188.

ON THE SIMULTANEOUS TRANSFORMATION OF TWO HOMOGENEOUS FUNCTIONS OF THE SECOND ORDER.

[From the Quarterly Mathematical Journal, vol. II. (1858), pp. 192-195.]

In a former paper with this title, Cambridge and Dublin Math. Journal, t. IV. [1849], pp. $47-50$ [74], I gave (founded on the methods of Jacobi and Prof. Boole) a simple solution of the problem, but the solution may I think be presented in an improved form as follows, where as before I consider for greater convenience the case of three variables only.

Suppose that by the linear transformation $\left(^{1}\right)$

$$
(x, y, z)=\left(\left.\begin{array}{lll}
\alpha, & \beta, & \gamma \\
\alpha^{\prime} & \beta^{\prime}, & \gamma^{\prime} \\
\alpha^{\prime \prime}, & \beta^{\prime \prime}, & \gamma^{\prime \prime}
\end{array} \right\rvert\,\right.
$$

we have identically

$$
\begin{aligned}
& (a, b, c, f, g, h \gamma x, y, z)^{2}=\left(u_{1}, b_{1}, c_{1}, f_{1}, g_{1}, h_{1} \gamma x_{1}, y_{1}, z_{1}\right)^{2}, \\
& (A, B, C, F, G, H \gamma x, y, z)^{2}=\left(A_{1}, B_{1}, C_{1}, F_{1}, G_{1}, H_{1} \gamma x_{1}, y_{1}, z_{1}\right)^{2}
\end{aligned}
$$

and write also

$$
\left(\xi_{1}, \eta_{1}, \xi_{1}\right)=\left(\left.\begin{array}{lll}
\alpha, & \alpha^{\prime}, & \left.\alpha^{\prime \prime} \gamma \xi \eta, \zeta\right) . \\
\beta, & \beta^{\prime}, & \beta^{\prime \prime} \\
\gamma, & \gamma^{\prime}, & \gamma^{\prime \prime}
\end{array} \right\rvert\,\right.
$$

${ }^{1}$ I represent in this manner the system of equations

$$
x=\alpha x_{1}+\beta y_{1}+\gamma z_{1}, ぬ c
$$

and so in all like cases.
C. III.

Comparing these with the relations between (x, y, z) and $\left(x_{1}, y_{1}, z_{1}\right)$ ，we see that

$$
\left(\xi, \eta, \zeta \chi(x, y, z)=\left(\xi_{1}, \eta_{1}, \zeta_{1} \chi x_{1}, y_{1}, z_{1}\right),\right.
$$

and multiplying the first of the relations between two quadrics by an indeterminate quantity λ ，and adding it to the second，we have

$$
(\lambda a+A, \ldots \gamma x, y, z)^{2}=\left(\lambda a_{1}+A_{1}, \ldots 久\left(x_{1}, y_{1}, z_{3}\right)^{2} .\right.
$$

We have thus a linear function and a quadric transformed into functions of the same form by means of the linear substitutions，and any invariant of the system will remain unaltered to a factor près，such factor being a power of the determinant of sub－ stitution．The invariants are， 1° the discriminant of the quadric； 2° the reciprocant， considered not as a contravariant of the quadric，but as an invariant of the system． And if we write

$$
\begin{gathered}
K=\text { Disc. }(\lambda a+A, \ldots \curlywedge x, y, z)^{2}, \\
\left(\mathfrak{A}, \mathfrak{B}, \mathfrak{(}, \mathfrak{F},(\mathcal{J}, \mathfrak{5} \backslash \xi, \eta, \zeta)^{2}=\operatorname{Recip} .(\lambda a+A, \ldots \chi x, y, z)^{2},\right.
\end{gathered}
$$

then K_{1} ，\＆c．being the analogous expressions for the transformed functions，and the determinant of substitution being represented by Π ，we have

$$
\begin{aligned}
K_{1} & =\Pi^{2} K, \\
\left(\mathfrak{A}_{1}, \ldots \chi \xi_{1}, \eta_{1}, \zeta_{1}\right)^{2} & =\Pi^{2}(\mathfrak{A}, \ldots \chi \xi, \eta, \zeta)^{2},
\end{aligned}
$$

and substituting for $\xi_{1}, \eta_{1}, \zeta_{1}$ their values in terms of ξ, η, ζ ，the last equation breaks up into six equations，and we have

$$
\begin{array}{rr}
K_{1} & =\Pi^{2} K, \\
\left(\mathfrak{H}_{1}, \ldots \gamma \alpha, \alpha^{\prime}, \alpha^{\prime \prime}\right)^{2} & =\Pi^{2} \mathfrak{A}, \\
\vdots & \\
\left(\mathfrak{H}_{1}, \ldots \gamma \beta, \beta^{\prime}, \beta^{\prime \prime}\right)\left(\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right) & =\Pi^{2} \mathfrak{F},
\end{array}
$$

which is the system obtained in a somewhat different manner in my former paper． Putting $f_{1}=g_{1}=h_{1}=F_{1}=G_{1}=H_{1}=0$ ，and writing also（which is no additional loss of generality）$a_{1}=b_{1}=c_{1}=1$ ，the formulæ become

$$
\begin{aligned}
& (a, b, c, f, g, h \nmid x, y, z)^{2}=\left(1,1,1 \nmid x_{1}^{2}, y_{1}^{2}, z_{1}^{2}\right), \\
& (A, B, C, F, G, H 久 x, y, z)^{2}=\left(A_{1}, B_{1}, C_{1} 久\left(x_{1}^{2}, y_{1}^{2}, z_{1}^{2}\right),\right.
\end{aligned}
$$

viz．there are two given quadrics which are to be by the same linear substitution transformed，one of them into the form $x_{1}{ }^{2}+y_{1}{ }^{2}+z_{1}{ }^{2}$ and the other into the form $A_{1} x_{1}{ }^{2}+B_{1} y_{1}^{2}+C_{1} z_{1}^{2}$ ，where A_{1}, B_{1}, C_{1} have to be determined．The solution is contained in the following system of formulæ，viz．

$$
\left(A_{1}+\lambda\right)\left(B_{1}+\lambda\right)\left(C_{1}+\lambda\right)=\Pi^{2} \text { Disc. }(\lambda a+A, \ldots)
$$

which gives A_{1}, B_{1}, C_{1} as the roots of a cubic equation, and gives also

$$
1=\Pi^{2} \text { Disc. }(a, \ldots)=\Pi^{2} \kappa \text {, or } \Pi^{2}=\frac{1}{\kappa} \text { suppose, }
$$

and we have then, writing for shortness, (${ }^{\chi} X X, Y, Z$) for

$$
\begin{aligned}
& \left(\left(B_{1}+\lambda\right)\left(C_{1}+\lambda\right),\left(C_{1}+\lambda\right)\left(A_{1}+\lambda\right),\left(A_{1}+\lambda\right)\left(B_{1}+\lambda\right) \gamma X, Y, Z\right), \\
& \left(* x^{2}, \quad \alpha^{\prime 2}, \quad \alpha^{\prime 2}\right)=\frac{1}{\kappa} \mathfrak{\Re}, \\
& \left(* X \beta^{2}, \quad \beta^{\prime 2}, \quad \beta^{\prime 2}\right)=\frac{1}{\kappa} \mathfrak{B}, \\
& \left(* \gamma \gamma^{2}, \quad \gamma^{\prime 2}, \quad \gamma^{\prime / 2}\right)=\frac{1}{\kappa}(\delta, \\
& \left(* \gamma \beta \gamma, \beta^{\prime} \gamma^{\prime}, \beta^{\prime \prime} \gamma^{\prime \prime}\right)=\frac{1}{\kappa} \mathfrak{F}, \\
& \left.(*) \gamma \gamma, \gamma^{\prime} \alpha^{\prime}, \quad \gamma^{\prime \prime} \alpha^{\prime \prime}\right)=\frac{1}{\kappa}(\delta) \text {, } \\
& \left(* \gamma \alpha \beta, \alpha^{\prime} \beta^{\prime}, \alpha^{\prime \prime} \beta^{\prime \prime}\right)=\frac{1}{\kappa} \mathfrak{J} \text {, }
\end{aligned}
$$

where $(\mathfrak{A}, \mathfrak{B}, \mathfrak{(}, \mathfrak{F}, \mathfrak{(}, \mathfrak{F})$ are the coefficients of the reciprocant of $(\lambda a+A, \ldots \chi x, y, z)^{2}$. Writing $\lambda=-A_{1},-B_{1}$, or $-C_{1}$ the quadric functions on the left-hand side become mere monomials, and we have the actual values of the squares and products $\alpha^{2}, \beta \gamma$, \&c. of the coefficients of the linear substitutions: thus $\alpha^{2}, \beta^{2}, \gamma^{2}, \beta \gamma, \gamma \alpha, \alpha \beta$ are respectively equal to $\mathscr{H}_{0}, \mathfrak{B}_{0}, \mathfrak{E}_{0}, \mathfrak{J}_{0}, \mathfrak{J}_{0}, \mathfrak{S}_{0}$ each into the common factor

$$
\frac{1}{\kappa}\left(B_{1}-A_{1}\right)\left(C_{1}-A_{1}\right),
$$

the suffix denoting that we are to write in the expressions for $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{F}, \mathfrak{S}, \mathfrak{J}$ the value $-A_{1}$ for λ; and similarly for the sets ($\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$) and ($\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}$).

2, Stone Buildings, 27th March, 1857.

