190.

ON THE SYSTEM OF CONICS WHICH PASS THROUGH THE SAME FOUR POINTS.

[From the Quarterly Mathematical Journal, vol. II. (1858), pp. 206-207.]
I Consider the system of conics passing through the same four points; these points may be real or imaginary, but it is assumed that there is a real system of conics, this will in fact be the case if two conics of the system are real. The four points are therefore given as the points of intersection of two real conics, and it will be proper to assume in the first instance that the conics intersect in four separate and distinct points, none of them at infinity. The four points may be all real, or two real and two imaginary, or all imaginary.

First, if the points are all real, we have here two cases, viz. each of the points may lie outside of the triangle formed by the other three, or as this may be expressed, the points may form a convex quadrangle; or else one of the points may be inside the triangle formed by the other three, or as this may be expressed, the points may form a triangle and interior point. In each case the pairs of lines joining the points, two and two together, will be conics (degenerate hyperbolas) forming part of the system of conics. Consider the two cases separately.

Fig. A. Four real points forming a convex quadrangle. The system contains two parabolas, and the pairs of lines and the parabolas divide the plane of the figure into five distinct regions, one of which contains only ellipses, and the other four contain each of them hyperbolas.

Fig. A^{\prime}. Four real points forming a triangle and interior point. The system does not contain any parabolas, the three pairs of lines divide the plane of the figure into three distinct regions, each of which contains only hyperbolas.

Next, if the points are two of them real and two of them imaginary. The line joining the two imaginary points will be real and this line may meet the line joining the two real points, in a point outside the two real points, or included between them, i.e. the real centre of the quadrangle may lie outside the real points, or may be included between them; I consider the two cases separately.

Fig. B. Two real and two imaginary points, the real centre of the quadrangle lying outside the real points. The system contains two parabolas, and these with the line joining the two real points and the line joining the two imaginary points divide the plane of the figure into three regions, one of which contains ellipses and the other two contain each of them hyperbolas.

Fig. B^{\prime}. Two real and two imaginary points, the real centre of the quadrangle lying between the real points. There are no parabolas, and the system contains only hyperbolas.

$$
B^{\prime}
$$

Lastly, when the four points are imaginary. We have here only a single case.
Fig. C. Four imaginary points. The points lie on two real lines, there are (besides the point of intersection of these lines) two other real centres of the quadrangle, which lie harmonically with respect to the two lines. The system contains two parabolas and these and the two lines divide the plane of the figure into four regions, two of which contain each of them ellipses, and the other two contain each of them hyperbolas.

