177.

SOLUTION OF A MECHANICAL PROBLEM.

[From the Quarterly Mathematical Journal, vol. I. (1857), pp. 405-406.]

A HEAVY plane is supported by parallel elastic strings of small extensibility; and the strings are of the same length and extensibility: required the position of equilibrium.

Imagine the plane horizontal, and let n be the number of strings, (a, b), (a', b'), &c. the coordinates of the points of attachment; ξ , η the coordinates of the centre of gravity of the plane; W the weight; let the equation of the horizontal line about which the plane turns be

 $x\cos\alpha + y\sin\alpha - p = 0;$

and let $\delta\theta$ be the inclination of the plane in its position of equilibrium to the horizontal plane, and $\omega\delta l$ the force generated by an increase δl in the length of one of the strings.

We have for the conditions of equilibrium

 $\Sigma (a \cos \alpha + b \sin \alpha - p) \quad \omega \delta \theta - W = 0,$ $\Sigma (a \cos \alpha + b \sin \alpha - p) a \omega \delta \theta - W \xi = 0,$ $\Sigma (a \cos \alpha + b \sin \alpha - p) b \omega \delta \theta - W \eta = 0;$

or putting $\Sigma a = L$, $\Sigma b = M$, $\Sigma a^2 = A$, $\Sigma ab = H$, $\Sigma b^2 = B$, we have

$$L \cos \alpha + M \sin \alpha - np - \frac{W}{\omega \delta \theta} = 0,$$

$$A \cos \alpha + H \sin \alpha - Lp - \frac{W\xi}{\omega \delta \theta} = 0,$$

$$H \cos \alpha + B \sin \alpha - Mp - \frac{W\eta}{\omega \delta \theta} = 0.$$

www.rcin.org.pl

SOLUTION OF A MECHANICAL PROBLEM.

Combining with these the equations

 $x\cos\alpha + \eta\sin\alpha - p = 0,$

and eliminating linearly $\cos \alpha$, $\sin \alpha$, p and W, we have

 $\begin{vmatrix} & x & y & 1 \\ \xi & A & H & L \\ \eta & H & B & M \\ 1 & L & M & n \end{vmatrix} = 0$

for the equation of the required line $x \cos \alpha + y \sin \alpha - p = 0$. Replacing L, M, A, H, B by their values, the equation is readily transformed into

$$\begin{split} \Sigma \left\{ \left| \begin{array}{cccc} x, & y, & 1 \\ a, & b, & 1 \\ a', & b', & 1 \end{array} \right| \times \left| \begin{array}{cccc} \xi, & \eta, & 1 \\ a, & b, & 1 \\ a', & b', & 1 \end{array} \right| \right\} = 0 \\ \end{array} \end{split}$$

where the summation extends to each pair of points (a, b) and (a', b'). This is, in fact, an extension of the harmonic relation of a point and line with respect to a triangle.

177]