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On the order of magnitude of the gradient-of-density dependent part 
of an elastic potential in liquids(*) 

A. BLINOWSKI (WARSZAWA) 

AN APPROXIMATE equation of equilibrium and an expression for the gradient-of-density dependent 
isothermal elastic potential is derived for nonlocal media with central interactions. The surface 
tension on vapour-liquid interface for gradient-sensitive media is expressed in terms of bulk 
properties of the substance. The order of magnitude of the gradient-dependent term is estimated 
starting both from intermolecular forces and from known surface tension. Both methods lead 
to the same order of magnitude of the specific length characterizing relative contribution of the 
gradient-dependent term to the elastic potential which appears to be equal to 10-8-l0-7 cm. 

Wyprowadzono przybliZone r6wnanie r6wnowagi oraz wyrai:enie na zalemy od gradientu g~to§ci 
izotermiczny potencjal spre(zysty dla osrodka z nielokalnymi oddzialywaniami centralnymi. 
Znaleziono wyrai:enie dla napicteia powierzchniowego na granicy ciecz-para w zaleznosci od 
charakterystyk materialowych substancji gradientowo-czulej. Oszacowano r~d wielkoSci gra
dientowego czlonu potencjalu, zar6wno z sil mie(dzyc~teczkowych jak i z rzeczywistej 
wartoSci napie(Cia powierzchniowego. Obie metody doprowadzily do oszacowalt tego samego 
TZC(du (10-8 -I0- 7 cm) dla dlugoSci charakterystycznej opisujllcej wzgle(dny wklad czlonu gradien
towego do potencjalu spre(zystego. 

Bhlse~eHo npu6JDVKeHHoe ypasHeHHe pasHoBecwJ:, a Tai<>Ke Bbipa»<eHJJ;e Ha 38BUCHMbiH oT 
rpa~eHTa IIJIOTHOCTU uaorep~eCiadi ynpyrd nore~aJI WIH cpe~I c HeJIOKa.JILHbiMii: 
u;eHTpam.HbiMH BaauMo~eHCTB~. Haif~eHa 38BitC:I1MOCTL nosepXHoCTHoro HaTIDKeHIDI Ha 
rpaHHu;e nap->KH~ocn oT MaTepuam.HhiX xapaKTepuCTitK rp~eHTHo-qyscrsuTeJILHoro Belll;e
CTBa. Hcxo,z:v~, K&K u3 Me>KMoJieKymipHbiX CHJI, TaK H3 peam.Hoif Be.JIH~I nosepXHoCTHoro 
HaTH>KeHIDI, npou3Bo~cn ou;eHKU rp~eHTHoro tUieHa ynpyroro noTeHn;uaJia. 06a no~
xo~a se~ K pe3yJILTaTaM o~oro nopn~a WIH xapaKTepHoif WDUfbi ODHCbiBaiOIIl;eii oTHo
CitTeJILHbW BKJUl~ rp~eHTHoro tUieHa 8 ynpyrHif UOTeHn;ltaJI, KOTOpaH OKa3biBaeTCH paBHOH 
to- 8-to- 7 cM. 

1. Introduction 

DESPITE the well-known fact that the real behaviour of fluids depends on nonlocal 
intermolecular forces, to the best of the author's knowledge, no _experimental evidence 
for invalidity of the classical (i.e. based on the concept of the contact forces) approach 
can, as regards problems of single phase flow, be demonstrated. On the other hand, there 
is no doubt that if interfacial phenomena are to be considered, it should be assumed that 
the behaviour of liquids in the interfacial region differs in some way from the bulk 
behaviour. 

For many applications, an interface can be considered as a separate two-dimensional 
phase ruled by its own intrinsic constitutive equation. In the simplest model due to Young 
and La place (for reference see [I, 2]), the interface can be represented as a constant tension 
membrane. More sophisticated models include surface viscosity [3] and the possible 

(*) This paper was written while the author was a Visiting Fellow in the University of Minnesota, 
Minneapolis, U.S.A. 
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834 A. BLINOWSKI 

dependence of interfacial tension on the curvature of the interface [4]. The~e models, 
being very useful for practical problems, cannot, however, provide any information about 
the nature of the interfacial region and about the connection between the bulk and surface 
properties of liquids. 

Another approach which can also be traced from the works of YOUNG and LAPLACE 
(c.f. [1, 2]) and which was developed by Rayleigh [5] and later by VAN der WAALS' school 
[6, 7, 8], is based on the concept of nonlocal forces and employs quasi-continual methods 
(in the sense of LAPLACE). More general approaches of modern statistic mechanics use 
very similar concepts for obtaining the partition function by cell methods (c. f. [9]). 

In addition to the two approaches mentioned above(!), still another, different one 
is possible. It can be assumed that the stress tensor, or the elastic potential of the fluid 
(we shall see later that within the framework of this method there is no significant difference 
between the gas and the liquid phase) depends not on the density alone, but also on the 
first, and possibly higher gradients of density. This consideration, which yields the same 
or similar results as the previous one, was employed as early as 1901 by KORTEWEG [12]. 

During the last two decades, many attemps at a generalization of classical continuum 
mechanics have been made. Several papers may be indicated [13, 14, 15, 16, 17, 18] devoted 
to the concepts of gradient-dependent elastic potential and its application for the descrip
tion of interfacial phenomena(2). 

The object of the present paper consists in estimating the order of magnitude of the 
gradient-dependent terms of an elastic potential in fluids. We shall consider here a simple 
model of fluid, admitting symmetric, central and finite range nonlocal interactions depend
ent on the densities and the distance only. We shall show the possibility of existence 
of a transition zone similar to Van der Waals' liquid-vapour transition in an infinite 
medium. We shall also show that the simplest gradient-dependent potential theory can 
provide an approximate description for the nonlocal interactions. An expression for 
surface tension will be obtained in terms of the gradient theory. 

Thus we shall be able to estimate the terms under consideration in two ways: (a) start
ing from their physical origin due to intermolecular forces and (b) comparing predicted 
results with the experimental data for surface tension. 

As far as possible we will use here continuum mechanics methods only. Considedr1g 
infinite media we will avoid all difficulties connected with the generalized boundary 
tractions (see e.g. [14, 15, 16, 17, 18]) the physical meaning of which is yet far from clear 
in the existing gradient-dependent theories. 

2. Nonlocal interactions and the elastic potential 

Let us consider an infinite body with finite and sufficiently smooth density field ~(X). 
We assume that the following balance of forces holds for every material particle X(x): 

(2.1) J R o2x(X, t) 
1p[~(x), ~(y), R]RdVy+b(x)~(x) = 

012 
~(x), 

E 

e) We shall not discuss here Gibbs' [10] and more recently Buff's [11] approaches which, containing 
some mechanical concepts, are based mainly on thermodynamic considerations. 

(2) See also [19]. 
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ON 11iE ORDER OF MAGNITUDE OF TilE GRADJENT-QF-DENSITY DEPENDENT PART 835 

where b(x) denotes the density of the external body forces R ~ y-x, R = IRI, C(x) and 
C(y) are densities at space point x(X) and y(Y), respectively, and the integral is taken 
over the whole space E. 

It is not difficult to see that the expression (2.1) already contains certain assumption 
on the nature of nonlocal forces acting between two material particles X(x) and Y(y) 
which are assumed to be central, additive and dependent on densities in x and y and the 
distance ly-xl only. 

We assume also 

(2.2) VJ(C(x), C(y), R) = VJ(C(y), C(x), R) 

i.e., we assume the symmetry of interactions. 
Let us note here that (2.1) contains another hidden assumption that the integral over 

the whole space exists for every bounded density distribution- i.e., we do not consider, 
for example, mutual gravitational interactions. The above assumptions are essential to 
our considerations. 

Our next assumptions which we shall impose for the sake of simplicity of further 
analysis can be omitted or replaced if we employ more sophisticated mathematical methods. 
However, in the author's opinion, they are quite reasonable from the physical point of 
VIeW. 

Thus we assume that the force function tp[C(x), C(y), R] can be expressed as 

(2.3) tp[C(x), C(y), R] = A(R)q;[C(x), C(y)]+ [1-A(R)](i)(R)C(x)C(y), 

where 

A(R)=l for R<C2
, 

A(R) = 0 for R > C2 , 

fP(R) = 0 for R > C 1 ; C2 ~ C b 

and where fP(R), q;[C(x), C(y)] and derivatives of q;[C(x), C(y)] are bounded- i.e., we 
assume that the force function can be expressed as a sum of an extremely short range 
force, which does not depend on the distance, and a long (but finite) range force proportion
al to the product of densities. We confine ourselves to the case of the static equilibrium 

with the absence of external forces and to such density distributions for which I V C I.;; ~ , 
I 

for every i = 0, l, 2, ... , where symbol V denotes the i-th spatial gradient and D is some 
constant. 

Under the above assumptions, we can write: 

(2.4) A (R) 'I' [C(x), C (y)] = 'I' I C(x), C(x)] + a'l' !C~~~~)C(y)]/,_, V C(x) · R +a(~:), 

where a ( ~: ) is of the order of 
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836 A. BLINOWSICJ 

Expanding C(y) in power series, and disregarding small terms, we can rewrite (2.1) 
in the form: 

(2.5) fP[C(x), C(x)] f! dV,+ OfP[C~x), C(y)] ,. VC(x) · f R~ ~dV, 
K(CiJ C(y) r=x K(Cz) 

f f/>(R) ~[ 1 I 1+1 J 
+C(x) 1r ~ ifVC(x)· ~Re~:> dV, = 0, 

K(Ct) 1=1 k- 1 

where K(C2 ) and K(C1) denote interiors of the spheres of radii C2 and C1 respectively, 
i 

and dots stand for the product with contraction over all the indices of V C(x). The first 
and the third terms are by symmetry equal to zero, and after rearrangement we can write: 

(2.6) 

c2 

OfP[C(x)' C(y)] I V C(x) . Jn ® n dsJ R3dR 
oC(y) Y=x 

H 0 

where~ is the unit sphere, n denotes the outward unit normal vector. 
Integrating, we obtain: 

(2.7) f 4n 
n®ndS= 3 t, 

(2.8) for i = 2m, m = 1, 2, 3, ... , 

(2.9) 1 3 r 2-3TVC(x) ·., n ® n ® n ® ndS = 15nVLIC(x), 
H 

It can be shown (see Appendix I) that the expansion (2.6) is, under our assumptions, 
convergent. 

Denoting 

(2.11) 
Ct 

f/>3 = ~ f f!>(R)R 5dR, 
0 

i 1+1 4n ~ 
(l) For every i = 2m+ 1 (m = 0, 1, 2, ... ): VC(x) · J ® n<">dS = -.-VA 2 C(x). 

H k-1 1+2 
(This relation has been recently proven by K . .tat MS Thesis, Warsaw University, 1973). 
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(15f/>3 /2n can be referred to as the fifth moment of the long range part of the force function), 

and 

(2.12) - oP(C) = 4n ( c~ 8tp[C(x), C(y)] I + C(x) y f/>(R)R3dR), 
ac 3 4 oC(y) ,_x o 

dropping out small terms containing higher gradients, we obtain: 

(2.13) -VP[C(x)]+C(x)f/>3VLIC(x) = 0. 

It is not difficult show (Appendix Il) that in the case of a uniform density function, 
P(C) is equal to the pressure defined as the total force acting between two semispaces per 
unit area of the dividing plane (compare [5]). The equation of the mechanical equilibrium 
(2.13) can be obtained also by an entirely different approach, as follows. Let us assume 
that there exists an elastic (e.g. isothermal) potential density function w(C, VC), which 
depends on the density and the first gradient of density(4); we assume also that the following 
law of conservation is valid for every material region V and every velocity field v: 

. . 
(2.14) JcwdV= J Cb·vdV+ J n·T·vdS+ J n·Q·Vvds-Jc v;v dV, 

V V oV oV V 

where T is a symmetric stress tensor and Q is some hyperstress tensor of rank 3. We shall 
not discuss here a possible physical meaning of the tensor Q, which plays here only a tran
sistory role and will not appear in the further analysis, because no dynamic boundary 
conditions are considered (for discussion of hyperstress and hypertractions see, e.g., [14, 
15, 17, 18]). 

Using the following identity, which holds for every material region V 

(2.15) J- J . J (aw. aw -· ·) CwdV = CwdV = C ac C + a(VC) ·VC dV, 
V V V 

and expressing C and VC by the velocity gradients 

(2.16) t = -CV·v, VC= -Vv·VC-VC(V·v)-CV(V·v), 

and changing the surface integrals into volume integrals, we can perform the standard 
procedure on (2.14): making use of the fact that (2.14) should be valid for every velocity 
field and every material region, we are able to obtain the following equilibrium conditions 
(in the absence of body forces): 

(2.17) V· T = 0, 

(2.18) [( 
2 aw aw ) aw ( 2 aw )] 

T = - C ac +C a(VC) ·VC l+C a(VC) ®VC-V· C -a(VC) ® 1 . 

It should be mentioned here that condition (2.18), which can be considered as a constitutive 
equation forT, has been obtained as a consequence of the fact that (2.14) does not contain 
any higher order inertial terms (for details see [19]). 

(
4

) In the thermodynamic approach, w can be referred to as a generalized form of Helmholtz free energy. 
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838 A. BLINOWSKI 

It is not difficult to see now that, if we assume 

(2.19) JP(C) VC· VC 
w(C, VC) = --r:-dC + ([}3 2C , 

then we obtain for T: 

(2.20) T = (-P(C)+ ~ <P.VC·VC+<P.CLIC) l-<P.VC®VC 

and (2.17) can be rewritten as 

(2.21) 

which is exactly the same as (2.13). 
Thus, starting from entirely different assumptions, we obtain the same equation of 

equilibrium (if we did not assume v = 0, b = 0, we would get in both cases the same 
equation of motion). It is evident, however, that (2.19) is by no means the only possible 
form of potential w which can yield (2.21) or (2.13). If we demand, however, w to be an 
isotropic function of C and VC, we can prove (see Appendix Ill) that if any particular 
w(C, VC) yields (2.21) then the stress tensor has to be equal to those given by (2.20). Thus 
(2.19) is one of the simplest potential density functions which is compatible with the 
expression (2.13) which has been obtained as an approximate equation for nonlocal 
central interactions. 

Now, we can see the other interpretation of P(C) which is equal to the negative deriv
ative of the potential density function over the specific volume v = 1 fC (in the case of uni
form density). 

3. One-dimensional case, the surface tension at the plane vapour-liquid interface 

For the one-dimensional case the Eq. (2.13) has the form: 

(3.1) 

The trivial solution of (3.1) is C = const, which corresponds to the single phase case. 
The problem of the stability of this solution, as well as the problem of the existence of 
any nontrivial solution, cannot be solved without at least qualitative information about 
the function P(C), and will not be discussed here. 

Let us seek, however, the conditions necessary for the existence of an inhomogeneous 
solution with gradients vanishing at infinity. Integrating (3.1) by parts, we obtain 

(3.2) -P(C) +<P.( CC"- ~ C'2 ) = ~ •. 
Integration of (3.2) after some rearrangement gives: 

(3.3) 
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Let us impose the following conditions: 

lim C = Ct, lim C' = 0, 

(3.4) 
x-+-oo x-+±oo 

lim C = C 2 , lim C" = 0. 
X-+00 x-+±00 

From (3.4) and (3.2), we obtain the following necessary condition: 

(3.5) -P(Ct) = -P(C2) = a1 

and from (3.4) and (3.3), we have: 
C2 J P(C~;at dC = 0. 

Ct 

(3.6) 

839 

It can be shown that (3.5) and (3.6) are also the necessary conditions for the existence 
of the one-dimensional soh.ition of any-order differential equation which can be obtained 
from (2.6) with higher gradient terms preserved under the condition of vanishing of all 
derivatives at infinity (see Appendix IV). 

Now we have, sufficiently far from the transition region, almost uniform density, 
and P(C) can there be considered as a pressure. If the density transition under consider
ation is to be considered as a liquid-vapour transition (cf. V AN DER W AALS [6, 20]) then 
a1 = - Ps, where Ps denotes the saturated vapour pressure and C 1 , C2 are correspondingly 
saturated vapour and liquid densities. 

As already indicated, we shall not discuss here the necessary conditions for the existence 
of the solution. of (3.1 ). We shall only point out that if for some particular case P( C) can 
be approximated within some range of C as a virial equation of state without linear terms 

(3.7) 

then the solution of the problem under consideration (subject to certain restrictions im
posed on coefficients B, C, D) can be obtained in the form: 

(3.8) C = a+btanh(cx), 

where a, b, c are functions of B, C, D and t/J3 • The representation (3.7), however, does 
not seem to be very realistic, because it leads for low densities to 

1
. oP(C) _ 

0 ,~ar- , 
by contrast with the well-known behaviour of diluted gases for which 

1
. oP(C) RT 
,~ar= M' 

where R is the gas constant, T is the temperature and M denotes molecular weight. 
Let us assume, however, that w(C, VC) is not an isothermal, but an adiabatic potential 

[in this case w(C, VC) can no longer be identified with the Helmholtz free energy, but still 
it has sufficient thermodynamic explanation as an internal energy]; then for diluted gases 
we have: 

P( C) I ( f. r = constant' 
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840 A. BLINOWSKI 

where IX > 1 and Co is some arbitrary density. In this case, (3.7) can represent the first 
three terms of the power expansion of the isentropic equation of state. Now, the value 

aP(C) = 0 ac 
for C = 0 does not stand in contraction with the physical behaviour of gases. It is not 
difficult to see that all the above considerations remain valid and, as in the case of isother
mal potential conditions, (3.5) and (3.6) are the necessary conditions of mechanical (but 
not necessarily thermal) equilibrium. 

Let us adhere, however, to the Van der Waals viewpoint and assume that there exists 
a proper solution of (3.10) [with the conditions (3.4)], then, taking one of the common 
definitions of surface tension (see e.g. [21]): 

(3.9) 

eo 

a= f ( T,-! trT .. )dx, 
-eo 

where y is a suitable second principle direction. From (2.20}, we obtain: 

(3.10) 

Bearing in mind that - ! trTeo = P5 , and substituting (3.10) and (3.2) into (3.9}, we 

obtain the familiar result (cf. [20]): 

(3.11) 

We have obtained here the expression (3.11) using concepts of stresses and forces for u 
as a tension of some fictitious membrane stretched perpendicular to the x axis. Let us 
observe here that GIBBS's [10] definition of u as a surface energy also remains valid. Let 
us consider density distribution C(x) satisfying (3.1) and (3.4), and some other distribution 
C*(x), where 

C*(x) = c2 for X > a, and C*(x) = cl for X~ a. 

Introducing the following condition for a 

eo 

(3.12) J [C(x)-C*(x)] = 0 
-eo 

which can be considered as a condition of preservation of total mass, we can find the 
difference L1 W between the total elastic potential associated with both distributions (per 
unit area of the yz plane): 

(3.13) 
eo C(~) c•(x) 

L1 W = J ["(x)(J P(t) dt + _!._ f/> C'2(x))- "*(x)(J P(t) dt+ _!._ C*'2(x))]dx 
" t2 2 3 C(x) " t 2 2 C*(x) ' 

-8 Co Co 
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where Co ::s:; C1 denotes some arbitrary density, or, using (3.3) 

but C*'(x) = 0, and by (3.3) and by our definition of C*(x), we have: 

C*(x) 

f P(t) 
C*(x) tldt = cxl-Ctcx2-w(Co) for x ::s:; a, 

(3.15) 
Co 

c•(x) 

C*(x) J ~~) dt = cx1- C2cx2 -w(Co) for x >a, 
Co 

or 

Substituting (3.16) into (3.14), we arrive at: 

00 00 

(3.16) L1 W = J t1>3 C' 2 (x)dx- cx2 J [C(x)- C*(x)]dx. 
-oo -oo 

In view of (3.12), the second right-hand side term is equaJ to zero and in virtue of (3.11), 
we have: 

(3.17) LIW=u. 

Thus we can consider the surface tension as an excessive Helmholz free energy associated 
with the existence of the gradient zone. The plane x = a at which our reference density 
distribution C*(x) is discontinuous has been defined by GIBBS [10] as the surface of tension. 

Changing the variable of integration, we can rewrite (3.11) in the form: 

(3.18) 

or substituting for C' the expression obtained from (3.3), we are able to write: 

(3.19) 

Thus, in principle, knowing u, P8 , C1 , C2 and P(C) we are able to find t/>3 • However, 
our description somewhat being simplified can hardly be applied for any particular 
substance. Moreover, it is well-known that P(C) cannot be experimentally found for the 
entire interval C1 < C < C2 • Thus in the next section we shall use cruder methods based 
on the Eq. (3.11) for the estimation of t/>3 • 
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4. Numerical evaluation 

For further considerations, we shall introduce now the characteristic length I defined as 

(4.1) 

where M is the bulk modulus and c is the sound velocity. 
It is not difficult to see the physical meaning of I as that length with which certain 

length characteristics for the particular problem under consideration (e.g. ratio C/IVCI 
or wavelength) should be compared in order to decide whether or not the term f/>3 intro
duces any detectable contribution to the solution. 

According to (3.11) we have 

(4.2) 
(] 

f/>3 = -00--

f C' 2dx 
-oo 

Now, let 2~ denote the width of the zone within which the major density change takes 
place. We shall omit here the proof of the rather obvious fact that 

(4.3) j[ C(~)~~(-~) J dx ~ J C'2dx. 
~ -oo 

If we take now sufficiently large ~, we have: 

cc~)~ c2, C(-~) ~cl, 

and we can write 

(4.4) 

Up to this point we have used exclusively considerations of continuum mechanics. 
Now, we shall try to expand our field, borrowing certain concepts from molecular theory. 
Our function VJ(C(x), C(y), R) in (2.1) describes all possible interactions, including both 
static forces and dynamic forces due to momentum exchange between moving particles 
(compare RAYLEIGH [5]). 

However, it is reasonable to assume that the long range part of 

VJ(C(x), C(y), R) 
-i.e., f/>(R) C(x) C(y) -is insensitive to the relative molecular velocities. Thus, if the 
force between two similar molecules separated by the distance R is equal to some value 
f(R), we can express f/>(R) as 

(4.5) f/>(R) = f(~) ' 
m 

where m denotes the mass of the molecule. From (2.11), we obtain for 4J3 : 

Ct 

(4.6) f/> = 2n f f(R) RsdR 
3 15 m2 • 

0 
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Many valuable results in molecular theory were obtained with the use of LENNARD

JONES [6-12] potential function (see e.g. [9]). 

(4.7) A(R) = 4e[( ~ r -(~ )] 
where e and d are certain constants. In our sign convention, where the outward directed 
force is considered as positive, we obtain for the total force f(R): 

(4.8) [ 
d6 d12 J 

f(R) = 4e 6¥-12 R 13 • 

Now, we are faced with the problem as to which part of f(R) has to be referred to as the 
long distance force 1>(R). It can easily be shown, however, that for any choice of C1 and 
C 2 , we shall obtain: 

00 

2n J 4e [ d
6 

d
12 J 8ne d

5 
10sd

5 

(4.9) .P,,;; J5 V'id m2 6 R7 -12 Rll R'dR < 15m2 6 j/2 < --,-. 

thus from (4.1) and (4.9) we obtain: 

(4.10) I V' IOed5C 
< 2 2 ' me 

as an estimation from molecular forces. And from (4.4) and (4.1) we obtain: 

(4.11) 

as an estimation from the surface tension. Now, the only problem is the choice of the 
proper value for 2<5 in ( 4.11 ). Available estimations of 2<5 vary from "Several molecular 
diameters" [22], to 100 A [21, 23]. 

Thus we hope that we do not underestimate in taking 2<5 = 200 A. If we now take 
data for such a typical molecular substance as CC14 , where 

s = 3.27 · 1.3806·10-14 gcm2
, d = 5.881 · 10- 8 cm, m= 153.81 · 1.66 · I0- 24 g, 

C = 1.595 gfcm3
, 

a= 27 dyna 
cm 

(cf. [9, 24]), we obtain from ( 4.1 0): 

I < 3 • w- 8 cm, 

and from (4.11): 

I~ 4.45 ·I0- 8 cm. 

For reference we may mention here that the linearized Eq. (3.1) completed with dynamic 
terms yields the following expression for the relative contribution of gradient sensitive 
terms to the velocity of sound waves in liquids: 

(4.12) 
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where c is the classical sound velocity, v is the velocity obtained by taking into consider
ation the term f/>3 , and A. is the wavelength. For CCL.. under normal conditions and 
frequency as high as 102 MHz we obtain for (v-c)/c the order of magnitude of w-s, 
which is evidently far beyond the range of any possible experimental verification. 

5. Conclusions 

In the foregoing sections, we have shown that the concept of gradient-dependent elastic 
potential can be used for approximate continuous description of fluids with nonlocal 
interactions. 

We have also pointed out that for certain forms of the equation of state the simplest 
gradient-dependent theory can yield a solution with a density transition analogous to 
Van der Waals's vapour-liquid transition. By obtaining an expression for the surface 
tension at the plane vapour-liquid interface, we were able to show that the gradient approach 
yields in this case the same result as the V AN DER W AALS and BAKKER approach, and 
agrees with the widely-used Gibbs' energetic approach. 

Despite the crude assumptions and rough approximations, we have obtained, by two 
independent ways, essentially the same estimation for the gradient-dependent part of the 
elastic potential. 

Our extremely simplified model can hardly provide an accurate quantitive description 
of any real fluid, but even if it is assumed that in some cases the value of parameter I can 
exceed our estimation by one or (which does not seem very probable) two orders of magni
tude, it is still evident that for any particular problem which does not involve discontinuities 
or phase boundaries the gradient-dependent term can be disregarded without detectable 
loss of accuracy. 

It may be supposed that the term under consideration may provide some information 
on the behaviour of materials within the transition regions of shock waves. It should be 
mentioned here, however, that the first gradient term alone, with positive constant f/> 3 

likely, does not yield a continuous solution for high amplitude shock wave. Thus if it is 
desired to apply the gradient theory to shock wave problems, viscosity and/or thermal 
conductivity effects leading to high but finite gradient solutions (cf. [25]) should be taken 
into consideration. 
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Appendix I 

Introducing some characteristic pressure P0 and characteristic density C0 , denoting 

- - c~ - R - p _ c i ' 
(LA) !P(R) = Po C~4>(R), R = C

1
, P = -p-;;; C =To' V= C1V, 

and using (2.9) and (2.12), we are able to rewrite (2.6) as follows: 

oo I 

(I.B) 2 1 21+1 f2i+l f -Ve+C -
2

. 
1 

V · ® n(k)dS 4>(R)R21+3 dR = o. 
z+ k=l 

t-1 " 0 

i 

Under our assumptions listed in section 2 C, VC and q,(R) are bounded. Now, if we use 

the following inequalities: 

IIA· Bll ~ IIAII·IIBII; IIJ Adsl! ~ SsupiiAII 

(I. C) 
s 

we are abJe to write: 

(I. D) 

I 
1 2i+l 21+2 I I M 3MJ.l2 

-c
2

. 
1
)---t{vc. J ® n<"">as)J <Pcii)R21

+
3 aRI. < --c2. 1), y3

2 '+ 2 (2i+2) < ., z+ . " k=l 0 z+ . z. 

where M is a certain positive number. The constant term series in (I. D), which is an absolute 
majorant of the expansion under consideration, is convergent. Thus the expansion in 
(2.6) is uniformJy convergent over the whole space. 

Appendix ll 

We shall ca]culate here the total force per unit area acting across any plane in the 
infinite homogeneous body with uniform density. 

By virtue of symmetry, the only component of the force to be taken into consideration 
is a vertical one. 

We seek a quantity: 

(II.A) 1
. F 

fJJ = 1m -, 
s-.o S 

where F is the total force acting between the lower semispace and the infinite column K 
(Fig. 1 ), and S is the cross-section area of the column. We have: 

00 

(II.B) fJJ = J J tp(C(x), C(y), R)cosa.dhdV1 , 

YLO 
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K 

FIG. 1. 

where VL denotes the lower semispace. In the polar coordinates, we have: 

-=::m 
2 00 00 

(II.C) J J J [j VJ(C(x), C(y) ), dR ]r2 sinOdrdfPdO. 
0 0 0 r 

Integrating by parts and substituting tp given by (2.2), we obtain: 

(II.D) 

and 
00 

-of/ = 4n J"j' f/J(R)R3dR 4n ofP*(C) C~ 
oC 3 "' + 6 ac 4 ' 

0 

(II.E) 

where fP*(C) = fP(C, C). 
Let us observe, however, that if fP(C, 'YJ) is a symmetric function, then 

(II.F) OfP(~, 'Y}) I - _!_ OfP*(C) 
O'YJ ;=11-c - 2 oC . 

Now, comparing (II.E) and (2.12), we can see that ?/(C) and P(C) can differ only by some 
constant term, which can be chosen to be equal to zero. 

Appendix Ill 

If w(C, VC) is an isotropic function of VC, then we have: 

(III.A) V(C, VC) = w(C, I) 

where 

(Ill. B) 
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then we have 

(Ill. C) 
ow ow 

o(VC) = ai2VC' 

and (2.20) can be rewritten as: 

(III.D) T = -[(c' ~~ +2C ~; 1)1+2C ~; VC0VC-V· (2C' ~; VC01) 

= /1l+/2Vc Q9 Vc+f3VC·VVC·VCl+fuV ·V Cl, 

where j;, (i = 1, 2, 3, 4) are some functions of C and I. Let us denote now: 

1 
fP1 (C, I) = !1- ( -P(C)+ T f/>3 VC· VC), 

(Ill. E) 

Now the potential w(C, /)can provide the Eq. (2.13) if and only if 

(III.F) V· [qJ11 +fP2(VC Q9 VC)+fP3(VC • VVC · VC)l +fP4 V· V Cl] = 0, 

for every density field ~ = C(x). 
We can rewrite (III.F) as follows: 

(Ill. G) 
0

fP1 VC+ 
0

fP1 2VC·VVC+ 
0

fP2 (VC·VC)VC+2 °fP2 ((VC·VVC·VC)VC 
ac ai ac a1 

+fP2(V ·VC) VC +cp2VC • VVC + 
0:c3 (VC· VVC ·VC) VC 

ocp3 
+ M 2 (VC· VV C ·V C) VC· VV C + cp3 VV C • VV C ·VC+ (/)3 VC· VVV C ·VC 

,. ,. ocp4 OfP4. ( 
+fP3VC· VV~ ·VV~ +---ar-(V · VC)·VC +ar2(V ·VC) VC·VVC+fP4V V ·VC)= 0. 

There are only two terms in (III.G) which depend on the third gradient: 

qJ3VC·VVVC·VC and qJ4V(V ·VC), 

but (Ill. G) should be valid for every density field- i.e., for every local value of its gra
dients, and the second term does not depend on the first gradient, so both qJ3 and qJ4 should 
be equal to zero. If qJ3 = cp4 = 0, then multiplying (III.G) by V c and denoting 
Vc · VVc ·V~= J, we obtain: 

afP1 afP1 ocp2 2 ocp2 _ 
(III.H) aci+MJ+aci +2ari+cp2l+fP2(V·VC)I- 0. 

For given I and J, V· VC can be chosen arbitrarily; hence qJ2 = 0, and we are left only 
with two terms, but I is independent of J and consequently 

(111.1) 0(/)1 = 0 
ai . 

But if qJ1 =1= 0, then bearing in mind that P(C) has the meaning of pressure for V~ = 0, 
we have from (Ill. E) / 1 =I= 0 for C = 0 and VC = 0 and by (Ill. D) T =I= 0, which is non
sense. Thus, if only (2.13) is valid, then T is uniquely determined by (2.20). 
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Appendix IV 

For the one-dimensional case, substituting (2.12) into (2.6), we can write: 

(IV.A) 

where <1> 1 are certain constants. 
Dividing by C and integrating the first term by parts, we obtain: 

(IV.B) 

Multiplying by C' and integrating, we arrive at 

CO 

(IV.C) -f ~P(C)dC-f f Pif) dCdC+ f 2 ~211C'dx = {J1 C+{J2 • 

i=l 

Now, integrating many times by parts, we can obtain: 

I 

(IV.D) J 2£2i C'dx = 2: ( -t)t+lcr:u-~:lcrlJ_ (-I)' f C£'+1JC£'ldx 
k=l 

I I 

= 2; ( -Il+lC£21-i:Jcr~:J_ (-I) (C£i+ll)2. 
k=l 2 

If we demand now C£i] = 0 at c = cl; c2 for every i ~ I, we obtain from (IV.B), (IV.C), 
and (IV.D): 

(IV.E) 

and 

(IV.F) 

but 

and we have from (IV.F) 

(IV.G) for 

which is equivalent to (3.6). Multiplying (IV.E) by C and subtracting from (IV.G), we 
obtain (3.5) with {J = - cx1 == P5 • 
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