$29 |$| 2 | $243-251$ | KRAKOW 1987 |
| :--- | :--- | :--- | :--- |

Density and biomass of fish in the Rożnów Reservoir (Southern Poland)*

Mare'k Jelonek, Antoni Amirowicz
Polish Academy of Sciences, Institute of Freshwater Biology, ul. Slawkowska 17, 31-016 Krakow, Poland

Manuscript submitted August 13, 1985, accepted December 11, 1986

Abstract - The investigations of the ichthyofauna of the Rozinow Reservoir were carried out at 5 stations, using a beach seine, a fry trawl, a set of gill nets, and trammel nets. The biomass and density of the particular species of dish were estimated using the Zippin triple catch removal method. The total biomass and density of the ichthyofauna was $162.7510^{8} \mathrm{~g} \mathrm{ha}^{-1}$ and 4475 indiv. ha ${ }^{-1}$. 18 species of lish were found to occur, the bream, roach, pikeperch, and perch being the dominant species.

Key words: man-made reservoirs, fish density, estimation, catchability, Zippin equation.

1. Introduction

The Rożnów Reservoir was constructed in 1942 by erecting a dam across the valley of the River Dunajec near the village of Rożnów. It is a trough-type reservoir as encountered ir submontane regions (Wajdowicz 1961) with a productive area of about 1500 ha and mean depth of about 12 m . Fisherv exploitation of the reservoir is carried out by the Polish Anglers Association, mainly by means of angling and commercial fishing using gill nets with a mesh size greater than 60 mm . Owing to limitation of the size of permitted catches and temporary prohibition of commercial fishing it is impossible to estimate the biomass of fish on the basis of catch effort (CPUE) (Robson, Regier 1968, Leopold et al. 1975a, 1975b) or by the method of mark and recepture (Robson, Regier 1968, Stott 1968).

The aim of the investigations carried out in the period 1981-1984 was to estimate the density and biomass of fish in the Roznow reservoir in order to determine its production possibilities.

[^0]

2. Study area

The investigation of the ichthyofauna of the Rozinow Reservoir was carried out at 5 stations (fig. 1). Station 1 was situated in the backwaters of the reservoir, where a slight current can still be seen. Stations 2 and 3 were situated below the back waters in places where the suspended matter carried by freshets of the Dunajec settles. The thickness of the silt in these parts of the reservoir is about $60-70 \mathrm{~cm}$. Stations 4 and 5 were situated in the central part of the reservoir. They are characterized by a smaller amount of silt on the bottom ard a relatively rapid increase in depth in the littoral zone.

3. Materlal and methods

Catches were made in the period 1981-1984 in the spring and summer. Altogether 5 catches, each repeated 3 times (at Stations 1 and 2) and 10 single catches (at Stations 3-5) were made.

The following fishing gear was used:
a) a beach seine with wing length 75 m , height 6 m , and bag with 25 mm mesh,
b) a fry trawl with the wing length 5 m , height 1.2 m and 8 mm mesh,
c) trammel nets, 2.2 m in height and 24 mm mesh in webbing.
d) a set of gill nets, 3.5 m in height and $20,24,30,35,40.50,60 \mathrm{~mm}$ mesh,
e) 8 mm mesh netting spread on piles driven into the bottom.

Hauls repeated three times using the beach seine and fry trawl were made in areas of about $6500 \mathrm{~m}^{2}$ and $500 \mathrm{~m}^{2}$ enclosed with trammel nets (beach seine) or netting (fry trawl). Individual fishes caught with trammel nets were added in proportion to the successive catches made using the beach seine. The results obtained were re-counted per area of 1 ha and calculated applying the Zippin equation (1956):

$$
\begin{equation*}
\hat{N}=\left(C_{1}+C_{2}+C_{3}\right) / \dot{p}_{s} \tag{1}
\end{equation*}
$$

where: C_{1}, C_{2}, C_{3} - fish density in successive hauls.
The applicability of Zippin's method for estimation of the density of the particular species of fish was tested when calculating the value R (Zippin 1956):

$$
\begin{equation*}
R=\left(C_{2}+2 C_{3}\right) /\left(C_{1}+C_{2}+C_{3}\right) \tag{2}
\end{equation*}
$$

since for $R=0$ or $R=1$, equation (1) cannot be applied. Capture efficiency $\hat{\mathrm{p}}=1-\hat{\mathrm{q}}$ was read from the graph R and $\hat{\mathrm{p}}_{\mathrm{s}}$ for the number $\mathrm{s}=$ $=3$ of repetitions, published in Zippin's sludy (1956). As an addı-

Fig. 1. Plan of the Roznów Reservoir. Stations: 1 - Kurów; 2 - Tegoborza 1; 3 - Tę. goborza 11; 4-Zbyszyce; 5-Znamirowice
tional investigation method, a single catch using a beach seine was applied, calculating the population of individuals $\overline{\mathrm{N}}$ according to the equation:

$$
\begin{equation*}
\hat{\mathrm{N}}=\mathrm{C}_{1} / \hat{\mathrm{p}}_{1} \tag{3}
\end{equation*}
$$

where $\overrightarrow{\mathrm{p}}_{1}$ - catchability of the beach seine in one haul.
The density of species to which Zippin's equation could not be applied was estimated on the basis of a formula proposed by Mahon et al. (1979):

$$
\begin{equation*}
\hat{\mathrm{N}}=\left(\mathrm{N} \Sigma \hat{\mathrm{~N}}_{\mathrm{z}}\right) / \Sigma \mathrm{N}_{\mathrm{z}} \tag{4}
\end{equation*}
$$

where: $\mathrm{N}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
ע \hat{N}_{z} - total catch of all species using Zippin's equation,
こ N_{z} - total number of fish of all Z.ippin population estimates.
The biomass \hat{B} was calculated as the product of the density \hat{N} and the mean weight of the individuals. Considering that in the Rozinów reservoir the density and biomass of fish in the littoral zone differ greatly from those in the deep water zone, in order to estimate the mean density and biomass of fish the proportionally coefficient w_{p} was introduced. It was calculated from the formula:

$$
\begin{equation*}
w_{p}=0.72 b / 0.28 a \tag{5}
\end{equation*}
$$

where: a - biomass of fish caught with gill nets in the littoral zone,
b - biomass of fish caught with gill nets in the deep water zone,
$0.28,0.72$ - numerical values illustrating the percentage proportion of littoral (28%) and pelagic ($72^{\%} / 0$) zones in the total area of the reservoir, respectively.
The variance for Eq. (1) was calculated from the dependence:

$$
\begin{equation*}
V[\hat{N}]=\hat{N}\left(1-q^{\hat{s}}\right) \hat{q^{s}} /\left[\left(1-q^{\hat{s}}\right)^{2}-(\hat{p} s)^{2} q^{s-1}\right] \tag{6}
\end{equation*}
$$

where: $\mathrm{q}^{s-1}=1-\left(1-\hat{q}^{s}\right) / \bar{q}$.
95% confidence levels for Eq. (1) are' $\overline{\mathrm{x}} \pm \mathrm{t} V \overline{\mathrm{~V}}$ ar $[\hat{N}]$, and for Eq. (3): $\overline{\mathrm{x}} \pm \mathrm{t}$ SE, where t - value read off from Student's " t " - tables for the confidence level $\mathrm{p}=0.05$ and $\mathrm{n}-1$ degrees of freedom.

4. Results

The mean density of the particular fish species caught by applying the method of three successive catches and that of a single catch, and the catchability of the beach seine used are listed in Tables I and II. The highest values of the catchability factors were recorded for roach, pike, and bream. The calculated mean density of the adult part of the population (mean value for the data from Tables I and II) was 745 individuals and biomass $207.11 \quad 10^{3} \mathrm{~g}$ ha $^{-1}$.

Table I. Mean oatch data obtained from Stations 1 and 2 of the Rotnóm reasivoir by the ramoval method utilizing three beaoh seine succeasive catchea. $C_{1}-C_{3}$ - catches from vucceanive Pinhing: N - total number andifiduala collected; R - coefficient of 2ippin method; \dot{p} - capture efficiencyi \tilde{p}_{1} - oatchability of the beach eeine in one haul: 0 - eatimated doneity ($\mathrm{F} \mathrm{Ha}^{-1}$) \& B - astimated blomane $\left(10^{3} \mathrm{~B} \mathrm{ha}^{-1}\right)$; n - number of oxperimente; CL -

Spacien	n	C_{1}	C_{2}	C_{3}	\%	R	¢	$\stackrel{\rightharpoonup}{1}_{1}$	1	95\% CL	8
Abramia brama \|L.	5	88.0	30.8	15.0	133.8	0.45	0.61	0.401	219	4.1	104.8
Rutilue rutilue (L.)	5	106.8	37.0	10.2	154.0	0.37	0.68	0.471	226	2.4	36.5
Parem Plupletilia L.	5	36.0	17.6	6.6	60.2	0.51	0.56	0.335	107	3.8	18.8
Stizamtedion lucioparca	5	56.2	28.0	10.6	94.8	0.52	0.57	0.338	166	4.7	56.8
Tinoe tinca (I,)	5	14.6	7.4	4.0	26.0	0.59	0.47	0.264	55	5.2	14.0
Eaoz lucius (L.)	5	7.4	2.2	1.4	11.0	0.44	0.62	0.418	18	1.1	5.6
Other ${ }^{+}$	1-3	14.0	20.0	11.0	45.0	-	-	-	$74{ }^{\text {¹ }}$	-	$11.3^{\text {m }}$
Total		323.0	143.0	58.8	524.8				865		247.8

- Cyprizue carpio L. Aapiua aspiua (L.), Scardinua orythrophthalmue (L.), Blicea bjoerlcaa (L.),

 - - man denaltyi B - mean biomass in $10^{3} \mathrm{~g}$ ba ${ }^{-1}$. R-valuea eatigated fror eqtation (4)

IO Of baul	Station 3			Siation 4				Station 5			4	95102	8
	1	2	3	4	5	6	7	8	9	10			
Abreina brama (Id)	$\frac{80}{199}$	35	$\frac{64}{160}$	$\frac{51}{127}$	$\frac{101}{252}$	$\frac{85}{212}$	$\frac{115}{287}$	177	$\frac{53}{132}$	$\stackrel{47}{\mathrm{~T}}$	70 775	$\frac{18.0}{45.1}$	$\begin{aligned} & 27.96 \\ & 69.77 \end{aligned}$
Rutilus rutilun (${ }^{\text {c }}$	$\frac{64}{136}$	291	-32	$\frac{78}{166}$	94	$\frac{95}{202}$	$1{ }^{157}$	$\frac{80}{770}$	$\frac{101}{214}$	88	$\frac{74}{35}$	$\frac{15.9}{33.7}$	T6. ${ }^{9} 58$
Perae Rluviatila L.	$\frac{46}{137}$	$\frac{21}{63}$	-30	$\frac{43}{128}$	$\frac{56}{167}$	$\frac{47}{140}$	52	T73	$\frac{29}{87}$	Tition	128	$\frac{8.8}{26.3}$	$\frac{9.49}{28.28}$
Sticoatadian luoloperce lLd	32 95	तो	-33	439	181	36	185	$\frac{26}{77}$	\$18	E'7	100	$\frac{7.4}{22.0}$	$\frac{8.15}{24.09}$
Tinoe tiace (L.)	-	$\frac{3}{1}$	$\frac{6}{23}$	$\frac{7}{26}$	$\frac{4}{15}$	$\frac{3}{11}$	-19	$7 \frac{5}{7}$	-76	-6	-5	$\frac{1.5}{5.9}$	$\begin{array}{r}1.23 \\ \hline 4.50\end{array}$
Bagz luciua L.	$\frac{14}{33}$	$\frac{6}{14}$	47	$\frac{8}{19}$	$\frac{5}{12}$	-10	$\frac{13}{34}$	$\frac{12}{26}$	-3	$\frac{7}{17}$	- 8	$\frac{2.5}{6.2}$	$\frac{2.92}{6.97}$
Other (as in Table I)	20	$\frac{17}{42^{2}}$	7	$\frac{10}{268}$	$\frac{7}{180}$	7 ${ }^{4}$	-8	$\frac{14}{360}$	$\frac{5}{1200}$	$\frac{13}{33}$	$\frac{10}{27}$	$\frac{3.8}{9.6}$	$\frac{4.97}{13.4}$
Total	256 651	314	$\frac{169}{44}$	$\frac{244}{63}$	$\begin{aligned} & 231 \\ & 600 \\ & \hline \end{aligned}$	$\begin{array}{r} 280 \\ 705 \\ \hline \end{array}$	$\begin{aligned} & 316 \\ & 815 \end{aligned}$	$\frac{266}{687}$	$\begin{aligned} & 278 \\ & 596 \end{aligned}$	213	$\frac{244}{625}$	28.1 71.5	+63,95

These values show the number and weight of the older age groups of fish and the recruitment in the littoral zones of the reservoir without providing information about the values of these parameters with respect to the entire production area of the reservoir. In order to calculate the mean density and biomass of the particular fish species, comparative method were used. The application of the proportionality coefficient w_{p} (Table III) enabled the obtained values (Tables I. II) to be verified and the actual density and biomass of the adult part of the fish population (Table IV) to be obtained. Subsequently the density and the biomass of individuals which on account of their small size were not caught with the beach seine were estimated. The catches of this part of the popula-

Table III. Mean biomase of fish oaught using a at of gill mota ($\overline{\bar{x}})$ in the littoral zone
(a) and deep water sone (b) in $10^{3} \mathrm{~g}$ oatoh ${ }^{-7}$ and the valuea of the proportionality ooepfloient ∇_{p}. Values atimated from equation (5). Fo - number of oatohea

Station	.			b			∇_{p}
	No	E	95\% CL	Eo	I	95\% CL	
1	12	74.93°	± 24.62	7	12.06	± 5.10	0.414
2	10	63.85	± 26.80	11	12.32	± 5.80	0.496
3	13	84.64	± 34.24	6	13.97	± 4.75	0.424
4	9	61.05	± 19.67	8	9.28	± 4.91	0.391
5	11	62.44	+18.07	9	13.36	± 6.77	0.549
Mean		69.38			12.79		0.455

Table IV. Nean atock densíy iod harvest obtained frof all ctations of Roinbw veservois lijing tia proportionality coefficiant W_{p}. B- estimatad denaity in $\mathrm{N} \mathrm{ha}^{-1}$ ($N-$ total nurber if Individuale collected); A - eatimated biomase in $10^{3} \mathrm{E} \mathrm{ha}^{-1}$

Speciea	Adult flahea		Juvenile fiahea		Total		\%	
	8	B	B	B	ลे	B	ก	目
Abramia brama (L.)	83	39.70	454	7.57	537	42.27	12.0	29.0
Rutilus mutilus (L.)	79	12.76	648	9.40	727	22.16	16.2	13.6
Stizoatedion Iuoioperea (L.)	54	18.40	381	6.72	435	25.12	9.7	15.4
paraa pluviatilia L.	61	10.71	506	11.01	567	21.72	12.9	13.3
Tince tinoa (L.)	16	4.21	23	0.28	39	4.49	0.9	2.7
Ea0z luoiun L.	9	2.86	36	0.49	45	3.35	1.0	2.0
Alburnue alburnus (L.)	4	0.06	828	10.41	832	10.47	18.6	6.4
Blioca bjourkna (L.)	2	0.05	317	6.60	319	6.65	7.1	4.1
Leucaspiun delineatue (Hook.)	-	0.05	474	6.54	474	6.54	10.6	4.0
Other Plohea +	31.	5.51	469	9.47	500	14.98	11.2	9.2
Total	339	94.26	4136	68.49	4475	162.75	100.0	100.0

+ Cyprinua oarpio L. Carasaiua oarasaiua(L.), Vimba vimba(L.). Soardiniug erythrophthalmua(L.). Lota lota(L.). Ctenopharyggodon 1della Val., Aapiun asplua(L.), Aaguilla anguilla(l.)

Table V. Mean catch reaulta obtainad from Stationa 1, 2, and 3 of the Rotnbw maserviz by ramoval method utilizing three fry trawl auccesalve catchea. $C_{1}-C_{3}$ - oatchea from aucosealva plahingi $N-t o t a l$ number of individuale oolleotad; R - ooofficient of 2ippin method; p - captiur efficioncy: $\hat{\mathrm{N}}$ - eatimated donaity $\mathrm{N} \mathrm{ha}^{-1}$; B - atimated biomaaa $10^{3} \mathrm{~B} \mathrm{ha}^{-1}$: n - number of experimenta; \boldsymbol{N} - valuea estimated from equation (4)

Speciea	n	C_{1}	C_{2}	C_{3}	N	R	p	$\hat{\mathbf{B}}$	$\begin{aligned} & 95 \% \\ & \text { CL } \end{aligned}$	\hat{B}
Alburnue alburaus (L.)	7	896	238	104	1238	0.36	0.68	1820	5.9	4.74
Rutilue rutilue (L.)	7	835	197	66	1098	0.30	0.73	1504	3.5	4.28
Parca pluviatilia L.	7	518	139	77	734	0.40	0.66	1112	5.5	5.01
Abramia brama (L.)	7	345	123	81	549	0.52	0.55	998	14.7	3.44
Blicea bjoerkna (L.)	7	237	107	46	390	0.51	0.56	696	9.1	3.00
Leucasplua delineatue (Hook.	7	572	92	76	740	0.33	0.71	1042	3.5	2.93
Stizostedion 2netoperom (Lf)	7	334	88	72	494	0.47	0.59	837	8.1	3.06
Other ${ }^{+}$	1-5	286	231	243	760	-	-	$1161^{\text {n }}$		$4.66^{\text {量 }}$
Total		4023	1215	765	6003	-	-	9170		31.12

[^1]tion, carried out using a fry trawl (Table V), revealed that the structure of the density and thus the percentage proportion of the particular fish species differ from those in the population of adult individuals. It was found that 47% of individuals in the samples caught belonged to species defined in Table I as "Others". Within this conventional group, besides juvenile individuals with a long life cycle, were found fry and adult fish species of little commercial value, which because of their slow growth rate were not caught with the beach seine. Assuming that the rations of the number of individuals caught using the fry trawl and the number of the adult part of the fish population in the littoral zone and the pelagic zones of the reservoir are similar (high percentage proportion of fish of little commercial value penetrating the entire area of the reservoir), the mean density and biomass of fish were calculated applying the coefficient w_{p} (Table III). They were: 4475 indiv. ha ${ }^{-1}$ and $162.7510^{3} \mathrm{~g}$ h^{-1} (Table IV). In the Rożnów reservoir 18 fish species were found to occur, among which bream, roach, pikeperch, and perch constituted 50.8% of the population and 71.3% of the biomass.

5. Discussion

The density and biomass of fish in dam reservoirs and lakes are usually estimated:

- by indirect methods based on the concentrations of nutrient substances in the water or the production of lower trophic layers, the numerical determination of which is easier;
- by direct methods among which net fishing deserves notice. One of the best methods appears to be that of Zippin, whereas that of three successive catches (3enczak, O'Hara 1983) is a compromise permiting reliable results to be obtained with relatively little effort. In order to estimate the density and biomass of fish in dam reservoirs the method of draining the reservoir can also be used (Wajdowicz 1961, Epler, Bieniarz 1977, Mastyński 1984). Its great disadvantage, however, is that it supplies "historical results" and excludes the possibility of utilizing the gathered observations for the management of fish populations.

The biomass of the ichthyofauna of the Rożnów Reservoir is greater than the mean biomass of fish estimated on the basis of the size of the primary production of dam reservoirs under similar climatic conditions. In the opinion of Wrobel (1968), its amounts to from 96.0 to 120.010^{9} g ha ${ }^{-1}$. The ichthyofauna estimated by Mastyñsi (1984) by the method of draining the lowland Malta reservoirs with an area of 64.3 ha amounted to $\bar{B}=438.1 \quad 10^{3} \mathrm{~g} \mathrm{ha}^{-1}$ and that of the Goluchow Reservoir with an area of 35 ha to $\hat{B}=507.310^{3} \mathrm{~g}$ ha ${ }^{-1}$. These values are much higher than those obtained by Epler and Bieniarz (1977) for the
drained Tresna Reservoir ($\hat{\mathrm{B}}=119.410^{3} \mathrm{~g} \mathrm{ha}^{-1}$) and by the authors for the Rożnów Reservoir ($\hat{B}=162.7510^{3} \mathrm{~g}$ ha ${ }^{-1}$).

It appears that the actual biomass of the Rożnów Reservoir is not much higher than that estimated in the present paper because:

- the reservoir is of submontane type, thus its productivity is lower than that of reservoirs of lowland type (Wajdowicz 1961);
- it has a small mean retention period (Starmach 1958), the circulation of matter being similar to that in a large river, hence its fish production cannot be high;
- during the operation of the turbines of the power station in summer the bottom feeding ground is diminished as a result of the reduction in oxygen content in the water layers below the offset of the water intake of the power station.

6. Polish summary

Liczebność i biomasa ryb w zbiorniku Rożnowskim (Polska Południowa)

Celem prac, prowadzonych w latach 1981-1984, było określenie liczebności i biomasy ichtiofauny zbiornika Rożnowskiego (ryc. 1). Posługując się zależnością podaną przez Zippina, obliczono łowność użytych narzędzi połowu oraz średniá liczebnoŝé i biomasę lownej części populacji ryb, ktòre wynosity odpowiednio: 745 osobników h^{-1} i $207,171^{8} \mathrm{~g} \mathrm{ha}^{-1}$ (tabele I, II). Oszacowano również liczebność i biomase mlodocianych stadiów ryb i gatunków małocennych (9170 osabników ha-1 i $31,1210^{8} \mathrm{~g} \mathrm{ha}^{-1}$ (tabela V). Wprowadzono wspòłczynnik proporcjonalności w_{p} (tabela III), umożliwiający porównanie biomasy ryb w strefie przybrzeżnej i strefie pełnej wody. Po wprowadzeniu współczynnika w_{p} liczebność i biomasa calej populacji ryb w zbiorniku wynosiła średnio 4475 osobnikow ha-1 i $162,7510^{8} \mathrm{ha}^{-1}$ (tabela IV).

W zbiorniku Rożnowskim stwierdzono 18 gatunków ryb, z których leszcz, ploć, sandacz i okoń stanowily $50,8 \%$ liczebności i $71,3 \%$ biomasy (tabela IV).

7. References

Epler P., K. Bieniarz, 1977. Ichtiofauna zbiomika zaporowego Tresna |Ichthyofauna of the Tresna reservoir]. Gosp. Ryb., 29, 10, 8-10.
Leopold M., T. Korulczyk, W. Nowak, L. Swierzowska, 1975a. Elfectiveness of gillnet catches as a tool for estimation of fish populations in Polish lakes. EIFAC Tech. Pap., 23, Suppl. 1, 90-95.

Leopold M., T. Korulczyk, L. Swierzowska, W. Nowak, 1975b. Effectiveness of seine catches for estimation of fish populations in Polish lakes. EIFAC Tech. Pap., 23, Suppl. 1, 49-57.
Mahon R. E., E. K. Balon, D. L. G. Noakes, 1979. Distribution, community structure, and production of fishes in the upper Speed River, Ontario: a preimpoundment study. Env. Biol. Fish., 4, 219-244.
Mastynski J., 1984. Fish biomass of drained small reservoirs. Pol. Arch. Hydrobiol., 31, 69-76.

Olszewski P., 1946. First limnological investigation of the Rozinów lake. Publ. Comm. Sci. Inv. at Rożnów, 2, 55 pp.
Olszewski P., 1953. Biotope of the Rozinów lake. Pol. Arch. Hydrobiol., 1 (14), 491-547.
Penczak T., K. O'Hara, 1983. Catch-effort efficiency using three small seine nets. Fish. Mgmt, 14, 2, 83-92.
Robson D. S., H. Regier, 1968. Estimation of population number and mortality rates. In: W. E. Ricker (Ed.): Methods for assessment of fish production in fresh waters. IBP Handbook, 3, Oxford, Blackwell Sci. Publ., 124-158.
Starmach K., 1958. Hydrobiological bases of the water utilization by waterworks from shallow dam reservoirs. Pol. Arch. Hydrobiol., 4, 9-66.
Stott B., 1968. Marking and tagging. In: W. E. Ricker (Ed.): Method for assessment of fish production in fresh waters. IBP Handbook, 3, 78-92.
Wajdowicz Z., 1961. Rybactwo w zbiornikach zaporowych (Fishery in dam reservoirs]. Warszawa, PZW, 110 pp .
Wróbel S., 1968. Podstawy hydrobiologiczne produktywnosci zbiomików wodnych [Hydrobiological bases of water reservois productivity]. Kraj. Konf. Nauk.-Techn.: Gospodarka rybacka na zbiornikach zaporowych [Fishery management in dam reservoirs). Warszawa-Bielsko-Biala, Zarz. Gl., Sekcja Ryb, SITR NOT, 14 pp.
Zippin C., 1956. An evaluation of the removal method of estimating animal populations. Biometrics, 12, 163-169.

[^0]: - The investigation was carried out within Project No MR. II-1S.

[^1]: phtisalmus (L.) . Vimbe vimba(L.) Gymooephalua oermua(L.), Caraasiua caraasiua (L.)

