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On plane micropolar thermoelasticity in multiply-connected 
domains and its application 

Y. TAKEUTI (HAMAMATSU) 

APPLYING Nowacki's theory [1], the present paper is concerned with some consideration of 
plane micropolar thermoelasticity in finite multiply-connected domains. 

Praca niniejsza przedstawia, w oparciu o teori~ Nowackiego [1], pewne rozwa.Zanie dotyclllce 
plaskich zagadnien mikropolarnej termospr~i:ystosci dla skonczonych obszar6w wielosp6jnych. 

B CTaT&e H3JiomeHbi Hei<oTophre peaym.TaThi, no~eHHbie Ha ocHoae TeopHH Hoaaxn<oro 
(1), OTHOCHI.l.UieCH I< llJIOCI<HM 3a,Qa"tlaM MHI<ponomipHOH TepMoynpyrOCTH ,[(JIH I<OHe"tJ:HbiX 
MHOrOCBH3HhiX 06JiaCTeH. 

1. Introduction 

THE PAPER begins with a presentation of fundamental relations of plane micropolar 
thermoelasticity for finite multiply-connected domains. In the second part with a view 
to illustrating the foregoing treatment, we deal with the steady thermal stresses in a regular 
polygonal prism with a hole, within the framework of micropolar thermoelasticity. Numer
ical work is carried out for the distribution of thermal stresses and couple-stresses in 
a square prism with a central circular hole. 

2. Analysis 

2.1. Basic equations for plane micropolar thermoelasticity 

The fundamental stress-strain relations in plane strain problems are: 

Yu = u,,, = L { au - 2(l~p) (au +a,)}+ 2(/+ p) v, T, 

y, = u2 , 2 = 2~ {a,,- 2(.l ~ p) (a"+ a22)} + 2(). ~ p) • 1 T, 

1 1 
Y12 = Uz,t -w3 = 4,u (cr12 + cr21) + 4a (CTtz -cr2d, 

(2.1) 
1 1 

Y21 = U1,2 +w3 = 
4

,u (CTzt +crtz) + 
4

a (all- cr12), 

1 1 1 1 
"13 = W3,1 =-

4 
(,u13+,U31)+-

4 
(,u13-,U3t) = -+-,u13 = --,U3t' y E y E y-e 

1 1 1 1 
"z3 = W3,2 = -

4 
(,Uz3 + ,U32) + -

4 
(,Uz3- ,U32) = -+ ,U23 = --- ft3z, y E y E y-e 
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where 

Yii components of strain, 
ui components of displacement, 

XiJ components of curvature, 
wi components of rotation, 
a;1 components of stress, 
f'iJ components of couple-stress, 

A, p, Lame's constants, 
r temperature change, 

IX, {3, y, e new material constants, 
v1 material constant = IXrE/(1- 2v), 
v Poisson's ratio, 

1Xr coefficient of thermal expansion, 
'i partial differentiation with respect to i. 

The stress components in the form of stress functions are given by [1]: 

(2.2) 
(]22 = cp,11 +'1/',21• fl13 = '1/',1, /l23 = '1/',2· 

Y. TAKEUTI 

The fundamental differential equations for ljJ and 'If' and the conjugate relations are: 

(2.3) 

(2.4) 

where 

i1AljJ +kL1 r = 0, 

('I{'-A2L1'1f'). 1 = -2B2 {(1-v)L1l/J+~X,Er},2, 

('I{'- A 2 L1'1{'), 2 = 2B2 
{ (1-v).dl/> +1Xr Er },t, 

k material constant = E1Xtf{l-v), 
A 2 new material constant= (y+e)(.u+oc)/4p,oc, 
B 2 new material constant= (y+e)f4p,; 

Eqs. (2.3), (2.4) may be reduced to 

(2.5) 

The boundary conditions are given by 

where 

Pi components of surface traction, 
g3 component of surface moment, 
ni component of direction cosine of the normal to the surface. 

Now, let us consider the general problem of micropo1ar thermoelasticity when the 
cross-section of the body is multiply-connected. Let S be a connected region bounded by 
n + 1 non-intersecting contours L 0 , L 1 , •.• , Ln of which L 0 contains all the others as shown 
in Fig. 1. As shown in our previous paper [2], the boundary value of ljJ at a variable point 
Pi on the contour L; becomes: 
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FIG. 1. Multiply-connected domain bounded by smooth non-intersecting contours. 

Pi Qi Pi Qi Pi 

(2.6) [cf>]pi = - J dx1 J Pzds + J dx2 J P1ds+ J g3ds 
0 Bi 0 Ai 0 

+Cli(xt)Pi+C2i (xt)Pi+ C3i· 

Moreover, the derivatives of 4> and 1p on the contour become: 

(2.7) 

For a simply-connected domain, it is permissible to take these constants as zero. 
However, for multiply-connected regions, the constants C1 b C2 i and C3 i generally assume 
different values on each boundary curve, and then additional boundary conditions are 
required to determine these constants. For this purpose, these constants must be so chosen 
that the displacement and the rotation may be single-valued. The condition which makes 
the change in rotation for an arbitrary path of integration (starting at a certain point 
and returning to the same point after including the inner boundary Li) single-valued is 

fL
1
dw3 = fL

1
(w3,1dx1 +w3,2dx2) = fL

1
[(Yzt,t-Yu,z)dx1 + (1'22,1- Ytz,2)dxz. 

Using the (2.1) to introduce the stress-strain relation into the integrand, and expressing 
the strain in terms of the stress functions, we have 

A.+2.u f 'Vt f + 4 (A. ) {-(LI4J)2dXt+(LI4J) 1 dX2}+ 2(A. ) (-~2dX1 +-r1dx2). fl + fl L1 ' ' + fl L1 ' ' 

Taking into account 
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the integral becomes: 

f 
,_, + rx f a l + 2p, f a 'JI1 f or 

Ltdw3 = 4p,a. Lt-OS (L11p)ds+4p,(A+p,) Lt on (L1cf>)ds+ 2(A+p,) Lt onds. 

Then, from the condition of ~L1dw3 = 0, we obtain the next relation on each of the con
tours Li 

(2.8) t Us (A;)+ ( ~ r :n {(1->}dq\ +E<X, T}]ds = 0. 
The condition for the single-valuedness of the displacement u 1 can be written as: 

f L,dut = f Lt (ut,t dx1 +u1,2dx2) 

= f Lt {d(xt Yu) +d(x2 Y21)-d(x2w3)-xt dyu -x2dY21 +x2dw3 }. 

If the strain and rotation are single-valued, then the first three terms in the integrand 
must vanish: 

f L,dut = f Lt- [(xt Yu,t +x2 1'11 ,2)dX1 + {xt 1'11,2 +x2(Y21,2 +Y12,2)-x2 Y22,d dx21· 

Applying the stress-strain relations and the stress-function relations, rearrangement of 
the integral leads to 

f 
;. + 2p, f ( a a ) 

L/Ut = - 4p,(A +p,) Lt Xt Bs -X2 on L1cf>ds 

--~---f (x1 ~ -xl ~) rds+ -
1
- [xt (c/> 11 +tp 12)1~: 

2(A+p,) Lt OS on 2p, ' ' 

+ 2~- [x2(c/>,12 +'1'.22)1~:- 2~ [JL,c/>.11dx1 + fL,</>,12dx2] 

--2
1 

[f 'I' 12dx1 + f 'I' 22dx2]. 
f.t Lt ' Lt ' 

If the stress is single-valued, then the third and fourth terms in the right-hand side of the 
equation must vanish. Moreover, the fifth and sixth terms may be written as: 

f L,d(c/>,1 +V'.z) = [c/>,t +'1',211: = F2, 

where F2 is the resultant force in x2-direction. On account of the equilibrium of the force 
on all the boundaries, F2 must be zero. Hence we finally obtain the following condition 
for the single-valuedness of u 1 : 

(2.9) 

Similar reasoning leads to the third condition for the single-valuedness of u2 : 

(2.10) t(xl :s +x, :n)Aq\ds+-f~:t(x2 a: +x, !)Tds = 0. 
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It is seen that the last two conditions (2.9) and (2.10) have the same forms as in classical 
thermoelasticity. From the above reasoning, it follows that the Eqs. (2.8)-(2.10) become 
the additional boundary conditions for the multiply-connected domains in micropolar 
plane thermoelasticity. Therefore, the values of constants C,.1 (m = 1, 2, 3) in the Eq. (2.6) 
are so determined as to satisfy 3i integral relations of the Eqs. (2.8)-(2.10). 

For the plane polar coordinates (r, 0), the Eqs. (2.4) become: 

(2.11) 

where 

L1 = o2 /or 2 +r- 1 
• ofor+r- 2 

• o2 /0fP. 

Let a be the radius of an arbitrary hole in the multiply-connected domains, the non
dimensional coordinate of r being defined as 

(2.12) r0 = rfa. 

Taking these dimensionless polar coordinates, the general solution of steady heat 
conduction with no heat source becomes: 

00 

(2. 13) -r = A~+ B~ lnr0 + 2 {(A: r0" + B: r~)cosnO + (c: r0" + n: r~)sinnO}. 
n=l 

In this case, the Eq. (2.3) naturally reduces to the well known biharmonic equation: 

(2.14) LL1<P = 0. 

The general solution of the Eq. (2.14) is 

(2.15) t/> = Ao+Bolnr0 +Cor5+Dor5lnro+(Atro 1 +B1 ro+C1 rolnr0 +D1 r3)cos0 
00 

+(L1 r0 1 +M1 ro +N1 rolnro + 0 1 rg)sinO + 2 {(A,.ro"+Bnr8 +Cnr5-n +D,.r5+")cosn0 
l=n 

+ (L,. r0" +M,. r~ + N,. r5-n +On r5+")sinn0}. 

Furthermore, the general solution of the Eq. (2.5) in plane polar form is 

(2.16) tp = R0 +S0 lnr0 + U0 10 (aro/A) + VoKo(aro/A) 
00 

+ 2 = [{Rnro"+Snr~+Unln(ar0/A)+ VnKn(ar0 /A)}cosn0 
n=l 

+ Wnro"+Xnr8 + Ynln(ar0 /A) +ZnKn(ar0 /A)} sinnO], 

where/,. and K,. are the modified Bessel functions. Substituting now the Eqs. (2.13), (2.15), 
(2.16) into Eqs. (2.8)-(2.10), we next obtain the relations between the unknown coefficients 
in the functions -r, t/> and 'P· 
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(2.17) 

Y. TAKEUTI 

S0 = W1 = R1 ·= 0, a 2Ea,Cf+2(1-v)N1 = 0, a 2Ea,Af+2(1-v)C1 = 0, 

er {2a2Ea,D! +!6(1-v)O,} + ( ~ r S1 = 0, 

( !r {2a2E<X,Bt+l6(1-v)D.)-( ~ r X1 = 0, 

(! r {2a2 E<X,C,:'+8(1-v)(l-n)N,}- ( ~ r R, = 0, 

(! r {2a2Ect, D: +8(1-v)(l +n)O,} +( ~ r S, = 0, 

(~r{2a2Ea,A:+8(1-•)(I-n)c.}+(~r w. = o, 

er {2a2Ea,B: +8(1-v)(l+n)D,}- ( ~ fx, = 0 . 

2.2. Polygonal prism with a circular hole 

As a practical example, we consider the problem, shown in Fig. 2, of the thermal 
stresses and couple stresses in a regular p-sided polygonal prism having a central circular 

Xz 

FIG. 2. Regular polygon with a circular hole. 

hole under a steady temperature distribution with consideration of micropolar thermo
elasticity. Let us assume that the inner and outer surfaces are at constant temperatures 
of To and zero, respectively. Let a be the inner radius of the hole and b be the outer bound
ary of the prism. Now, we may show that the temperature and stress function must 
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satisfy the boundary conditions. For this purpose, the numerical calculation required to 
obtain the unknown coefficients in r, 4> and 1p are enormous. Therefore, we use the point
matching technique to satisfy the boundary conditions at a selected finite set of outer 

CO 

boundary points of the polygonal region. If we replace .2; in the Eqs. (2.1.3), (2.15) and 
n=l 

N 

(2.16) by 2.) approximately, we have to solve the equations of a finite number of unknowns. 
n=l 

The solutions obtained satisfy almost exactly the prescribed boundary conditions in the 
interior of the body; and those on the outer boundary-approximately. 

Considering the symmetry of the body, the Eq. (2.13) becomes: 

N 

(2.18) r = A~ +B~lnr0 + 2 (A;nropn + B;,r'On)cosnpO. 
n=l 

Boundary conditions for temperature are: 

(2.19) at r0 = 1, r = T0 , 

(2.20) at x 1 = b, r ( cos~/pN, ! p"/.,} = 0, S = 0, ... ,N8 , 

where Ns is a finite integer and represents a number of divisions of the angle nfp. 
From the Eqs. (2.18) and (2.19), we have 

Then 
N 

(2.21) r = To +B~ 1nr0 + _2; (rgn- r0Pn)B;ncosnp0. 
n=l 

Substituting the Eq. (2.21) into (2.20), we obtain the following (Ns+1) equations: 

(2.22) ( 
1 ) Bt f, {( I b )np ( I b )-npl 

In cosnsfpNS To + ~ cosnsfpNs . a - cosnsfpNs . a 
n=l 

nns B:P 
xCOS--·-= -1, 

N T0 

where N < Ns. 
Using the method of least squares, we can determine (N + 1) unknown coefficients 

B0 and B;n in the function r. Therefore, the temperature distribution in this problem 
may be entirely determined. 

Now, we consider the stress problems. Because of the symmetrical arrangement, the 
stress functions become: 

N 

(2.23) c/J = Ao+Bolnro+Cor5+D0 r51nr0 + 2 (Apnronp+Bpnr0P+Cpnl'onp+ 2 

n=l 
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N 

(2.24) "P = 2 {Wp,ro"P+Xp,r(r+ Yp,lp,(aro/A)+Zp,Kp,(ar0 /A)}sinnp0. 
n=1 

Substituting the Eqs. (2.23) and (2.24) into Eq. (2.2), the thermal stress components 
and the couple-stress components become: 

(2.25) u66 a2 = -r0
2Bo+2Co+(2Inr0 +3)Do 

N 

+ 2 [np(np+1)r0"P- 2A,p+np(np-I)rgP- 2 B,p+(np-2)(np-1)r0"PC,P 
n•1 

N 

+ (np + 2)(np + 1 )roP D,p- np(np + 1 )ro"P- 2 w,p + np(np- 1 )rgP- 2 Xnp 

+ {np(a/Aro)l,p_ 1 (aro/A) -np(np + l)ro 2l,p(ar0 /A)} Y,p 

- {np(a/Ar0 )K,p_ 1 (aro/A) +np(np + 1)ro 2 K,p(ar0 /A) }Z,p]cosnp(); 

(2.26) #rza = l, [ -npr0"P- 1 W,p+nprgP- 1X,p+ {(a/A)l,p_ 1 (ar0 /A) 
n=1 

N 

(2.27) #&::a = 2 {npr-np- 1 W,P+npr0P- 1X,p+npr0 1 l,p(ar0 /A)Y,P 
11=1 

+npr0 1 K,p(ar0 /A)Z,p}cosnp0. 

For the sake of brevity, the expressions for u,.,., u,.6 and u6,. are omitted here. Boundary 
conditions for the stress distribution are: 

(2.28) 

(2.29) 

at r0 = 1, u,.,. = u,.6 = ftrz = 0; 

at X 1 = b, Uxx = Ux1 = ftxz = 0. 

Using the Eqs. (2.17) and (2.28), we can express the stress components by the terms 
with coefficients C0 , C,P and D,P. Then we use the point-matching technique to satisfy 
the outer boundary condition of the Eq. (2.27). Thus we can solve 3(Ns + 1)- simultaneous 
equations for a selected finite set of the outer boundary points, and then the unknown 
coefficients of the stress functions are completely determined, and the problem is solved. 

3. Numerical examples 

The foregoing solutions will be illustrated numerically by the following data: 

p = 4 (Square prism), N = 5, Ns = 9. 

The variations in u00 are shown in Figs. 3 and 4. Figures 5-8 illustrate the relation between 

(u&&)max' (#,.z)max, (#&z)ma11 and bfa or BfA . 
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FIG. 3. Stress distribution of a88 on the edge of 
the hole. 
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FIG. 5. Relation between (a88)max and b/a. 
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FIG. 4. Stress distribution of a88 on the edge of 
the hole. 
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FIG. 6. Relation between (a,.z;)max and b/a. 
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FIG. 7. Relation between (p,6z)max and b/a. 
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