189.

NOTE ON A FORMULA IN FINITE DIFFERENCES.

[From the Quarterly Mathematical Journal, vol. II. (1858), pp. 198-201.]
In Jacobi's Memoir "De usu"legitimo formulæ summatoriæ Maclaurinianæ," Crelle, t. xII. [1834], pp. 263-273 (1834), expressions are given for the sums of the odd powers of the natural numbers $1,2,3 \ldots x$ in terms of the quantity.

$$
u=x(x+1)
$$

viz. putting for shortness

$$
S x^{r}=1^{r}+2^{r}+\ldots+x^{r},
$$

the expressions in question are

$$
\begin{aligned}
& S x^{3}=\frac{1}{4} u^{2}, \\
& S x^{5}=\frac{1}{6} u^{2}\left(u-\frac{1}{2}\right), \\
& S x^{7}=\frac{1}{8} u^{2}\left(u^{2}-\frac{4}{3} u+\frac{2}{3}\right), \\
& S x^{9}=\frac{1}{10} u^{2}\left(u^{3}-\frac{5}{2} u^{2}+3 u-\frac{3}{2}\right), \\
& S x^{11}=\frac{1}{12} u^{2}\left(u^{4}-4 u^{3}+\frac{17}{2} u^{2}-10 u+5\right), \\
& S x^{13}=\frac{1}{14} u^{2}\left(u^{5}-\frac{35}{6} u^{4}+\frac{287}{15} u^{3}-\frac{118}{3} u^{2}+\frac{699}{15} u-\frac{691}{30}\right), \\
& \& c .,
\end{aligned}
$$

which, especially as regards the lower powers, are more simple than the ordinary expressions in terms of x.

The expressions are continued by means of a recurring formula, viz. if

$$
\begin{aligned}
& S x^{2 p-3}=\frac{1}{2 p-2}\left\{u^{p-1}-a_{1} u^{p-2} \ldots+(-)^{p-1} a_{p-3} u^{2}\right\}, \\
& S x^{2 p-1}=\frac{1}{2 p}\left\{u^{p}-b_{1} u^{p-2} \ldots+(-)^{p} b_{p-3} u^{u}\right\},
\end{aligned}
$$

then

$$
\begin{aligned}
& 2 p(2 p-1) a_{1}=(2 p-2)(2 p-3) b_{1}-p(p-1), \\
& 2 p(2 p-1) a_{2}=(2 p-4)(2 p-5) b_{2}-(p-1)(p-2) b_{1} \text {, } \\
& 2 p(2 p-1) a_{3}=(2 p-6)(2 p-7) b_{3}-(p-2)(p-3) b_{2} \text {, } \\
& \begin{array}{ccccccc}
2 p(2 p-1) a_{p-3} & & 5 \cdot 6 & b_{p-3}- & 3 \cdot 4 & b_{p-4}, \\
0 & = & 3 \cdot 4 & b_{p-2}- & 2 \cdot 3 & b_{p-3},
\end{array}
\end{aligned}
$$

by means of which the coefficients b can be determined when the coefficients a are known.

Jacobi remarks also that the expressions for the sums of the even powers may be obtained from those for the odd powers by means of the formula

$$
S x^{2 p}=\frac{1}{2 p+1} \partial_{x} S x^{2 p+1},
$$

which shows that any such sum will be of the form $(2 x+1) u$ into a rational and integral function of u : thus in particular

$$
S x^{2}=\frac{1}{6}(2 x+1) u .
$$

To show \dot{d} priori that $S x^{2 p+1}$ can be expressed as a rational and integral function of u, it may be remarked that $S x^{2 p+1}=\phi_{1} x$ where $\phi_{1} x$ denotes the summatory integral $\Sigma(x+1)^{2 p+1}$, taken so as to vanish for $x=0: \phi_{1} x$ is a rational and integral function of x of the degree $2 p+2$, and which, as is well known, contains x^{2} as a factor. Suppose that y is any positive or negative integer less than x, we have

$$
\phi_{1} x-\phi_{1} y=(y+1)^{2 p+1}+(y+2)^{2 p+1} \ldots+x^{2 p+1},
$$

and in particular putting $y=-1-x$,

$$
\phi_{1} x-\phi_{1}(-1-x)=(-x)^{2 p+1}+(1-x)^{2 p+1} \ldots+x^{2 p+1},=0
$$

since the terms destroy each other in pairs; we have therefore $\phi_{1} x=\phi_{1}(-1-x)$. Now $u=x^{2}+x$, or writing this equation under the form $x^{2}=-x+u$, we see that any rational and integral function of x may be reduced to the form $P x+Q$, where P and Q are rational and integral functions of u. Write therefore $\phi_{1} x=P x+Q$: the substitution of $-1-x$ in the place of x leaves u unaltered, and the equation $\phi_{1} x=\phi_{1}(-1-x)$ thus shows that $P=0$; we have therefore $\phi_{1} x=Q$, a rational and integral function of u. Moreover $\phi_{1} x$ as containing the factor x^{2}, must clearly contain the factor u^{2}, and the expressions for $S x^{2 p+1}$ are thus shown to be of the form given by Jacobi.

We may obtain a finite expression for $S x^{n}$ in terms of the differences of 0^{n} as follows: we have

$$
S x^{n}=1^{n}+2^{n} \ldots+x^{n}=\left\{(1+\Delta)+(1+\Delta)^{2} \ldots+(1+\Delta)^{x}\right\} 0^{n}=\frac{1+\Delta}{\Delta}\left\{(1+\Delta)^{x}-1\right\} 0^{n}
$$

and putting $(1+\Delta)^{x}=e^{x \log (1+\Delta)}$ and observing that the term independent of x vanishes, and that the terms containing powers higher than x^{n+1} also vanish, we have

$$
S x^{n}=S_{k}\left\{\frac{1+\Delta}{\Delta} \log ^{k}(1+\Delta)\right\} 0^{n} \cdot \frac{x^{k}}{\Pi k},
$$

where the summation with respect to k, extends from $k=1$ to $k=n+1$, or what is the same thing (since the term corresponding to $k=1$ in fact vanishes) from $k=2$ to $k=n+1$.

The equation $x^{2}=-x+u$ gives

$$
x^{k}=P_{k} x+Q_{k},
$$

and it is easy to see that writing for shortness

$$
M_{k}=1+\frac{k-3}{1} u+\frac{k-4 \cdot k-5}{1.2} u^{2}+\frac{k-5 \cdot k-6 \cdot k-7}{1 \cdot 2 \cdot 3} u^{3}+\ldots
$$

where the series is to be continued to the term $u^{\frac{1}{(k-2)}}$ or $u^{\left.\frac{1}{(k-3}\right)}$ according as k is even or odd, we have

$$
P_{k}=(-)^{k+1} M_{k+1}, \quad Q_{k}=(-)^{k} u M_{k},
$$

we have consequently

$$
\begin{aligned}
S x^{n}= & x S_{k}\left\{\frac{1+\Delta}{\Delta} \log ^{k}(1+\Delta)\right\} 0^{n} \cdot \frac{(-)^{k+1} M_{k+1}}{\Pi k} \\
& +S_{k}\left\{\frac{1+\Delta}{\Delta} \log ^{k}(1+\Delta)\right\} 0^{n} \cdot \frac{(-)^{k} u M_{k}}{\Pi k}
\end{aligned}
$$

If n is odd, $=2 p+1$, then (by what precedes) the first term vanishes, or we have

$$
S_{k}\left\{\frac{1+\Delta}{\Delta} \log ^{k}(1+\Delta)\right\} 0^{2 p+1} \cdot \frac{(-)^{k+1} M_{k+1}}{\Pi k}=0,(k=1 \text { to } k=2 p+2),
$$

and the formula becomes

$$
S x^{2 p+1}=S_{k}\left\{\frac{1+\Delta}{\Delta} \log ^{k}(1+\Delta)\right\} 0^{2 p+1} \cdot \frac{(-)^{k} u M_{k}}{\Pi k}, \quad(k=1 \text { to } k=2 p+2),
$$

which it may be noticed puts in evidence the factor u but not the factor u^{2}.
If n is even, $=2 p$, then (by what precedes) the coefficient of x is to the constant term in the ratio $2: 1$, or we have

$$
S_{k}\left\{\frac{1+\Delta}{\Delta} \log ^{k}(1+\Delta)\right\} 0^{2 p} \cdot \frac{(-)^{k+1}\left(M_{k+1}-2 u M_{k}\right)}{\Pi k}=0,(k=1 \text { to } k=2 p+1),
$$

and the formula becomes

$$
S x^{2 p}=(2 x+1) S_{k}\left\{\frac{1+\Delta}{\Delta} \log ^{k}(1+\Delta)\right\} 0^{2 p} \cdot \frac{(-)^{k} u M_{k}}{\Pi k},(k=1 \text { to } k=2 p+1) .
$$

The values of the functions M are as follows:

$$
\begin{aligned}
& M_{1}=0, \\
& M_{2}=1, \\
& M_{3}=1, \\
& M_{4}=1+u, \\
& M_{5}=1+2 u, \\
& M_{6}=1+3 u+u^{2}, \\
& M_{7}=1+4 u+3 u^{2}, \\
& \& c .
\end{aligned}
$$

As a simple example of the formulæ, we have

$$
\begin{aligned}
S x^{3}= & \left\{\frac{1+\Delta}{\Delta} \log ^{2}(1+\Delta)\right\} 0^{3} \cdot \frac{1}{2} u \\
& +\left\{\frac{1+\Delta}{\Delta} \log ^{3}(1+\Delta)\right\} 0^{3} \cdot-\frac{1}{6} u \\
& +\left\{\frac{1+\Delta}{\Delta} \log ^{4}(1+\Delta)\right\} 0^{3} \cdot \frac{1}{24}\left(u+u^{2}\right),
\end{aligned}
$$

and the coefficients are

$$
\begin{aligned}
\left(\Delta-\frac{1}{12} \Delta^{3}\right) 0^{3} & =1-\frac{1}{12} 6=\frac{1}{2}, \\
\left(\Delta^{2}-\frac{1}{2} \Delta^{3}\right) 0^{3} & =6-\frac{1}{2} 6=3, \\
\Delta^{3} 0^{3} & =6,
\end{aligned}
$$

and therefore

$$
S x^{3}=\frac{1}{4} u-\frac{1}{2} u+\frac{1}{4}\left(u+u^{2}\right)=\frac{1}{4} u^{2},
$$

which is right; the example shows however that the calculation for the higher powers would be effected more readily by means of Jacobi's recurring formula.

2, Stone Buildings, 27th Oct., 1857.

