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BRIEF NOTES 

Overstable convection in a viscoelastic fluid layer at large 
Chandrasekhar number 

J. M. STEINER (MELBOURNE) 

THE EFFECI' of a very strong magnetic field on the overstable mode of convection in 
a viscoelastic fluid layer heated from below is explored using an asymptotic procedure 
As in the case of low or moderate field strengths [1, 2] a stabilizing effect is found . 

THE EFFECT of a uniform vertical magnetic field H = (0, 0, H) on the onset of thermal 
convection as overstability in an infinite horizontal layer of a Maxwell \'iscoelastic fluid 
of depth d which is heated uniformly from below and confined by · two free, isothermal 
and non-deformable boundaries has been recently studied by BHATIA and STEINER [1, 2]. 
Using the normal mode stability analysis on the linearized, Boussinesq simplified, thermo
magneto-elastic equations governing small perturbations, an eighth-order double charac
teristic differential eigenvalue system for neutral instability was derived and readily con
verted by means of an exact solution into the following algebraic eigenvaJue equation 

(1) (:n2 +a2
) (n2 +a2 +up1) [(:n2 +a2 +up2 ) {:n2 +a2 +u(1 +Tu)}+ (1 +Fu)n2Q] 

= Ra2 (1 +Tu) (:n2 +a2 +up2), 

where a is the horizontal wave number, <1 is the growth rate, p 1 = vjx is the Prandtl 
number, P2 = V/'YJ is the magnetic Prandtl number, r = tovfd2 is the elastic parameter, 
R = ga{Jd4 Jxv is the Rayleigh number, and 

u H2d2 
Q = •; is the "Chandrasekhar" number, 

:Tl(!'V'YJ 
(2) 

while e, g, 10, a, {J, 'YJ, x, fle and v denote, respectively, the density, gravity, relaxation time, 
coefficient of volume expansion, adverse temperature gradient, resistivity, thermometric 
conductivity, magnetic permeability and kinematic viscosity. The stabilizing effect of 
the magnetic field on the overstable mode of convection was then obtained numerically. 
As a numerical investigation is clearly limited, it is necessary to derive the asymptotic 
behaviour in the limit of very large Chandrasekhar number. Since the algebra involved 
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is very long and messy, the derivation will be briefly described for the case p 1 < p 2 only; 
the same procedure can be employed for the alternative case. 

Remembering that u can be complex and letting 

(3) 

it is clearly seen from (1) that for an arbitrary u 1 , R will be complex. But, from physical 
considerations, R must be real, thus implying a relation between the real and imaginary 
parts of u 1 • But as we are interested in specifying the critical Rayleigh number for the 
onset of overstability via a state of purely oscillatory motion, we shall suppose that u 1 

is real in the above equation and try to obtain the conditions for such solutions to exist. 
Assuming then that u1 is real, Eq. (1) can be separated into real and imaginary parts, 

both of which must vanish separately. This leads to the foUowing pair of equations: 

(4) 
R = b[b2+(Fb-1)ptuf-p1F2ui] n 2Qb(b2+PtP2uf) 

x(I + F 2ui) + x(b 2 + p~ uf) ' 

and the quadratic in uf 

(5) 

where 

(6) 

A0 = p~F2 , 

A1 = b2F2 +p~(Pt +l-Fb)+n2F 2Q(pt-P2), 

A2 = h2(Pt +l-Fb)+n2Q(pt-P2). 

Remembering that p 1 < p 2 , the positive root of (5) can be represented, in the limit 
Q-+ oo, as: 

(7) 

Substituting this relation into ( 4) gives after lengthy calculations: 

(8) R = !!_[n
2
pf Q + pfp~ +h

2
F

2
(Pt +p2) 

X p~ p~F2 

_ b3F 3(p 1 +p2)-b2F
2
(Pf +P1P2 +pD+pfp~ Q-1 +O(Q-2)]. 

n 2F 4 (P2 -pt) 

The critical wave number (ac) can now be obtained by minimizing R with respect to x. 
This leads after some simplifications a quartic in x whose solution at sufficiently large Q is 

where 

(10) n Pt [ 
4 2. Q ]1/3 
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Substituting for Xe from (9) into (7) and (8) gives finally: 

2 3[ 2(p~-p:) 1 -1 ( 1 :77:
2

) -2 
(11) (ut)e = y pfp~:n:2 -Pi y + F- p~ y 

l:n;2 (p~- 2pf) 3:n;4 pI } - 3 -4 ] 

+ 2(pi-pnr- 4p~ - F 2 Y +O(y > • 
and 

(12) R, = y•( P1p~P2) [ : 2 +3y-• +3:n:2y-2 +O(y-•)J. 

Equations (9)-(12) are the required analytic expressions for the critical wave number 
(ae), frequency (u1)e, and Rayleigh number (Re) for the onset of overstability in the limit 
as Q-+ oo, for the case p 1 < p 2 • The values of the critical constants obtained from these 
expressions are in excellent agreement with the computed results obtained by the method 
described in [1, 2]. This is typically illustrated for the case p 1 = 1, p 2 = 100, F = 1 and 
a few values of Q in the Table 1. 

Table 1 

Numerical solution Asymptotic solution 
Q 

ae l08to(O't)e logtoRe ae logto(O't)e I08toRe 

105 5.6806 1.9959 2.1868 5.6745 1.9959 2.1753 
106 8.5925 2.4951 3.0793 8.5922 2.4951 3.0780 
107 12.811 2.9950 4.0330 12.813 2.9950 4.0328 
108 18.951 3.4950 5.0121 18.951 3.4950 5.0121 

It is clearly seen from Eq. ( 12) that as Q increases, Re increases and ultimately becomes 
independent of r. Thus, a very strong magnetic field has a stabilizing effect on the over
stable mode of convection, as expected. In the presence of a vertical magnetic field any 
convective motion must involve the fluid crossing the field and we would certainly expect 
a stabilizing influence when the field is very strong. 
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