
Optimization of Multi-branch Truss-Z based on Evolution Strategy

Machi Zawidzki
Department of Architecture,

Massachusetts Institute of Technology
T: +1 617 253 0781, F: +1 627 253 9407, E: zawidzki@mit.edu

Abstract
This paper concerns multi-branch Truss-Z networks (MTZ). A possible scenario for creating a
“multi-branch bridge” linking 6 terminals of pedestrian and cycling communication is presented.
This process is formulated as a constrained minimization problem. A new, biology-inspired
nomenclature for MTZ and encoding for MTZ are introduced. Several operations for MTZs are
introduced and illustrated. The functionality of these operations is illustrated with transformation
from a random MTZ to a “proper” 6-branch MTZ network. A population-based heuristic experiment
is presented to demonstrate that the introduced operators allow us to create any desirable MTZ. A
cost function for the considered scenario is introduced. The genetic operations are interpreted and
visualized. A number of feasible MTZ layouts produced by an evolution strategy-based algorithm
are presented. One of these layouts is used for creation of the spatial 6-terminal MTZ, which is also
visualized.

Keywords: modular ramp system, multi-branch network, modular structure encoding, evolution
strategy, discrete layout optimization.

1. Introduction
A stairway is the most common means of pedestrian vertical transportation used in the built
environment. Elevators and escalators are relatively expensive to install and maintain, and their
traffic flow capacity is much lower than that of stairs. Moreover, it is not always possible to install
an elevator or escalator due to limited space. However, most people occasionally or temporarily
cannot use stairs, as when riding a bicycle, pushing a baby stroller or carrying heavy luggage. For
elders and people in wheelchairs, stairs form a permanent and impassable barrier. This is an
important social issue, especially since the proportion of elderly people in society is higher than in
the past, and some predict that this tendency will continue [1]. For a comprehensive review of the
literature on elderly pedestrians, see [2].

2. The concept of Truss-Z
Truss-Z (TZ) is a modular skeletal system for creating free-form ramps and ramp networks among
any number of terminals in space. The concept has been introduced in [3]. The motivation for TZ in
the context of human mobility, and in particular – the mobility problems of elders is discussed in
[4].
The underlying idea of this system is to create structurally sound provisional or permanent
structures using the minimal number of types of modular elements. For further discussion on
“Modularity vs. free-form” see [5].

2.1 The Modularity of Truss-Z
The TZ structures are composed of four variations of a single basic unit (R), as shown in Figure 1.

1

http://rcin.org.pl

Figure 1: The section showing the slope followed by the planar and axonometric projections of the
TZ basic unit (R).

Unit L is a mirror reflection of unit R. By rotation, they can be assembled in two additional ways
(R2 – rotated R and L2 – rotated L), effectively giving four types of units. Some examples are shown
in Figure 2.

Figure 3 shows an example from the case study of retrofitting an existing concrete overpass system
comprised of two bridges connected with three stairways, presented in [6].

2

http://rcin.org.pl

Figure 3: A visualization of a TZ to allow the use of wheelchairs in an existing overpass. The slope
of TZ is 1:12 (8.3%). Top and bottom: plan and axonometric views, respectively. The existing
stairway (on the left) is very steep and particularly long: 29 rises without an intermediate landing.

Structural rigidity of the TZ module has been demonstrated in [5], along with other topological
properties such as nullity, degree of static indeterminacy (DSI = 0), etc. Due to the modularity of
this system, it is natural to apply discrete optimization methods for creating TZ linkages and
networks. Such structures can be optimized for various criteria: the minimal number of modules,
the minimal number of changes in direction, and, in a case of multiple branches, the minimal
network distance, etc. Various deterministic and meta-heuristic methods have been successfully
implemented for single TZ paths. E.g: backtracking [7], evolution strategy [8], and evolutionary
algorithm [9]. These methods produced usually good, but not ideal, solutions. A graph-theoretical
exhaustive search method, which produces the best allowable, that is ideal solutions has been
described in [6].

2.2 Physical models of TZ

Several case studies of retrofitting with TZ and reduced scale models have been built, as shown in
Figures 4 and 5.

3

http://rcin.org.pl

Figure 4: A scale model of a complex TZ overpass. The left part (white) is a 3D-print, the right part
– a metal model made of flat pre-cut elements. The latter is the same TZ as visualized in Figure 3.

Although 3D-printing is a common “effortless” method for rapid prototyping, the assembly models
are much closer to reality, as they use elements which to a certain extent correspond to the actual
truss members, as shown in Figure 5.

Figure 5: The physical, aluminum scale model. 1) “Mass-produced” aluminum members. 2) Detail
showing a gentle ramp slope (approx. 8%) suitable for wheelchairs. TZ allows us to create
“meandering” ramps, which is beneficial for safety as the length of straight sections can be reduced.
The same TZ as presented in Figures 3 & 4.

4

http://rcin.org.pl

Furthermore, the concept of foldable Truss-Z module and the proof-of-concept prototype scale
model has been presented in [10]. However, a multi-branch TZ network (MTZ) is a qualitatively
more difficult problem. This paper introduces new encoding and operators for efficient optimization
of MTZ in realistic situations. Although TZ is a spatial system, for simplicity, in this paper the
problem is reduced to the projection on the 2D plane, in other words, to the layout of MTZ. Thus
modules R&L2 and L&R2 correspond to trapezoidal units 0 and 1, respectively.

3. Possible scenario for a “multi-branch bridge”
The following scenario illustrates a possible application of the concept of a multi-branch Truss-Z
network (MTZ):
- There is a canal with walking and cycling paths on both sides.
- The canal is depressed and another, approximately perpendicular walking/cycling path is elevated.
- Create a layout of a network linking 6 elements of pedestrian and cycling communication
(terminals).
The situation is shown in Figure 6.

Figure 6: The situation for installing a MTZ. The terminals have been placed to match MTZ6

(explained further in the text) for comparison. The outline of MTZ6 connecting all terminals is
shown with a dashed line.

The concept of MTZ has been considered in the past [3,5]. An example of a manually created layout
of a 6-branch Truss-Z (MTZ6) has been presented in [11]. However, the original encoding has not
been suited for genetic operations, the defined genetic operations have not covered all possible
transformations, and as a result, the population-based heuristics could not produce satisfactory
results. This paper presents: the new encoding, a systematical study of the genetic operations (in
particular - mutations), a new and well-converging algorithm based on evolution strategy, and a
realistic case-study of retrofitting a traffic junction with a 6-branch MTZ network.

4. The new nomenclature and encoding
According to [12], in computer science, specifically in evolutionary algorithms, “object forming
possible solutions within the original problem context are referred to as phenotypes, their encoding,

5

http://rcin.org.pl

are called genotypes”. Usually genotypes are in the form of a bit string, array, tree, list or matrix.
The genotype encoding for MTZ introduced in [11] had the form of a nested list. Such an encoding
although straightforward, is not very concise or suitable for genetic operations. Figure 7 illustrates
the new, nature-inspired naming for the MTZ phenotype components and the new genotype
encoding in the form of a relatively simple list of lists.

Figure 7. The nomenclature for MTZ. On the left: the genotype tabulated for clarity. On the right:
the phenotype. Black arrows illustrate the direction of the sequence of trapezoidal units. The initial
units of each stem, the buds and the twig are shown in red, yellow and white, respectively. The first
unit of the first stem is rooted to the Terminal 1. The blue arrows indicate corresponding bud faces.

As figure 7 indicates, MTZ has hierarchical structure, defined as follows:
i. The main structure is composed of stems.
ii. Each stem ends with a bud with three branching faces (BFs).
iii. Stems must not form closed loops.
iv. A stem must have at least one unit (in such a case – that unit is the bud).
v. Twigs do not have buds.
vi. The first stem is rooted to the first terminal. It is the only stem connected directly to a

terminal.
vii. All the terminals except the first one are connected by twigs.

A genotype of an i th MTZ is defined as a list of branches in a form of two sub-lists of stems and
twigs:

Gi : (Si, Ti) (1)
Si : (s1 , s2 ,…,sn) (2)
Ti : (t1 , t2 ,…,tm) (3)

where Si and Ti are the lists of n stems and m twigs of the genotype Gi, respectively.

A j th stem from the list of stems Si is defined as follows:
sj: (j, pj, fj, uj) (4)

where j, pj, fj, and uj are: the index of a jth stem, the index of the parent, that is the stem to which the
jth stem is attached, the face of the parent stem's bud and the list of units u forming the jth stem,
respectively. u (1,0), where 1 and 0 stand for a “right turning” and “left turning” trapezoid along∈
the path of a branch. A bud is composed of the last trapezoidal unit in a stem and its mirror
reflection along the longer base of the trapezoid. In the case of the first stem, p1, and f1 are virtual
(since it is not connected to a parent stem).

A k th twig from the list of twigs Ti is defined as follows:
tk :(pk, fk, uk) (5)

where pk, fk, and uk are: the parent that is the stem to which the kth twig is attached, the face of the
parent stem's bud and the list of units forming the k th twig, respectively. The list of units in a twig

6

http://rcin.org.pl

and stem are analogous.

Two MTZs presented in [11] are shown among others in Figure 8 with the new genotype encoding.
Sub-figures 8.1 and 8.7 show: the example of a complex network (MTZC) and an efficient six-
terminal network (MTZ6) with relatively few units and simple paths, respectively.

5. The creation/transformation algorithm
The creation of any MTZ or transformation of any MTZA to any other MTZB can be executed in a
few steps presented in Table 1.

Table 1: The sequence of steps for creating any MTZ or transforming one to another

Start Transformation Operator

General
structure

─┐
 ▼

│
▼

Add a stem:
Add twigs:

Remove
branches:

aS [G i , (i i , BF i , u i)]
aT [G i , ((p1, BF1, u1),(p2, BF2, u2),...,(pk, BFk, uk))]

rB [G i , ((p1, BF1), (p2, BF2), …,(pi, BFk))]

Substructure
@ buds

◄┘
─┐
 ▼

│
▼

Displace
branches:

dB[G i , (((p i, BFi), (p j, BFj)),...)]

Units
@ branches

◄┘
─┐
 ▼

│
▼

Add units
 @ branches:

Remove units @
branches:

Invert units
 @ branches:

aU [Gi ,((p1, BF1 ,(v11 ,l11) , .. . ,(vk1 , lk1)) , .. . ,(p j , B F j ,(v1 j ,l1 j) ,. . .,(vk j , lk j)))]

r U [Gi ,((p1 ,B F1 ,(l11 ,. . . ,lk1)) ,. .. ,(p j , BF j ,(l1 j , . .. , lk j)))]

iU [Gi ,((p1 ,BF1 ,(l11, . .. , lk1)) , .. . ,(p j ,B F j ,(l1j , .. . ,lk j)))]

End ◄┘

The operators listed in the right column of Table 1 are defined and explained in the subsection
below.

5.1 Transformation operators
The following 7 operators suffice to “manually” construct a genotype of any MTZ or transform one
MTZ to another:

Adding a stem
A single stem can be added to a MTZi :

aS [G i , (i i , BF i , u i)] (6)
where G i , i i , and BFi are: the genotype of MTZi , the index and bud face of the i th stem to which a
new stem is to be added, respectively. The new stem is assigned an index: Max[(∀ i i)] + 1.

7

http://rcin.org.pl

If there was a branch b j (stem or twig) at BFi of the i
th stem, its parent's index (p j) is replaced by is.

Adding twigs
Adding twigs is similar to adding stems. However, twigs are not indexed and it is possible to add
multiple twigs at the same time:

aT [G i , ((p1, BF1, u1),(p2, BF2, u2),...,(pk, BFk, uk))] (7)
where p k and BFk are: the index of the parent (the stem to which the k th twig to be connected) and
that parent's bud face, respectively; u k is the sequence of trapezoidal units of the k th twig.

Removing branches
Removing branches (stems or twigs) from MTZt is defined as follows:

rB [G i , ((p1, BF1), (p2, BF2), …,(pk, BFk))] (8)
where p k and BFk are: the index of the parent and the parent's BF from which the k th branch is to
be removed. For an illustrative example of this operation see sub-figures 1 and 2 of Figure 8.

Displacing branches
Multiple branches can be displaced among bud faces:

dB[G i , (((p i, BFi), (p j, BFj)),...)] (9)
where p i and BFi, describe the original location of the i th branch, namely: the index of the branch's
parent and BF to which the i th branch is attached, respectively; p j and BFj describe the new
location for the i th branch, namely: the index of the j th stem and its BF, respectively.

Adding units at branches
Several units at multiple locations (loci) can be added to multiple branches:

aU [Gi ,((p1, BF1 ,(v11 ,l11) , .. . ,(vk 1 , lk 1)) , .. . ,(p j , B F j ,(v1 j ,l1 j) ,. . .,(vk j , lk j)))] (10)

where p j and BFj are: the parent stem and the bud face to which the j th branch is attached,
respectively. vk j and lk j are the value and position (locus) of the k th unit to be added at the j th branch,

respectively. For an example of adding units to stems and twigs see sub-figures 4 and 5 of Figure 8,
respectively.

Removing units at branches
Several units at multiple loci can be removed from multiple branches:

r U [Gi ,((p1 ,B F1 ,(l11 ,. . . ,lk1)) ,. .. ,(p j , BF j ,(l1 j , . .. , lk j)))] (11)

where p j and BFj are: the parent stem and the bud face to which the j th branch is attached,
respectively; lk j is the locus of the k th unit to be removed from the j th branch.

Inverting units at branches
Several units at multiple loci can be inverted at multiple branches:

iU [Gi ,((p1 ,BF1 ,(l11, . .. , lk1)) , .. . ,(p j ,B F j ,(l1j , .. . ,lk j)))] (12)

where p j and BFj are: the parent stem and bud face to which the j th branch is attached,
respectively; lk j is the locus of the k th unit at the j th branch whose value is to be inverted. For an

example of inverting units at stems and twigs see sub-figures 6 and 7 of Figure 8, respectively.

8

http://rcin.org.pl

The operators defined above suffice to create any MTZ or, equivalently, to transform any MTZ to
any other. The section below illustrates the latter.

5.2 Transformation of MTZC to the MTZ6

Figure 8 shows a transformation from MTZC to MTZ6. Although most of the operators transform
branches in general, here, for clarity, the operations on stems and twigs are shown separately.

Figure 8. Transition from MTZC (sub-figure1) to MTZ6 (sub-figure 7).

Although it is possible to manually create any MTZ, even for small cases it is quite challenging.
This is due to the fact that creating even a single TZ path, and thus obviously a multi-branch TZ

9

http://rcin.org.pl

network are NP-hard problems. The number of possible configurations for a layout of a single
planar TZ path grows exponentially: 2n, where n is the number of units. For MTZ the total number
of possible configurations can be expressed as:

∏
i=1

s

2ui×ui (13)

where s is the number of segments of a MTZ, ui is the number of units in the i th segment. The
notion of segment is explained in Figure 9.

Figure 9: Illustration of the notion of segments with MTZ6. For example stems 1–3 and twig D form
a single segment.

Therefore the number of all possible “siblings” of MTZ6 , that is networks of similar general
structure (4 segments of 23, 10, 21, and 10 units) equals: 23 × 223 × 10 × 210 × 21 × 221 × 10 × 210 =
890,977,738,760,171,343,052,800, which is almost a septillion (1024). Meaningful exploration of
such an enormous discrete solution space requires a search algorithm. The next subsection describes
such a method formulated as a quasi-optimization problem.

6. A quasi-optimization of MTZ
In order to examine whether the transformations described above are effective for practical MTZ
applications and also to select the most efficient parameters for the algorithm, a simple population-
based experiment has been carried out. In principle, in mathematical optimization the ideal solution
is not known. In this experiment, however, the ideal solution is explicitly given – it is MTZ6.
Therefore it is called a quasi-optimization. Nonetheless it also requires a few additional functions
and operators inherent to population-based algorithms.

Random MTZ generator
A random MTZ genotype is generated by:

rG [(s min, s max), (t min, t max), (u min, u max)] (14)

where s, t and u are the numbers of: stems, twigs and units in all branches, respectively.

Fix genotype (fix MTZ general structure)
Any genotype G k can be modified to have the desired number of stems and twigs:

F [G k , s, t, l] (15)

10

http://rcin.org.pl

where Gk, s, t, and l are: a genotype to be modified, the desired number of stems, the desired
number of twigs, and the number of randomly generated units in any additional branches (if
applicable), respectively.

Tabulate genotype
A genotype Gi of MTZi relatively concisely, encodes the hierarchy of the elements into a nested list
(list of lists). On the other hand, the tabulation transcribes Gi into a less concise, however, more
“structured” rectangular matrix T [Gi], in respect of the buds, as illustrated in Figure 10.

Figure 10: From the left: phenotype, genotype and tabulated genotype of MTZ6. “x” stands for
“nil”. For illustration, the positions of twigs (A–E) have been indicated in T [G6].

Compare genotypes
The difference between two individuals MTZ j and MTZ k is measured by comparing their tabulated
genotypes:

C [G j , G k] = Δ(T* [G j], T* [G k])
 C [G j , G k] ≥ 0 (16)

where T* [G j] and T* [G k] are “standardized” tabulated genotypes G j and G k , respectively.
Standardization here means that the structures of T [G j] and T [G k] have been made equivalent, so
if they had different dimensions, blank elements have been added. The difference Δ is the total of
differences between the bit strings of the respective branches of MTZ j and MTZ k . The differences
among respective stems and twigs are calculated independently and summed up, as illustrated in
Figure 11.

Figure 11: The method for calculating the difference between stems of MTZC and MTZ6 . The
difference between empty lists is 0. The differences for all corresponding branches is summed up.
For clarity only stems have been compared

11

http://rcin.org.pl

6.2 Evolution strategy-based experiment (ES*)
This subsection describes a simple experiment based on the principles of the first mutation-selection
scheme of the classic meta-heuristic method – evolution strategy (ES) [13]. ES like other
evolutionary algorithms, operates on populations of candidate solutions stochastically with bias
towards the individuals considered as relatively good. Unlike other EA methods, however, ES does
not employ crossover, and is limited to intensive mutation. The general procedure is based on
repetition of three simple steps:

1. evaluation of each individual in a population,
2. random selection with a preference for good individuals for the next generation,
3. mutation of the selected individuals,
4. go to 1 until the stop criterion is met.

In this experiment the selection of a genotype Gx is based on the comparison with the known ideal
(G6), that is, C [G 6 , G x]. It is a minimization, since the lower this value C [G 6 , G x], the better.
Since this is a quasi-optimization based on evolution strategy, it is denoted as ES*. In this
experiment, the “multi-mutation” involves four functions directly derived from the transformation
operators introduced in Section 5.1 “Transformation operators”.

Displace-branch mutation
MdB[g k , mi] (17)

where g k and m i are: the genotype of the k th MTZ, and the mutation intensity, respectively; m i is
normalized, so 0 and 1 yield: “displacement of none”, and “displacement of all branches”,
respectively.

Add-unit mutation
MaU[g k , mi] (18)

Here m i is normalized, so that 0 and 1, “does not add any units”, and “doubles the units”,
respectively. The values of the added units are random integers, 0 or 1. The loci for added units are
randomly distributed among all branches.

Remove-unit mutation
MrU[g k , mi] (19)

As mentioned in Section 3, each stem must have at least one unit. There is no such constraint for the
twigs. Here m i is normalized, so that 0 and 1, “does not remove any units”, and “removes all the
units except one randomly selected unit per stem”, respectively. The loci of removed units are
randomly distributed among all branches.

Invert-unit mutation
MiU[g k , mi] (20)

Here m i is normalized, so that 0 and 1: “does not change value of any unit”, and “inverts the values
of all units” (equivalent to mirror reflection of entire MTZ), respectively. The loci of units for the
inversions are randomly distributed among all branches.

Finally, the actual “multi-mutation” is defined as follows:

M [Gx , m i, (wdB , waU , wrU , wiU)] (21)

12

http://rcin.org.pl

where, Gx and mi are the xth genotype, and mutation intensity, respectively. M randomly selects the
mutation type according to wdB , waU , wrU , wiU which are the weights for respective mutations:
MdB, MaU, MrU, and MiU.

The experiment has been set up as follows:
• The initial population of 200 MTZs has been generated using the rTZ operator with the

following parameters:
◦ Number of stems: random integer (i) from the range [2, 5];
◦ Number of twigs: i∈[4,7] ;

◦ Number of units in branches: i∈[2,10] ;

◦ All experiments start from the same initial population Pi.
• Each genotype Gx in the population is evaluated according to C [G 6 , G x], that is compared

to the genotype of MTZ6 and assigned a numerical value (ε). Since it is a minimization
problem, the goal is ε = 0.

• 10% of the best genotypes are selected.
• 10 copies of each selected genotype are subject to mutation.
• The stop criterion: the process is repeated for 100 iterations (generations).
• 10 trials for each experiment.

The experiment has been performed for several mutation intensities (m i). Figure 12 shows selected
examples.

Figure 12: ES* with three variable and one constant mutation intensity (mi). Dots, and lines indicate
the individual, and averaged values for each generation, respectively. Gray and black indicate the
mean and minimal values in each generation, respectively.

As Figure 12 indicates, the convergence of this ES* is sensitive to the mutation intensity. Moreover,
it should be kept relatively low, that is between 0 and 0.2. In fact, it is a more efficient strategy to
randomly draw the mi value from the given range [0, mi

MAX]. Figure 13 compares selected
convergences in detail.

13

http://rcin.org.pl

Figure 13: The log-plot emphasizing the convergence of ES* @ different mutation intensities. On
the left, and right the minimal and mean values averaged for 10 trials are shown, respectively. The
values of mi

MAX are shown for each plot.

As figure 13 indicates, ES* @ mi
MAX from the range [0.1, 0.15] produces the best results. Therefore

value 0.12 has been assumed for the subsequent simulations.
In the next experiment one of four mutations has been excluded and the results have been compared
in Figure 14.

Figure 14: The log-plot showing the convergence of ES* with all four mutations and four setups
with one of the mutations excluded. The former reach a certain quality but further improvement is
not possible.

As Figure 14 indicates, the mutations are not only sufficient, but all four are necessary for ES* to
reach the goal.

6.3 Inside the black box
An additional trial has been performed with the same settings as described above, starting from the
same initial population with mi = 0.12, the only difference was the stop criterion, so the procedure
stopped after finding the ideal. In this case it was the 50th generation. In this experiment, however,
all information about the intermediate steps (generations) has been stored. At each generation, full
population, that is 200 individuals have been recorded, including the mutation type and intensity
applied to each individual. Moreover, each offspring received a sequential number, which allowed
to identify the relationships among the individuals. Figure 15 shows the tree-graph of the algorithm.

14

http://rcin.org.pl

Figure 15: The history of selected trial which produced the genotype of the ideal, MTZ6 in 50
generations (g). Only the offspring which succeeded to the next generation are shown. The path of
the first ideal solution is shown in red. On the left: table showing the generation number, mutation
type and intensity applied to the “red” genotype. Bottom left: the histogram of mutation type.

Figure 15 shows the “successful” individuals, that is the best 10% of each population, which have
been selected for the subsequent generation. In this trial, 10,000 (200 individuals × 50 generations)
genetic operations have been evoked. This number is incomparably smaller than the total number of
all possibilities mentioned in Section 4.2 “Transformation of a MTZ to the MTZ6”, that is ~ 8.9 ×
1023. In other words, the ideal solution has been found by exploring merely ~1.1*10-20 of the
solution space.

Table 2 collects all the intermediate mutations of the successful genotype (referred to as “red” in
Figure 15).

15

http://rcin.org.pl

Table 2: All successful mutations of the “red” genotype. For each mutation the number of
generation (g), error (ε), relative error to the best individual in the population (δ), and the number of
units (n) are shown in the top left corner.

16

http://rcin.org.pl

Approximately half of the times the “red” genotype was the best in a population, as illustrated in the
Figure 16.

Figure 16: The relative error of the “red” genotype to the best individual in the population at each,
but last generation. The best and worse ranks are shown in green and red, respectively.

7. Optimization with Evolution Strategy (ES)
The previous experiment was somewhat unrealistic since the ideal solution was explicitly known.
Nonetheless it helped benchmarking and served to understand the general dynamics of the
algorithm and to select the most efficient parameters. It was also particularly practical, as it did not
employ an objective function which is usually computationally expensive. Thus the simulations
were very quick, namely one trial took less than a minute. The following experiment is an
optimization in the full sense, and therefore will be denoted as ES (without the asterisk) The known
solution (MTZ6) is not considered as the ideal anymore, but is still assumed to be very good and
will be used for comparison. Thus an objective function must be formulated. The problem is defined
as follows:

1. There are 6 terminals (T) to be communicated by MTZ
2. The first terminal (TS) and the initial direction of MTZ are given.
3. MTZ is to have as few modules as possible.
4. The modules must not collide with each other.

The problem is formulated as minimization, namely: the summation of the distances between each
terminal and respective twig tip (tT), called the reaching error (rE) is to be minimal and the number
of units in MTZ (n) is also to be minimal, as illustrated in Figure 17. The objective function in
minimization is usually called the cost function.

Figure 17: The MTZ optimization problem: each twig tip (tT) must come as close as possible to the
respective terminal, the total number of units (n) is to be minimal, and the MTZ must not intersect
with itself. The initial terminal (Ts), the remaining terminals, and the twig tips (tTs) with
corresponding reaching errors (rE) are shown in: green, by black dots, red dots and blue arrows,
respectively.

17

http://rcin.org.pl

The cost function
The cost function (CF) should consistently give lower values for better candidates. For practical
reasons, so that the optimization can be performed in realistic time, CF should also be as
computationally inexpensive as possible. Constructing such a function for a constrained problem is
usually difficult [14], especially when unacceptable solutions are common in the solution space as
shown in Table 2. Moreover, since the solution space has such infeasible areas (corresponding to
unacceptable solutions), in order to reach very good solutions it is often necessary to traverse
through the unacceptable ones [15]. In other words, the infeasible solutions should not be excluded,
but “penalized” by adding to CF a penalty term proportional to the constraint violation
[16,17,18,19]. In this experiment, however, the self-intersection prohibition can be ignored
altogether. It is intuitive to assume that the best MTZs, that is comprised of the smallest number of
units will not self-intersect.

C FMT Z=n+w×r E (22)

r E=∑
i=1

5

εi (23)

where n is the total number of units in MTZ, εi is the distance between the i th terminal and
corresponding tT; w is a parametric weight.

Since MTZ6 is comprised of 64 units and its respective tTs reach exactly the 5 terminals (rE = 0), the
corresponding cost function CFMTZ6 equals 64. Therefore the best MTZs should have similar CFs.
In order to promote the MTZ configurations that “reach out for the terminals”, the weight w must be
greater than 1, otherwise such solutions “do not have motivation to grow towards the terminals” and
quickly get stuck in local minima.

7.1 The results
Figure 18 shows the results of 6 and 4 trials for w equals to 3 and 4, respectively.

Figure 18: On the left: 6 trials with w = 3, on the right: 4 trials with w = 4. Dots, and lines indicate
the individual, and averaged values for each generation, respectively. Gray, black, and red indicate
the mean and minimal values in each generation, and the reference value for MTZ6, respectively.

Interestingly, all experiments produced MTZs with fewer units than MTZ6 (although with higher
rE). Figure 19 shows the best results in selected trials.

18

http://rcin.org.pl

Figure 19: A variety of solutions produced by ES, all are competitive to MTZ6. The top row:
selected 4 trials with w = 3. The bottom row: 4 trials with w = 4. Merging two stems in the result
from the top row and 3rd column further improves this solution (n → 57). For each MTZ the
reaching error (rE), and the number of units (n) are shown in the top left corner.

As Figures 18 and 19 indicate, whether w is set to 3 or 4 the algorithm produces equally competitive
results. Moreover, Figure 20 shows selected (“milestone”) generations of the 2nd trial of the
experiment with w = 4, and confirms that the assumption that such simple CF will suffice was
correct.

Figure 20: Selected generations of the 2nd ES trial with w = 4. For each mutation the generation
number (g), reaching error (rE), and the number of units (n) are shown in the top left corner.

As Figure 20 indicates, the best individual in the first generation was infeasible due to constraint
violation, that is self-intersections. However, it soon, that is to say already in the next generation,
evolved into feasible offspring, finally producing a satisfactory solution.

19

http://rcin.org.pl

7.2 The “multi-branch bridge” based on the result of ES
The solution produced by ES with w = 3 in the 2nd trial (ESw3t2 for short) has been used as a layout
of a TZ network (MTZw3t2 for short) for the problem formulated in Section 3: “Possible scenario: a
“multi-branch bridge” (see Figure 6). Figures 21 and 22 show the plan & front views, and
perspective view of MTZw3t2, respectively.

Figure 21: On the top: the plan of MTZw3t2. On the bottom: the front view transverse to section line
B-B. To articulate the modularity, units R & R2 (rotated R) and L & L2 (rotated L) are shown in
green and red, respectively. The branching units are shown in blue.

Figure 22: A perspective visualization of the MTZw3t2.

20

http://rcin.org.pl

8. Conclusions and Future Work
The new encoding for multi-branch Truss-Z (MTZ) introduced here is substantially more efficient
than the previous encoding presented in [11]. It is not only more intuitive, but also more suitable for
“genetic operations” and therefore – better suited for meta-heuristic optimization methods. The
genetic operators for MTZ introduced in this paper are efficient as demonstrated in numerous
examples and the minimization experiments show good convergence. A 6-branch MTZ for linking 3
pedestrian/cycling paths has been presented. Although the structural considerations are not part of
this paper, this modular 6-branch bridge can be considered relatively realistic.
Primary experiments with crossover showed no benefit to the optimization algorithm, therefore
have not been presented here. This was most likely due to the “harshness” of the procedure, which
produces feasible individuals, but hardly resembling the parents. This phenomenon was also
noticeable while calibrating the mutation intensity which also was relatively low (≤ 0.12).
Nevertheless, elaboration of crossover is a natural direction for the future research. This paper
presents a constrained optimization problem, however, the formal definition of the actual
constraints was not necessary. Moreover, the problem of MTZ optimization has been simplified to
the MTZ layout optimization. Therefore a realistic three-dimensional case study where constraints
are explicitly formulated is under consideration. Finally, the problem of intermediate supports has
not been addressed sufficiently yet. However, this will be part of the design of the TZ prototype in
the future.

References

1. Pollack M.E., Intelligent Technology for an Aging Population: The Use of AI to Assist
Elders with Cognitive Impairment, Artificial Intelligence Magazine 26(2), pp. 9-24, 2005.

2. Dunbar G., Holland C., Road Safety Research Report No. 37: Older Pedestrians - A Critical
Review of the Literature. Department of Transport: London, England, 2004.

3. Zawidzki M., Creating organic 3-dimensional structures for pedestrian traffic with
reconfigurable modular “Truss-Z” system, International Journal of Design & Nature and
Ecodynamics 8(1), pp. 61–87, 2013.

4. Zawidzki M., Retrofitting of pedestrian overpass by Truss-Z modular systems using graph-
theory approach, Advances in Engineering Software, 81, pp. 41–49, 2015.

5. Zawidzki M., Nishinari K., Modular Truss-Z system for self-supporting skeletal free-form
pedestrian networks, Advances in Engineering Software, 47(1), pp. 147–159, 2012.

6. Zawidzki M., Retrofitting of pedestrian overpass by Truss-Z modular systems using graph-
theory approach, Advances in Engineering Software, 81, pp. 41–49, 2015.

7. Zawidzki M., Tiling of a Path with Trapezoids in a Constrained Environment with
Backtracking Algorithm:
http://demonstrations.wolfram.com/TilingOfAPathWithTrapezoidsInAConstrainedEnvironm
entWithBack/
Wolfram Demonstrations Project, Published: September 20, 2011.

8. Zawidzki M., Tateyama K., Application of Evolution Strategy for Minimization of the
Number of Modules in a Truss Branch Created with the Truss-Z System, in Y. Tsompanakis,
B.H.V. Topping, (Editors), Proceedings of the Second International Conference on Soft
Computing Technology in Civil, Structural and Environmental Engineering, Civil-Comp
Press, Stirlingshire, UK, Paper 9, doi:10.4203/ccp.97.9, 2011.

9. Zawidzki M., Nishinari K., Application of evolutionary algorithms for optimum layout of

21

http://rcin.org.pl

http://demonstrations.wolfram.com/TilingOfAPathWithTrapezoidsInAConstrainedEnvironmentWithBack/
http://demonstrations.wolfram.com/TilingOfAPathWithTrapezoidsInAConstrainedEnvironmentWithBack/

Truss-Z linkage in an environment with obstacles, Advances in Engineering Software, 65,
pp. 43–59, 2013

10. Zawidzki M., Nagakura T., Foldable Truss-Z module, Proceedings for ICGG 2014: 16th
International Conference on Geometry and Graphics, Innsbruck, Austria, August 4 – 8,
2014.

11. Zawidzki M., Nishinari K., Application of Evolutionary Algorithm for Optimization of the
Layout of a Multi-Branched Network Constructed with Truss-Z System, Proceedings for
WCCM 2012: the 10th World Congress On Computational Mechanics, São Paulo, Brazil,
July 8 – 13, 2012.

12. Eiben A.E., Smith J.E., Evolutionary Algorithms, in F. Neri, C. Cotta, and P. Moscato (Eds.):
Handbook of Memetic Algorithms, Studies in Computational Intelligence, Vol. 379, pp. 9–
27 , Springer, 2012

13. Bäck T., Hoffmeister F., Schwefel H-P., A Survey of Evolution Strategies, in R. K. Belew
and L. B. Booker (Eds.): Proceedings of the Fourth International Conference on Genetic
Algorithms: University of California, San Diego, July 13-16, 1991, Morgan Kaufmann,
1991.

14. Michalewicz Z, Fogel DB. How to solve it: modern heuristics. Berlin: Springer; 2000.

15. Michalewicz Z. Genetic algorithms + data structures = evolution programs. 3rd ed. New
York: Springer-Verlag; 1998.

16. Hasançebi, O., S. Çarbaş, E. Doğan, F. Erdal, and M. P. Saka. Performance evaluation of
metaheuristic search techniques in the optimum design of real size pin jointed structures.
Computers & Structures 87, no. 5 (2009): 284-302.

17. Hasançebi, O., S. Çarbaş, E. Doğan, F. Erdal, and M. P. Saka. Comparison of non-
deterministic search techniques in the optimum design of real size steel frames. Computers
& structures 88, no. 17 (2010): 1033-1048.

18. Deb, Kalyanmoy. An efficient constraint handling method for genetic algorithms. Computer
methods in applied mechanics and engineering 186, no. 2 (2000): 311-338.

19. Coello, Carlos A. Coello. Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Computer methods in applied
mechanics and engineering 191, no. 11 (2002): 1245-1287.

22

http://rcin.org.pl

