177.

SOLUTION OF A MECHANICAL PROBLEM.

[From the Quarterly Mathematical Journal, vol. I. (1857), pp. 405-406.]
A heavy plane is supported by parallel elastic strings of small extensibility; and the strings are of the same length and extensibility: required the position of equilibrium.

Imagine the plane horizontal, and let n be the number of strings, $(a, b),\left(a^{\prime}, b^{\prime}\right)$, $\& c$. the coordinates of the points of attachment; ξ, η the coordinates of the centre of gravity of the plane; W the weight; let the equation of the horizontal line about which the plane turns be

$$
x \cos \alpha+y \sin \alpha-p=0 ;
$$

and let $\delta \theta$ be the inclination of the plane in its position of equilibrium to the horizontal plane, and $\omega \delta l$ the force generated by an increase δl in the length of one of the strings.

We have for the conditions of equilibrium

$$
\begin{aligned}
& \Sigma(a \cos \alpha+b \sin \alpha-p) \omega \delta \theta-W=0 \\
& \Sigma(a \cos \alpha+b \sin \alpha-p) a \omega \delta \theta-W \xi=0, \\
& \Sigma(a \cos \alpha+b \sin \alpha-p) b \omega \delta \theta-W \eta=0
\end{aligned}
$$

or putting $\Sigma a=L, \Sigma b=M, \Sigma a^{2}=A, \Sigma a b=H, \Sigma b^{2}=B$, we have

$$
\begin{aligned}
& L \cos \alpha+M \sin \alpha-n p-\frac{W}{\omega \delta \theta}=0 \\
& A \cos \alpha+H \sin \alpha-L p-\frac{W \xi}{\omega \delta \theta}=0 \\
& H \cos \alpha+B \sin \alpha-M p-\frac{W \eta}{\omega \delta \theta}=0
\end{aligned}
$$

Combining with these the equations

$$
x \cos \alpha+\eta \sin \alpha-p=0,
$$

and eliminating linearly $\cos \alpha, \sin \alpha, p$ and W, we have

$$
\left|\begin{array}{llll}
. & x, & y, & 1 \\
\xi, & A, & H, & L \\
\eta, & H, & B, & M \\
1, & L, & M, & n
\end{array}\right|=0
$$

for the equation of the required line $x \cos \alpha+y \sin \alpha-p=0$. Replacing L, M, A, H, B by their values, the equation is readily transformed into

$$
\Sigma\left\{\left|\begin{array}{ccc}
x, & y, & 1 \\
a, & b, & 1 \\
a^{\prime}, & b^{\prime}, & 1
\end{array}\right| \times\left|\begin{array}{ccc}
\xi, & \eta, & 1 \\
a, & b, & 1 \\
a^{\prime}, & b^{\prime}, & 1
\end{array}\right|\right\}=0
$$

where the summation extends to each pair of points (a, b) and $\left(a^{\prime}, b^{\prime}\right)$. This is, in fact, an extension of the harmonic relation of a point and line with respect to a triangle.

