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1 . Introduction

It was shown in [1] that NiTi columns cooled homogeneously down to the austenite-to-martensite phase transi-
tion buckles under the compression dead load of 10%-15% of the Eulerian force corresponding to the minimum
modulus even though the pure martensite is not reached. Thus, the traditional buckling analysis fails, and the
dropping of elastic moduli cannot be interpreted as a main buckling cause for SMAs, moreover the same
phenomenon is observed during the martensite-to-austenite transition following by raising moduli. Consistent
critical load estimates for systems with phase transitions must be based only on coupled models [3]. The cor-
responding buckling concepts of von Kàrmàn’s and Shenley’s types were proposed in [4]; the good correlation
with the test data was obtained. Here the free of concepts 3D numerical solutions for buckling and postbuckling
of thin-walled SMA elements are presented, and their correlation with various analytical estimates [4] is shown.

2 . Coupled model of thermoelastic SMA behavior

First, the dependence of the martensite volume ratio q on the dimensionless temperature t is given by (1) [2,5]:

(1)
q = 1

2 (1− cosπt) , t ∈ [0, 1]; t 6 0 ⇒ q = 0; t > 1 ⇒ q = 1;

A→M : t = (Ms −Mf )−1 (Ms − Tσ) ; M → A : t = 1− (As −Af )−1 (As − Tσ) .

Ms, Mf are the start and finish temperatures of the A → M transition and As, Af are the corresponding
temperatures for M→A in unstressed state. The stress effect is accounted by the reduced temperature Tσ (2):
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ijσkk , ∆S is the volumetric entropy density drop between A and M at a reference temperature,

ε0 is theA→M volumetric effect, andGM ,GA,KM ,KA are shear and bulk moduli of pureM andA phases,

(3) A→M : ωij = (2 + q)−1
[
3ρDsijσ

−1
i ϕ1(σi) + e

(1)
ij

]
; M → A : ωij = q−1e
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The strain superposition is assumed, thus, εij = ε
(0)
ij + ε

(1)
ij , where ε(0)ij is the elastic strain given by (4) [2, 5]:
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The increment of the phase and structure strain deviator e(1)ij = ε
(1)
ij − 1

3gijg
klε

(1)
kl can be defined as follows (5):

(5) A→M : de
(1)
ij = ωijdq + 3

2ρDsijσ
−1
i qψ2(σi)dσi; M → A : de

(1)
ij = ωijdq;

ρD is the maximum strain intensity of the A→M [2]. The increments dq(dσkl, dT ), dεij(dσkl, dT ) can be
formulated hence, therefore we obtain Rijkl = ∂εij/∂σ

kl and αij = ∂εij/∂T allowing the tangent stiffness
Cijkl computing at a step of any algorithm, i. e. the model (1-5) can be implemented into finite element codes.
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3 . Buckling of SMA elements undergoing thermally induced martensite transitions

Let us consider a SMA solid with an initial configuration G ∈ R3, ∂G = Sσ ⊕ Sr defined by a vector radius
r(M) with kinematical constraints r(M ∈ Sr) = r? and loads p(M ∈ Sσ), and let it be entirely austenite:
q = 0, Tσ > Ms. The further cooling is assumed to be sufficiently slow to neglect the heat conduction. Let us
apply the perturbation δr, δr(M ∈ Sr) = 0; the stable and unstable configurations can be defined by (6), (7):

∀ε > 0 ∃δ(ε) > 0 : ∀‖δr‖ < δ ‖u(δr, τ,p)‖ < ε;(6)

∃τ?(p) : ∀τ > τ? ‖u(δr, τ,p)‖ > ε?,(7)

where ε? is the representative displacement value and the bifurcation point τ? can be found by analyzing the
equilibrium curve or as the kinetic energy maximum point corresponding to the quick equilibrium state change:

(8) T(τ?) = 1
2ρu̇

i(τ?)u̇i(τ
?) = Tmax, T? = T (τ?).

here T? is the critical temperature. This approach corresponds to the assumed ”supplementary phase transform
occurring everywhere”, i. e. Shenley’s concept. On the other hand, instantaneous applying of δr under fixed
temperature T 6 T0 and fixed load p should be close to the ”fixed load assumption”, or von Kàrmàn’s concept.

4 . Results and conclusions

Several finite element simulations for NiTi beams and plates were performed on the bsis of the SMA model
(1–5) and the buckling defined by (6–8). The buckling forces obtained for the clamped-clamped prismatic NiTi
beam of 0.01 m length and with 0.002×0.001 m cross-section are compared with the traditional Euler estimate
PCr corresponding to the minimum elastic modulus of the martensite EM = 30 GPa for thermally induced and
superelastic A→M transforms (table 1). The phase transition regime depends on the initial temperature T0.

PCr(EM), N Thermally induced: P (τ?), N T0, K Superelasticity: P (τ?), N T0, K
1974 220 343.15 375 323.15

Table 1: Buckling forces for the clamped-clamped prismatic NiTi beam of 0.01 m length: Euler’s estimate
based on minimum elastic modulus, EM; thermally induced A→M transition; superelastic A→M transition.

The computed loads P (τ?) are about 10. . . 15% of Euler’s ones PCr(EM), are consistent with the test data [1]
and analytical solutions corresponding to the extended Shenley concept [4], and the buckling forces for the
thermally induced A → M transform are about only 60% of the critical forces for the superelasticity regime.
Thus, the buckling danger for SMA elements undergoing thermally induced phase transitions is underestimated,
and the traditional bifurcation analysis fails whereas the approach [3, 4] allows one to obtain adequate results.
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