MARIA FERENSKA

Zooplankton stawu rybnego „Księży" w Golyszu - Zooplankton of fish pond ,,Księży" in Golysz

Mémoire présenté le 6 avril 1964 dans la séance de la Commission Biologique
de l'Académie Polonaise des Sciences, Cracovie

The problem consisted in the investigation of the qualitative composition, perindicity of development and zooplankton biomass in one of the ponds of the Experimental Farm of the Institute of Water Biology of the Polish Academy of Sciences.

There are many papers concerning the zooplankton of fish ponds in limnological literature. Czapik (1957), Bucka (1960), and Krzeczkowska (1961) have written about the ponds of experimental farms of the Polish Academy of Sciences. Other detailed investigations of the zooplankton in the Gołysz ponds, including the present work, are intended to contribute to a better cognition of the associations of plankton animals developing in the conditions at present existing there.

This work is concerned with plankton collected in 1961 in the pond "Księży" of the Golysz farm (Cieszyn district) in the "Pod Borem" group. of ponds. The farm is supplied with water from the Wiska (Vistula) river by means of a millrace beginning at Kiczyce. The pond is situated on clayey and loamy soil, its bottom covened with a fairly thin stratum of mud with not very abundant carbonates and an acid reaction, containing medium amounts of phosphates and potassium (Pasternak 1959). In 1961 the pond "Księży" was a comparative one (unfertilised).

The filling of the pond was begun at the beginning of. April and was completed on April 24. The pond was drained on October 9. The surface of the water amounted to 2.2 ha , its greatest depth being 120 cm and the mean depth 70 cm . On April 19 the pond was stocked with 760 carp fry, the total accrescence of which, after the fishing in September, amounted to $144.4 \mathrm{~kg} / \mathrm{h}$.

The pond was mostly overgrown by Glyceria aquatica (L.) Vahlb., Typha latifolia L., T. angustifolia L., Equisetum limosum L., Carex sp. div.,

Heieocharis acicularis（L．）R．et Sch．，Batrachium aquatile（L．）Dum．，and Potamogeton gramineus L．．Potamogeton natans L．，P．lucens L．，Elodea canadensis Rich．，Polygonum amphibium L．，Sagittaria sagittifolia L．， Schoenoplectus lacustris（L．）Pall．，and Oenanthe aquatica（L）．Poir．were present in smaller quantities．Plants with shoots protruding above the water level occupied about 25 per cent of the surface of the pond．

Plankton samples were collected every two weeks，from April onwards， when the pond was not yet entirely filled．Water was drawn with a 10 litre plankton pail． 50 litres of water were strained through a plankton net made of No． 25 bolting cloth．The sediment from the net was fixed on the spot in Lugol＇s fluid and after a certain time in 4 per cent for－ malin．

The dates of the collecting of samples and data concerning temperature， pH ，alkalinity，and oxygen content are listed in Table I．

The samples were investigated as to quality and number．Numerical samples，after an appropriate condensation were counted in plankton chambers with a capacity of $0,32 \mathrm{ml}$ ．Three chambers were counted from each sample and the obtained mean number of individuals was calculated in turn for one litre of water．For calculation of the zooplankton biomass， the weights of plankton animals drawn from the works of Starmach （1955）and K lim czyk（1957）were used．

Table I
Dates of collection of samples from the＂Kaiety＂pond and some hydrometeorological date

Date	$\begin{aligned} & \circ \\ & \stackrel{\circ}{2} \\ & \text { á } \end{aligned}$	寺	a筥	N菑	$\begin{aligned} & 0 \\ & 0 \\ & 5 \\ & 5 \end{aligned}$	の － 易	$\begin{aligned} & \text { in } \\ & \text { b } \\ & 7 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { F } \\ & \text { 年 } \end{aligned}$	$\dot{8}$	$\dot{8} \dot{4}$	$\begin{aligned} & \stackrel{\infty}{\sim} \\ & \dot{8} \\ & \dot{4} \end{aligned}$	$\dot{\stackrel{0}{0}}$	$\stackrel{\sim}{\sim}$	の
Air temperature ${ }^{\circ} \mathrm{C}$	17.6	17.6	11.6	16，1	25，2	－18．7	15，0	22，7	21.6	17.6	22，0	15．0．	23.6	14，2
Water temperature ${ }^{\circ} \mathrm{C}$	12，6	17．2	14，3	15，1	22.8	23，7	22，8	21，9	18，0	20，4	20.0	15，？	16，6	14，4
pH	6.75	7.5	7.0	7.0	7.2	7.0	7，0	7，6	7.2	7，2	7，0	7，0	7，2	7，4
Alkalinity mval	0.9	1.0	0.7	1.0	0.9	0,9	0.8	1，1	1.1	0，9	1，0	1，0	1，1	1，3
Oxygen mg／l	2.09	10．94	10.14	9.66	8，05	10，14	8，20	8，37	8,21	7，4	9,01	8，53	9，50	10.4
		8.5	10	， 4		9，8		83.7		68，5			， 0	0.0

The material for investigation and hydrometeorological data were collected by the staff of the Experimental Farms of the Polish Academy of Sciences in Ochaby．

The elaboration of the samples was carried out in the Department of Hydrobiology of the Jagiellonian University under the guidance of Professor K．Starmach to whom the author expresses her very sincere gratitude for his valuable suggestions and help in the writing of the present paper．

Numerical and qualitative development of zooplankton

In a total of 14 one litre samples, collected every 2 weeks, 10256 specimens of animals were counted. The amount of animals belonging to all the determined species calculated for 11 of water is contained in Table II.

In the days immediately following the filling of the pond 50 animals were found in the plankton in 11 of water. Copepoda prevailed (only young stages) and eggs of Rotatoria; there was a complete lack of Cladocera.

Fig. 1. Number of individuals in 1 litre of water (logarithmic scale).
After two weeks the number of animals increased sevenfold. The number of Copepoda amounted to more than 90 per cent, of which more than hadf were young stages; the first Cladocera also appeared. In the next few weeks 75 to 1839 animals were found in a litre of water being most abundant from the mididle of August to the end of September,

In the zooplankton of the pond "Księży" the rotifers prevailed numerically (Fig. 1); they were most numerous from the middle of June onwards with a maximum of 1357 specimens in 11 of water at the end of September. Out of 23 species only Keratella cochlearis was constantly

Note: Specimens marked "+" were discovered in the qualitative investigation of zooplankton samples, but not found when counting specimens in the chamber.
found; these were especially numerous in the second half of June (a maximum of 324 specimens in 11 of water). Conochilus unicornis with a distinct maximum in the second half of June (822 in 11 of water) and Poiyarthra major, with up to 605 specimens towards the end of summer and in autumn, were fairly frequently seen. The species Trichocerca cylindrica in the second half of August (up to 384 specimens) and P. vulgaris towards the end of September (250 specimens) appeared in greater numbers.

Copepoda dominated, as already mentioned, immediately afler the filling of the pond. They appeared in greater quantities (up to 299 specimens in 11 of water) towards the end of summer and in autumn, but constituted less than 25 per cent of the total amount of animals. In all samples the young stages were much more numerous (up to 223 specimens in 11 of water) than adult specimens which might have escaped during the collection of samples. Once only, soon after the filling of the pond, one of the three species which had been found Mesocyclops leuckarti was the only one present in greater numbers in nearly all samples (140 specimens in 11 of water).

Cladocera were found in the greatest numbers at the beginning of July (a maximum of 102 in 1 if water) and at the end of August. In the second half of May they constituted 34 per cent and at the end of July 20 per cent of the amimals counted in a sample; however, they formed considerabiy less than 15 per cent altogether. In most of the samples Daphnia longispina, appearing almost constantly, was represented in the greatest numbers (a maximum of 86 specimens in 11 of water at the beginning of July). Diaphanosoma brachyurum (a maximum of 39 specimens in the middle of August), Ceriodaphnia quadrangula with the pulchella variety, and Bosmina longirostris were found fairly often, especially during the summer.

Protozoa were more numerous at the beginning of September (1582 specimens in 11 of water, i. e. 31.7 per cent of the whole amount of animals). Altogether, they formed slightly more than 15 per cent. Of the two determined species, Difflugia limnetica was found in all samples. Its numbers increased with a certain regularity in individual samples up to a sudden maximum at the beginning of September and then diminished rapidly.

In fig. 2 the species are listed according to dominance, the species appearing in an amount exceeding 10 per cent of the total number of individuals found in 14 samples being considered as dominants. Subdominants had a percentage of $1-10$ per cent and adominants less than 1 per cient.

The dominating species were: Keratella cochlearis, Nauplii, Polyarthra major. Conochillus unicornis, and Difflugia limnetica. Trichocerca cylindrica and Polyarthra vulgaris were the most numerous of the
subdominant species. The remaining 28 species should be considered as adominants.

It can be seen, from the above disposition, that in the zooplankion of the pond "Księży", in 1961, the Rotatoria and Protozoa prevailed numerically, while Daphnia longispina and Mesocyclops leuckarti were only subdominants.

In the plankton of the pond „Księzy" littoral species were found, considered as characteristic for the euplankton of lakes, typical species

Fig. 2. Percentage of individuals of more important species in the total amount of individuals, $\mathrm{E}=10256$.
for the zooplankton of ponds, and ubiquitous species. Lecane luna, Monostyla lunaris, Monostyla quadridentata, Platyias patulus are considered as littoral species (Bartoš 1959); R y bak (1960) calculated indices showing three times that the species Diaphanosoma brachyurum is a littoral form, and twice that it is a pelagial one. Bosmina longirostris is, in this author's opinion a littoral form in midsummer, and appears in the pelagial at the beginning of summer and in autumn. In the pond ..Ksieży" this species was found in August in greater quantities and in autumn in smaller ones. The species considered as characteristic for the plankton of lakes and seldom seen in smaller reservoirs are: Ploesoma hudsoni, Filinia limnetica, and Eudiaptomus gracilis (R y lov 1935).

Asplanchna brightwelli, Brachionus angularis, B. calyciflorus, Trichocerca cylindrica, Ceriodaphnia quadrangula var. pulchella, and Eudiaptomus vulgaris (Rylov 1935) are characteristic for plankton of lakes. Ubiquitous species were foumd in the greatest number (24 species).

Several specimens of Asplanchna priodonta were observed, their stomachs containing Keratella cochlearis. These observations are in accordance with those of $\mathrm{Pawlows} k i$ (1958) and are opposed to the inferences of Beauchamp (1933) who maintains that A. priodonta does not feed on other rotifers.

The Ploesoma hudsoni species has not hitherto been observed in the ponds of the Gołysz Farm.

Zooplankton biomass

The numerical data discussed in the previnus chapter served tor the determination of the so-called biomass, i.e. the weight of animals present in the plankton. The amount of biomass obtained was calculated from each fishing for $1 \mathrm{~m}^{3}$ of water from the pond (Table III).

Soon after the filling of the pond (April 10), there were only 149 mg of animals in the plankton of $1 \mathrm{~m}^{3}, 92$ per cent of which consisted of young stages of the Copepoda (fig. 3). After two weeks the biomass was nearly 52 times as great; 93 per cent was composed of Copropoda, of which only 9 per cent belonged to young stages. At the beginning of May a decrease in the biomass, to $3682 \mathrm{mg} / \mathrm{m}^{3}$, was observed, 72 per cent of which consisted of Daphnia longispina and 26 per cent of Copepoda. Towards the end of May the biomass increased up to 12037 mg , of which 74 per cent was composed of Daphnia longispina and 23 per cent of Eudiaptomus vulgaris.

The smallest zooplankton biomass was observed at the beginning of June - 855 mg - and the greatest in the first half of July (19 398 mg). In this period Daphnia longispina formed 62 per cent and the Copepoda 34 per cent, of which 6 per cent were young stages. In turn, a decrease in the mass of animals was observed until the first days of August, after which a slight accrescence, maintained till September 25 occurred. The greater part of the biomass was again composed of the Cladocera (Daphnia longispina) and Copepoda (Mesocyclops leuckarti and Eudiaptomus gracilis) together with young stages.

A basic role in the whole biomass was played by Crustaceans. Rotatoria formed only 9 per cent of the zooplankton mass even when their number was greatest (at the end of September). The decisive role was played by Daphnia longispina of which 53 per cent of the whole biomass consisted. Then came, in turn, individuals of Eudiaptomus vulgaris (15 per cent), Mesocyclops leuckarti (9 per cent), Conochilus unicornis (2 per cent), Nauplii (5 per cent), Meianauplius (1 per cent). Individuals of Daphnia longispina

[^0]Biomass of individual spocien in as caloulated for $1 \mathbf{m}^{3}$ of water in the pond

had the greatest biomass during the whole period of investigation (fig. 4). Only in the middle of August had individuals of the Mesocyclops leuckarti a greater biomass.

The greatest biomass of Daphnia longispina was noted at the beginning of July. It then amounted to $12040 \mathrm{mg} / \mathrm{m}^{3}$, the smallest, at the beginning

Fig. 3. Zooplankton biomass in $1 \mathrm{~m}^{3}$ of water (logarithmic scale).
of June, being $560 \mathrm{mg} / \mathrm{m}^{3}$. Eudiaptomus vulgaris appeared from April to August; the greatest biomass of individuals of this species was found at the beginning of July - 5670 mg - and the smallest, $270 \mathrm{mg} / \mathrm{m}^{3}$, at the beginning of August.

The greatest biomass of Mesocyclops leuckarti, $4200 \mathrm{mg} / \mathrm{m}^{3}$, was noted at the end of April and the smallest in the first fortnight of September. The greatest biomass of the Nauplii was found at the beginning of

Fig. 4. Biomass of the important animals in $1 \mathrm{~m}^{3}$ of water.

Amount and biomass of zooplankton

	Number of species	Number of individuals in per cent	Biomass 3 in g per m of water
Dominants	5	63.3	9.5
Subdominants	9	31.3	74.7
Adominants	28	5.4	8.4

September - 892 mg -- and the smallest at the beginning of April. Conochilus unicornis attained its greatest biomass in the second half of June - $1784 \mathrm{mg} / \mathrm{m}^{3}$ - the smallest being at the beginning of August.

A comparison of the composition of zooplankton determined on the basis of species dominance with the biomass of these species provides interesting results (Table IV). It appears that the dominating species forming 63,3 per cent of all the zooplankton specimens, have a biomass of only $9.5 \mathrm{mg} / \mathrm{m}^{3}$. Subdominants, however, constituting 31.3 per cent of all specimens, have a biomass of $74.7 \mathrm{mg} / \mathrm{m}^{3}$.

It results, therefore, that in order to characterise a zooplankton, and especially in order to stress its importance as a food reserve for fish, determination of the biomass is the most expedient. The total biomass of the zooplankton for the whole pond (assuming that $17500 \mathrm{~m}^{3}$ is the volume of water in the pond) amounted to approximately 1625.3 kg .

STRESZCZENIE

Badano zooplankton porównawczego stawu rybnego „Księży" w 1961 roku, w Gospodarstwie Doświadczalnym PAN w Gołyszu (pow. Cieszyn). Staw zalano wr kwietniu 1961 r., a wodę spuszczono w październiku tegoż roku. Najwyższa temperatura wody za caly okres produkcji stawu wynosiła $23,7^{\circ} \mathrm{C}$, a najniższa $12,6^{\circ} \mathrm{C}$; pH wody wahało się w granicach od 6,7 do 7,6 , alkaliczność od 0,8 do 1,3 , ilość tlenu od 2,09 do $10,94 \mathrm{mg}$ na 1 litr wody (Tabela I).

W planktonie znaleziono 2 gatunki Protozoa, 23 Rotatoria, 10 Cladocera i 3 Copepoảa. Stwierdzono gatunki litoralowe, gatunki podawane jako charakterystyczne dla zooplanktonu jezior, typowe gatunki dla zooplanktonu stawów i gatunki ubikwistyczne.

Największą ilos̉ć zooplanktonu stwierdzono w pierwszej połowie września (1839 okazów/l wody), a najmniejszą z początkiem kwietnia (50 okazów/l). (Rys. 1). Ilościowo przeważaly Rotatoria, z kolei Copepoda, Protozoa i Cladocera (Tabela II). Gatunkami dominującymi były: Keratell.a cochlearis, Nauplii, Polyarthra major, Conochilus unicornis i Difflugia limnetica (Rys. 2).

Orientacyjna biomasa zooplanktonu dla całego stawu ($17500 \mathrm{~m}^{3}$ wody) za caly okres wynosiła $1625,5 \mathrm{~kg}$. Największą biomasę stwierdzono w pierwszej połowie lipca ($19398 \mathrm{mg} / \mathrm{m}^{3}$), a najmniejszą z początkiem kwietnia ($149,2 \mathrm{mg} / \mathrm{m}^{3}$) (Tabela III). Podstawową rolę w biomasie graly Cladocera i Copepoda (Rys. 3). Decydująca rolę odgrywa Daphnia longispina, która stanowiła 53% calej biomasy, z kolei Eudiaptomus vulgaris, Mesocyclops leuckarti, Nauplii, Conochilus unicornis (Rys. 4.). Dominanty stanowiące $63,3 \%$ wszystkich okazów zooplanktonu miały biomase zaledwie $9,5 \mathrm{mg} / \mathrm{m}^{3}$, natomiast subdominanty $31,7 \%$ wszystkich okazów miały biomase $74,7 \mathrm{mg} / \mathrm{m}^{3}$ (Tabela IV).

Ogólna ilość planktonu zwiększała się aż do konćca września i spadła dopiero w październiku, jednak wriększe okazy zwierząt, korzystne jako pokarm dla ryb, znikły z planktonu praktycznie już z koncem sierpnia.

REFERENCES

Bartoš E., 1959. Virnici - Rotatoria. Fauna ČSR, 15, 969.
BeauchampP. dé, 1938. Les cultures de rotifères sur chlorelles, premiers rèsultats en milieu septique, Trav. Stat. Zool. Wimerau, Vol. Jub. Miaurice Coullery, 13, Paris.
Bucka H., 1960. Phytoplankton of the experimental ponds in Golysz. Acta Hydrobiol. 2, 5-4, 235--254.
Czapik A., 1957. Wpływ nawożenia na zooplankton stawów. Biuletyn, Zakład Biol. Stawów, PAN, 5, 71--96.
Klimczyk M., 1957. Zooplankton tarlisk i przesadek. Biuletyn. Zakład Biol. Stawów, PAN, 4, 127-144.
Krzeczkowska Ł., 1961. Beiträge zur Kenntnis des Planktons in Fischteichen. Acta Hydrobiol. 3, 69-- 90.
Pasternak K., 1959. Soils of the fish ponds in the upper basin of river Vistula. Acta Hydrobiol. 1, 221--283,
Pawłowski L. K., 1959. Wrotki (Rotatoria) rzeki Grabi. Łódzkie Tow. Nauk., Wydz. III, 50.
Rybak J. I., 1960. Rozmieszczenie skorupiaków planktonowych w litoralu i pelagialu ze szczególnym uwzględnieniem różnic między tymi biotopami. Ekologia Polska, A. 8, 6, 133-153.

Rylov W., 1935. Das Zooplankton der Binnengewässer. Einführung in die Systematik und Oekologie des tierischen Limnoplanktons mit besonderer Berücksichtigung der Gewässer Mitteleuropas. Binnengewässer, 15, 8, 272.
Starmach K., 1955. Metody badania planktonu. Warszawa, PWRiL.

Adres autorki - Author's address
Mgr Maria Fereńska
Gospodarstwo Doświadczalne, Zakład Biologii Wód, Polska Akademia Nauk, Golysz, poczta Drogomyśl.

[^0]: 5 Acta Hydrobiologica

