Eq. (7.3) is divergent in the long wavelength limit. This divergence 
is entirely classical and can be removed by applying any classical procedure of cutting 
off the long range dislocation field. To estimate the convergence of the above integral 
in the short wavelength limit, let us consider KiJtm such that 

(7.4) Ki)lm = O(km) for k ~ 00. 

Then, in general, 

(7.5) 

in the same limit. It follows, according to the definition given in (1], that the singular order 
of the corresponding operator L equals 

(7.6) s(L) = m+5. 

The subintegral expression in (7.3) is O(km- 2
) and the corresponding integral is con

vergent when m < 0, i.e. 

(7.7) s(L) < 5, 

and divergent in the contrary case. 
Thus, the inequality (7.7) is a necessary condition for the energy of the dislocation line 

per unit length to be finite. By arguments similar to those of [1], the same concerns the 
interaction energy of two parallel dislocations. By contrast with the corresponding ine
quality for point defects which, according to [1], reads 

(7.8) s(L) > 8, 

the inequality (7.7) shows that low values of s(L) are preferred in the case of dislocations. 
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