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Ultimate bearing capacity of structural systems with minimal critical
sets having joint elements in pairs

W. DZIUBDZIELA, B. KOPOCINSKI and Z. KOWAL (WROCLAW)

THE paper discusses two models of rigid-plastic structures in the boundary state: model 1,
in which the critical sets form an open chain with joint elements of the adjacent sets — as-
sumptions of this model are satisfied by, among other factors, the continuous beams; model 2,
in which the critical sets form a closed chain with joint elements of the adjacent sets. The
assumptions of model 2 are satisfied by single-chamber frames. The models are described
in the manner used in the measure theory. The distribution of the probability of appearance
of ultimate bearing capacity can be determined by means of electronic computers on the basis
of four theorems proved in the paper. On the basis of the theorems proved, some estimations,
simple in application, from the top of the risk of failure of the system are given. These estimations
do not require the application of electronic computers. The work is illustrated by examples,

W pracy rozpatruje si¢ dwa modele konstrukcji sztywno-plastycznych w stanie granicznym:
model I, w ktorym zbiory krytyczne tworza laficuch otwarty o wspélnych elementach sasiadu-
jacych zbioréw (zaloZenia tego modelu spelniaja migedzy innymi belki ciagle) oraz model 2,
w ktorym zbiory krytyczne tworza lancuch zamkniety o elementach wspdlnych sasiadujacych
zbioréw (zalozenia modelu 2 spelniaja ramy jednokomorowe). Modele opisano w terminach
teorii miary, Rozklady prawdopodobieristw wystapienia no$nosci granicznej wyznacza¢ mozna
za pomoca maszyn cyfrowych na podstawie udowodnionych w pracy 4 twierdzen. W opar-
ciu o udowodnione twierdzenia podano proste w zastosowaniu oszacowania od géry niebezpie-
czenstwa zniszczenia systemu, Oszacowania te nie wymagaja zastosowania maszyn cyfrowych,
Prace zilustrowano przykladami.

B paGote paccMOTpeHBI JBe MOIENH 3ECTKO-ILUTACTHYECKHX COODPY)KEeHRil B IpeleabHOM CO-
croAHHu. B mepBo# MoJeH KPHTHYECKHE MHOMKECTBA 00pasylOT OTKPHITYIO LEMb, COSqUHEH~
HYI0 OBIMMH 3JIEMEHTAMM COCENHMX MHOMKECTE (OPEIONIOKEHHSAM 3TOH MONEM YIOBJET~
BOpAIOT, HAlIPMMEp, HelpephiBHbIe Oankm). Bo BTropod MOJENH KPUTHYECKHE MHOMKECTBA
00pasyioT 3aKpBITYIO Lelb C OBLMMH 3JIEMEHTAMH COCEOHMX MHOMKECTB (TIPe/UIONOXKEHHAM
3TOM MOMIENN YIOBNETBOPAIOT OHOMOJIOCTHEIE pambl). Mojem onmcaHb! B TEpMHHAX TEOPHH
meprl. PacmpeneneHusi BepoATHOCTeH BOSHMKHOBEHHS NpENeTbHOH HATPYSKH MOMKHO
BBIYHCJIHTS NPH fomot S1IBM, nexons U3 yeTblpex TeopeMm, MOKa3aHHEBIX B JaHHOI pabore.
Hcxona us MOKA33aHHBIX TEOPEM JAaHBI fIPOCThbIE IPHKIAAHEIE BEPXHHE OLEHKH OHACHOCTH
paspyureHHs cuctembl. [lob30BaHMe ITHMH OLEHKAMU He TpeOyeT MpUMEHEHNS BbIYHCITHTE b=
HBIX MammH. PaGoTa MILTIOCTpHpYeTCS NPHMEpPaMu NPHJIOHEHHH.

1. Introduction

LET us take into consideration elasto-plastic structures composed of elements in such
formation that at the boundary state they can be considered as rigid-plastic structures, and
their reliability characteristic determined by means of the kinematically permissible mech-
anisms of destruction [6]. These systems can be described by application of the minimal
critical set of elements (a critical set of elements is a set of elements such that failure
of the structure takes place when all the elements of the set are subjected to failure; the
critical set is minimal if none of its sub-sets is critical [4, 5]). Let us consider structures
the reliability models of which can be described by means of r minimal critical sets,
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Ay, Az, ..., A, of elements having joint elements in pairs. Two models are distinguished in
this work: model 1, in which the critical sets form an open chain with joint elements of
the adjacent sets, and model 2, in which the critical sets form a closed chain with joint
elements of the adjacent sets.

In [4] was discussed the case of a structure with two minimal critical collections having
joint elements. Models 1 and 2 are the natural generalization of that case. Problems of
objective determination of ultimate bearing capacity have also been dealt with during
recent years by the authors of [8, 9, 10, 11, 12].

Our problem is to find the distribution of the ultimate bearing capacity of structures
satisfying the assumptions of the models discussed on the basis of the distribution of ulti-
mate bearing capacity elements, estimation of such distribution from the top, and on this
basis estimation of ultimate bearing capacity from below.

It is assumed that the distribution F;(x) of the ultimate bearing capacities of N; elements
i n each set is known:

(1.1) Fix) = P(N;<x), jed, i=1,2,..,r,

together with the means E(¥;) and variances D?(N;).

Since the ultimate bearing capacities of elements are independent random variables,
therefore the distribution F,,(x) of the ultimate bearing capacities N,, of the minimal
critical sets of elements A;

1.2 Fu(x) = P(Ny<x), i=1,2,..,r

can be determined on the basis of distributions Fy(x) of the ultimate bearing capacities
of elements ([2])
* -~
13) FE@=1TF (i)
Jjed aJ‘

where II* denotes the commutative convolutive product of distributions f}(x/aj) for
Jj € Ay, a; is the weight of the j*» element in set 4;.

Parameters of distribution F,,(x) determined from the Eq. (1.3) are as follows:
the expected value equals

-

(1.4) EN = D aEWN),
Je A

and the variance is equal to:

(1.5) DX(Ny) = D @t D*(N)).
jed;

2. Distribution of the ultimate bearing capacity of a structure constructed according to model 1
A reliable model 1 of the structure is shown in Fig. 1. It can be described in the manner

used in the measure theory [3]

(2.1) Ain4;=0, [i—jl>1, AinAw, #0, i=12,..,r-L

The sets By, B, ..., Bsy_;, Bag, ..., By,_31, can be defined in the following manner:
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Let the elements with numbers 1,2, ..., /; belong to the set B, = 4,\ 4,. Then,
for simplicity, the sets of elements are determined by means of the set of their numbers,
B, = A\A, = {lb+1, ..., 11},
and let also
sz = A. N AH’I = {12k—1+1, ...,133}, k= l, 2, ...,r—l,
Byy—y = A\ (4i—y Y Apty) = {bxat+1, ...y}, k=2,3,..,r—1,
82r—1 = Ar\Ar—! = {br-z"‘l, seay k},

where

l$11<[2{...412,_1=k, lu=0.

In the measure theory, the product 4; N A+, denotes a set the elements of which
belong to the set 4; and also to the set Ay4;.

Further, use is made of the symbol of the sum 4, U A4;+, denoting the set elements
of which belong to the set A4, or to the set Ay4,, and the symbol of the difference
A\ A4;_,, denoting the set elements of which belong to the set 4,, and do not belong
to the set A,_;.

Fig. 1. Model 1 of the reliability of structure.

Figure 2 presents an example of a structure satisfying the assumptions of model 1.
This model is satisfied by continuous beams loaded in a typical manner by forces of the
same nature as shown in Fig. 2. (The loading arrangement of the system determines the

A A

Fi1e. 2. Example of a structure built on the basis of model 1.

probability — different from zero — of the appearance of individual mechanisms of failure
from among the full set).

The ultimate bearing capacity of the minimal critical set of elements is the sum of the
ultimate bearing capacities of elements belonging to the set, taken with the correspond-
ing weights [S]. The ultimate bearing capacities N; can have weights a; (i = 1, 2, ..., k)
in the structural system. Making use of this assumption it will be sufficient to deal with the
sequence of the independent random variables:

X;= ) auNu i=1,2,.,2-1

mEBi



722 W. DziuBDzIELA, B. KOPOCINSKI AND Z, KOWAL

These variables can be interpreted as the ultimate bearing capacity of the element sets
BI)BQ‘; '"!Bir—l'

The ultimate bearing capacity of a structure with » minimal critical sets is a random
variable in the form:

22) N?=min(X,+X,, o+ X+X,, ..., Xop 4+ X0, 3+ X5 2, Ko s+ Xo0y).
The first objective will be to find the distribution function of this random variable

(23) F)(x) = P(N{? < x) = 1—H,_4 (%),

where

H,,_1(x) = P(NY > x).
2.1. Recurrence formulas for H,-,(x)

THEOREM 1. If X, X,, ..., X5, (r:_—‘ 2,3, ...) are the independent random variables
with distributions Fi(x) = P(X; <x), Fi(x) = 1-F(x)fori=1,2,...,2r—1, then

(2.4) Hy, 4(x) = f HZP—S(x!x2r—2)F2r—-l(x_er—Z)dFZr—Z(er—2)!
where
@.5) Hy(x, x2) = Fi(x—x2),
(26) Hjs(x, x3,5) = f Hy,_s(x, x:r—d)F_Zr—-'ﬁ(x_er-—.'z —X2,-4) %
-

x dFy,_4(X2,4), r=3,4,..
Proof. Let
Hi(x, x;) = P(X; > x—x;) = F(x—x,),
Hy,_3(x, X2p_5) = Plmin(X, +X;, X, + X3+ X, .., Xop 6+ X5 s+ Xar s,
X, st X, 3+X,5,5) 2 x].

Hence
Ha(x) = P[min(Xl +X2, X2+X3) ; x] = f P[min(Xl +x2, xz +X3) ; x]sz(xz)
o oo
= [ PG> x—x) POG > x—x)dFs(x0) = [ Hy(x, ) Ey(x—x2)dF;(x2),
and then
Hyr y(x) = Pmin(X; + X5, X+ X3+ Xy, o, Xopa + X5 3+ X0, 2, X5, 2+ X5, 5) 2 X]

[:+]

= f Plmin(X,+X,, X, + X3+ Xy, ..., Xop s+ X5, 3+ X5 2, X g2 +X0,—y) 2 X]x

-
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[+ +]
xdFpp_3(%2,-2) = f Plmin(X, +X,, Xo+ X5+ Xy, ..., Xop o+ X0, 3+ X3,5) 2 X]x

x P(Xpp-y 2 X =X3,2)dF3, 5(%3,2) = f Hy,_3(x, x?r—Z)FZr-l(x_xzr—z)dEFﬁZ(xh—-z)-
In this way, the Eq. (2.4) is obtained.

Now, the recurrence equati'ons for H,,_3(x, X5,2), r=2,3,... will be found
Hy(x, x;) = P(X; = x—x;) = Fi(x—x,),

Hy(x, xg) = Plmin(X; +X;, X, +X3+X,) > x]

[+ ]

= f Plmin(X; +X;, X, +X;3+x,) = x]dF,(x,)

= | PO > x=x) P(Xs > x—x,=x)dFy(%;) = [ Hi(x, %) Fy(x—x,— %) dF,(x,).

Hy,_3(x, X3,_5) = Pmin(X, +X,, Xo+ X3+ Xy, ..., X5, 6+ X5, s+ X5, 4,
[+ +]

Xopat+ Xy 3 +Xy,5) 2 x] = f Plmin(X, +X,, X + X3+ X,, ..., X2, 6+ X205

+Xoras X2ra+Xor3+%2,2) 2 X1dF,_4(%2,4)

= [ Pmin(X, + X, X, + Xs+Xa, .., Xorg+ Xopos + X204 > %] x
-0

x P(X3_3 2 X—X3p 4 —X2,_3)dF3,_4(x2,4)

= f H;,_s(x, xZM)FZr—a{x""xZH""xZD—I)dFZM(er—--t)'
—o0

Theorem 1 has been proved.
THEOREM 2. If the assumptions of Theorem 1 are satisfied, then H,(x, x,) = Fy (x—x5),

(2.7) Hyp3(x, X3p2) = f fF‘;(x-x;)ﬁ;(x—-xz—x‘).‘.F},_g(x—xz,_z—xg,_.‘)x

x dF;(x2)dFy(x;) ... dFa_4(X2r4),
wherer = 3,4, ...

This theorem will be proved by means of mathematical induction.
Proof. The proof of the theorem for r = 3 will be checked. From (2.6), we have

Hy(x, x,) = f H,(x, xz)fa(x—xz—'xd,)dpz(xz) = f Fy(x—x3) F3(x— X2 — X4)dF;(x2),

-0 -0

which was to be proved.
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Let us assume that Eq. (2.7) is true for r = k—1 —i.e., let us assume that

Hy s(%, X210) = f f?;(x—xz)ﬁ_',(x—xz—x.,)...

F'zt—s(x—xzk-s—xzk—Osz(xz) wr A4 6(X21-6)+
Now, the proof of the theorem for r = k will be demonstrated. From (2.6), we have

o
Hax-a3(X, X26-2) = f Hx—s(x, xzk-d.)fzkm:!(x_xzt—d._xzk—-z)dFﬂd(xzk—d);

therefore, making use of the inductive assumptions, we obtain:

Ha(x, xa02) = f{f _J.E(x—xz)l:_}_(x—-x;—xa s P s(X—Xax_6%25-4) %
-0 —0 —o0

x dF,(x;) ... szl-é(xzk-»G)sz—-S(x_xzk—4_x2k"2)dF2l4(x2k—4)

= [ o [ FG-x)B—x2—%4) ... Faua(x—X2ue— Xa12) dF3(x2) ... dFpss(2ics).
—® —®
Theorem 2 has been proved.
THEOREM 3. If the assumptions of Theorem I are satisfied, then

(2.8)
FPW=PONP <x)=1— [ .. [ FiG—x)Fy(e=2—%) .. Fyps(t—Xpp—X2r-4) x

X anul(x—xzr—z)sz(xz)dF4(x4) cee dF3y_5(X2,-3).
Proof. From the relation (2.3) and Theorem 1, we have:

F}')(x) =1=Hy (x) = 1—- f H;, 5(x, xzr-z)Fzr-l(x—'xzr—z)szr-z(xzn-z)-

-0

From Theorem 2, we obtain:

Fpoy=1- [{ [ .. [ Fie-xDFa(e—x2=x) ... Fyr-s(¥=X20-2— %20 dF3(%) ..

2] -]
dF‘zr—-d;(er—d)} Er—d (e —x2r-2)dF3,_5(X2,5) = 1— _I- J' Fl(-"—xz) %

x Fy(x—X3—%g) ... Fyp3(X—X3p_3—X2p)F2p_1 (X —X20-2)dF5(%3) ... dF3,_5(X2,-2)-
Theorem 3 has been proved.
COROLLARY 1. Let us consider a structure with two minimal critical sets having joint
elements. Making use of Theorem 3 for r = 2, we have:

FP() = 1- [ Fi—x)Fy(e=x,)dF;(e;) = 1= [ [1=Fy(e=x2)][1-Fs (x—x,)] x

-

x dF,(x;) = Fy % F)(x)+F, # F3(x) = f Fi(x—x3) F3(x—x,)dF,(x;).

-0

This equation was found in [4].
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3. Evaluation from below of the ultimate bearing capacity of a structure built according
to model 1

Application in practice of the theorems proved in Sec. 2 is troublesome but quite
possible by means of electronic computers. In this section, we shall find the estimations
from the top of distribution of the ultimate bearing capacity of the structure. Having
these estimations at the given level of confidence, the estimation from below of the ulti-
mate bearing capacity of the structure can be found.

In model 1, estimation of the simple form resulting from (2.8) can be accepted

(3.1 Ff(x) < Fy # F3(x)+F, # F3 # Fy(X)+ ... +F3,4 # F5p3 % F,, (%)
+Fpr 2 # Fpry (%),
where * is a symbol of the convolution of the two functions.

Accepting the assumption that the random variable X; has normal distribution with
the anticipated value m; and variance of
X—=ny

L f

P(X,<x)=@( ), i=1,2,..,2r-1,

where

D(x) = '/% fexp(—%uz) du,
—-®
from (3.1), we obtain

32 P < ) d(z),
i=1
where
x—(my;+my)
V oi+a3

s x— (Max—3 + Moy + M) , k=2,3,...,r-1,

2 ) z
I/Uzk—z+52k-1 + 02k

Zl=

X— (er—z +m2r-1)
'/ d%r-z =+ agr-l

The estimation (3.1) can be improved as follows: The distribution of the ultimate bearing
capacity can be written in the form:

F{?(x) = Pmin(X;+X,, Xo+Xa+Xa, ..., Xopa+Xor 3+ Xop 2, Xor 2+ X5p_y) < X]
= P{min[min(X, +X,, X+ X5+ Xs, Xg+Xo+ X0, ...),
min(X, + X3+ Xy, Xe+ X7+ X, ...)] < x}.
For any random variables X and ¥, we have
Pmin(X,Y)<x]=PX <x or Y<x)=PX<x)+P¥ <x)
—PX <x,Y<x)< PX<x)+P(Y <Xx).

Zp =
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Hence
F{(x) < P[min(Xy+X,, Xs+ Xs+Xs, ...) < x]+ P[min(X;+X; +X,,
X5+X7+Xs, ...) < x].
Let us consider two cases.
Case 1. If r is an even number, then
(33) FP(X) < 2—[1—F, * (0] [l —Fy# Fs % Fo(®)) ... (1= Fyps% Fyys % Fy_y(3)]
—[1=F, % F3% Fy(x)] [l —F¢ % F; % Fg(x)] ... [1=F;,_ % F;,_,(x)].
Case 2. If ris an odd number, then
(34) F(x) < 2—=[1=F; « F;(x)} [1—Fy % Fs % Fs(x)] ... [l =F3,_, % F;_,(x)]
—[1—F, %« Fy% Fy(x)][1—Fg % F7 % Fg(x)] ... [1=F3, 4% F5, 3% F;, ,(x)].
The Eqgs. (3.3) and (3.4) can be expressed by means of distributions of the bearing capaci-
ties of sets 4;, i = 1, 2, ..., r. When r is an even number, then
(3.5)  F{P(x) <2—[1=F4 )] [1=F4,(x)] ... [1=F4,_, ()]
= [1=F,()[1=F4,(x)] ... [1—=F4,(x)].
When, however, r is an odd number, then
(3.6)  F(x) < 2—[1-F4,(¥)][1 - F4,(x)] ... [1-F4,(x)]
—[1=F4,)[1 - Fu ()] ... 1 —F4._ ()]s
where F, (x) is the distribution of ultimate bearing capacity of the r'® set of elements.

Example 1. A four-span continuous beam as shown in Fig. 2. Boundary moments
at dangerous sections of this beam have normal distribution with the expected value
E(M) = 5400 kGm and with coefficient of variability u = o/E(M) = 0.1. Spans are
ly=6m, I, =1; =, = 8 m. Concentrated load at the middle of each of the spans
is the same, and equals x = 3780 kG. We want to estimate the probability of beam failure
and to estimate the calculated ultimate bearing capacity of the beam at the level of 0.99865.
This magnitude will be determined on the basis of estimation from the top of the area
of danger.

The random ultimate bearing capacity N of the beam, measured by the transverse
loading x, will be determined from the relation:

N.rl.l = min(NAl!ij "',Ndp ’

where N,, denotes the random ultimate bearing capacity of the minimal critical set of
elements 4; and equals:

NA: = 4(Mz"_1 +0-5M2i+M2H'1)!""

In the example, there are four consecutive critical sets of elements — 1, 2; 2, 3, 4; 4,5,
6; 6, 7, 8(*). The expected ultimate bearing capacity and standard deviations of the

() Note. At the change of direction of the individual loadings, x other mechanisms of failure are
possible. In the example in Fig. 2, they could be the critical sets of elements 1, 3,5,7,8 or 1, 3, 5, 6. These
simple examples will not be dealt with here, since they are solved on the basis of [5]. In the system of
loadings assumed by us, the probability of appearance of such destruction mechanisms equals zero (is
physically impossible).
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individual sets of element are

E(N,) = 4——-——540022700 = 5400 kG,
B ek 54oo+§xz7oo -

a4, = V360> + 1807 = 402 kG,
04, = V/2702+2x 1352 = 331 kG.

The probability of failure ¢; = 1—p; of the individual critical sets will be determined
from the Tables [7].

1—p; = P(N,, < 3780) = @(z,) = 0.0*2789,
1—p, = P(N, < 3780) = &(z,) = 0.0°4792,

where

54003780

, _5400—3780
: 402 ‘ B

=403, z,= T =429,

Estimation from the top of the risk of beam failure, on the basis of (3.5), equals:
P(N < 3780) = 2—p,p,—p} = 0.0*2933.
The beam safety is therefore:
P(N = 3780) = 0.99997067.

For determination of the utlimate bearing capacity N, of the beam at the level of con-
fidence of 0.99865, we take the equation found above:

P2(py+p2) = 1.99865,

and the second equation (in this particular case) resulting from the condition of equal
loading of the beam:

5400—No = z, - 402 = z, - 331 ;

hence, z,/z, = 0.823.
The system of equations

p2(py+p,) = 1.99865, z, = 0.823z,

can be solved by, for example, the method of consecutive approximations.
For z; = 3.075, z, = 3.73, we shall have :

Ny = 5400—3.075- 402 = 4165 kG, P(N, < 4165) = 0.998659.
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4. Distribution of the ultimate bearing capacity of a structure built according to model 2

Model 2 is shown in Fig. 3. The minimal sets of elements have the join elements in
pairs forming a closed chain with r links.
Let Ay, A;, ..., A, be the minimal critical sets of the structure with k elements, form-

Fic. 3. Model 2 of the reliability of a structure.

ing a closed chain with r links; more accurately, let us assume that these sets satisfy the
relations;

Andy #0, i=1,2,...,r—1, A;nA4, #0,
(4 Aind;=0 if 1<|i—jl<r-1

(see Fig. 3).
We shall define the sets B,, B,, ..., B,, as follows:

By, = Ay Ay, Boyy = AN (Ary VA), k=2,3,..,r=1.
Analogously to the Egs. (2.1) and in the subsequent equations not numbered, let
B, = AN (4, 0u4,)={1,2,...,4},
B, =A, nA,={l+1,..,1L},
By, = A, 0 Ay = {lr_y, ..., )},
Biy = ANAy VA )= B+, oy lapy}.

Examples of structures satisfying the assumptions of model 2 are shown in Fig. 4.

a b f
3 4 5
Xougo [
1 § 7

Fic. 4. Example of a structure satisfying the principles of model 2.
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Let X, X;, ..., X;, denote the ultimate bearing capacities of elements belonging to

the sets B,, B,, ..., B,.
The ultimate bearing capacity of a structure built according to model 2 is a random

variable in the form:
4.2) NP = min(Xp + X, + X5, Xo+ X+ Xy ooy Xor s + Xpr + X))

THEOREM 4. If the random variables X,,X,, ..., X,,, r=3,4,... are independent
with distributions Fy(x) = P(X, < x), F; (x) = 1 —F, (x) fori = 1,2, ..., 2r, then

@3 FPe) =PONE <9 =1- [ .. [ FG—x—x)F(x—x—%) ...

Ezr—:(x'_xzr—z —X27)AF; (%) dFy(x,) ... dF5,(x3,).
Proof. From the equation for complete probability, we have
FiP(x) = P[min(X,,+X,+X;, X+ X3+ Xy, ..., Xop 2+ Xop_1 +X3) < 4]

o

= [ Plmin(Xo,+X, + Xz, Xo + Xs+ Xy, ..., Xopa + Xy g +22) < X]dF0(%2)).
From Theorem 3, we have:
o0 (-] o
@ = [ (1= [ . [ Be-r—x)Fa(t—%=x) ... Fypa (= X2y %3,) x

x dF (x;)dFy(xs) ... sz»z(xzn—z))szr(xzr)

o0 e

=1- j fF_l(x—xzf‘xz)ﬁa(x"‘xz_xa.)‘--Fzr—x(x—xzn-z_xzr)x

-0 -0
x dF;(x2)dFy(xs) ... dF5,(x5,).
Theorem 4 has been proved.
It is easy to check by means of the same methods as in part 3 that the estimate is correct

(44) FP(x) S Fppe Fi s () 4+ F, 3 F3 2 Fy(x)+ ... +Fp % Fy,_y # Fp ().

In the case of the random variables X;, i = 1, 2, ..., 2r with normal distributions,
estimation (4.4) can be written in the following form:

45) R < D o),

i=1
where
_ Xx=(map+myi_s+myy)

Z; = = i=0,200F
l/ 032+ 051+ 0%

and my = My, 0y = 0,,.
CoROLLARY 2. Let us discuss a structure with three minimal critical sets satisfying the
relation (4.1). Making use of the Theorem 4 for r = 3, we have:

W o w

P =1 [ [ [ Fi=x— 2 Fox—x,=x) Fy(e—x4—x5) x

-0 —00 —o0
x dF,(x;)dFy(xs)dFg(xs)-
This equation was found in [1].
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Example 2. We have a single-chamber rectangular frame, as shown in Fig. 4b,
with identical expected rod sections. Boundary moments in dangerous sections in this
frame have normal distribution with the expected value E(M) = 5400 kGm and with
coefficient of variability 0.1. The height and width of the frame are 8.0 m. Loading is
identical and equals to 3780 kG. We want to estimate from the top the probability of frame
failure, and to estimate the calculated boundary bearing capacity of the frame at the level
of confidence of 0.99865.

The expected ultimate bearing capacity of all four minimal sets of elements
measured by transverse loading is identical and equals:

4(5400+2 x 0.5 x 5400)
8

The standard deviation of the ultimate bearing capacity of all four minimal critical
sets of the elements is identical:

E(NA:) = = 5400 kG.

04, = 5 VT 2x 03X SH) = 331 kG.

The probability of destruction of one minimal critical set of elements has been calcu-
lated by means of tables of normal distribution [7]: g, = P(N4 < 3780) = 0.0° 4792,
Estimation (4.5) of the danger of frame failure is

g = P(N < 3780) < 4x0.054792 = 0.051917.

The ultimate bearing capacity N, of the frame at the level of p = 0.99865 is determined
as follows: from (4.5), we have

9 =q/4 = 1—;"— = 0.25-0.00135 = 0.0003375,
argument z, = 3.4 is taken from tables [7], and as a result we have N, > 5400—3.4- 331 =
= 4275 kG.

5. Conclusions

On the basis of the theorems derived in this work, it is possible to estimate from
below, in a simple way, the safety of elasto-plastic continuous beams and single-chamber
frames loaded in a typical manner, or to estimate the danger from the top. On the basis
of these estimates, it is possible to determine objectively the ultimate bearing capacity
of the elasto-plastic structure class discussed at any level of confidence.
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