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The transient response of elastic, visco-plastic beams 

G. F. BERRY (SCHENECTADY) and H. A. KOENIG (STORRS) 

DIRECT Finite Element Analysis has been extended to analyze the transient dynamic behavior 
of elastic, visco-plastic cantilever beam. The salient features of strain rate theory are discussed. 
Results for step impulse loadings (force and velocity) and a harmonic loading are presented. 
The effect of visco-plasticity on the reflected wave is demonstrated. 

Rozszerzono bezposredni<t metod~ element6w sk01'lczonych na przypadek nieustalonych, dy
namicznych stan6w belek wspornikowych, wykonanych z materialu spr~i:ystego, lepkoplastycz
nego. Om6wiono najwai:niejsze aspekty teorii pr~dkosci odksztakeri. Przedstawiono rozwi<tzania, 
odpowiadaj(!ce obci<t.ieniom impulsowym typu Heaviside'a (w odniesieniu do sil i pr~dkosci) 
jak r6wniez obci(!i:eniu harmonicznemu. Pokazano wplyw lepkoplastyczno8ci na przebieg fali 
odbitej. 

PaclllHpeH HenocpeACTBeHHhiH MeTOA KoHeqHhlX 3JieMeHTOB Ha cnyqaif HeycraHOBnBIUHXCH, 
AH;HaMH;qecKHX COCTOHHHH KOHCOJibHbiX 6aJIOK H3rOTOBJieHHblX H3 ynpyroro, BH3KOITJiaCTH
qecKoro MaTepnana . 06cymAeHhi caMhie samHbie acneKThi TeopHH; cKopocTH Ae.PopMal.\HH. 
ITpeAcTasneHhi peiUeHHH oTseqaiOII.\He HMITYJihCHhiM Harpy3KaM THrra XesHcaii,D;a (no OTHo
IUeHHIO K CHJiaM H K CKOpOCTHM), KaK Tome rapMoHHqecKOH Harpy3Ke. YKa3aHO BJIHHHHe 
BH3KOITJiaCTH;qHOCTH Ha XO,D; OTpameHHOH BOJIHbl. 

Nomenclature 

A cross-sectional area at the boundary of an element, 
Ac cross-sectional area at the centroid of an element, 

AIM angular impulse due to moment, 
A/V angular impulse due to shear, 

B beam width, 
C wave speed, 

C 1 dilatation wave speed, 
C2 shear wave speed, 
D weight density, 
dt real time increment, 

dtv dilatation time increment, 
dtR shear time increment, 
dx length of beam element, 

dxc distance from element boundary to centroid of element, 

E modulus of elasticity, 
F von Mises yield condition, 
G modulus of rigidity, 
H height at the boundary of an element, 

He height at the centroid of an element, 
I moment of inertia at the boundary of an element, 

le moment of inertia at the centroid of an element, 
j superscript indicating jth cell quantities, 

jm number of cells into which beam is divided, 
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1. Introduction 

J 2 second stress invariant, 
Km number of time intervals, 
Ks shear correction factor, 
L length of beam, 

LIV linear impulse due to shear, 
M bending moment, 

G. F. BERRY AND H. A. KOENIG 

My yield value of bending moment (My = f f aoydydz), 
M 0 bending moment at free end of beam, 

T first modal period for beam, 
time, 

ID time clock for dilatation wave, 
IR time clock for shear wave, 
t L last time recorded, 
t 1 dimension less time for dilatation wave, 
12 dimensionless time for shear wave, 
t 3 dimensionless time for harmonic input, 

Vo shear force, 
Vy yield value of shear force (Vy = ff -rodydz), 
V shear force at free end of beam, 
v linear velocity, 
x coordinate along length of beam, 
y deflection of beam. 

YB bending deflection of beam, 
Ys shear deflection of beam, 

{3 shear angle, 
y visco-plastic attenuation factor, 
t5 exponential, 
e strain, 

Ey translation strain, 
e!/1 angular strain, 
v Poisson's ratio, 
(} mass density, 
a normal stress, 

a0 yield value of normal stress, 
-r shear stress, 

-r0 yield value of shear stress, 
r 1 rotational damping coefficient, 
-r 2 translational damping coefficie 1t, 
c/J visco-plastic function, 
qJ plasticity function, 
tp bending slope of beam, 
'tJI plasticity function, 
w angular velocity. 

THE DETFRMINATION of the dynamic stresses in a structure that is subjected to high intensity 
short duration loading is a fundamental engineering problem. Impact forces may arise 
as a result of an earth-quake, high pressure blast or by other means. Any design criteria 
which are established should arise from a complete study and analysis of the shock 
characteristics of each member of the structure. The analysis of fiexural or transverse 
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impulsive loading is of particular interest because it is more complicated than other 
impulses. This type of loading is more complicated because the flexural and transverse 
responses are coupled together. 

Previous studies by DAVIDS [I] and KoENIG [2] have shown how the Direct Analysis 
Method may be utilized in the analysis of uniform finite beams and plates which possess 
internal damping. The undamped transient and static behaviors of these bodies were studied. 
Direct Analysis is extended herein to include the effects of visco-plasticity. 

There are numerous theories concerned with analyzing anelastic impact. Limited 
experimental work combined with several different theoretical models have prevented the 
acceptance of any unified theory for anelastic dynamic analysis. The constitutive equations 
used in this paper represent the modern trend of using strain rate theory. Strain rate theory 
considers an elastic, visco-plastic media where the important factor is the rate of loading 
rather than the magnitude of loading. 

MALVERN [3, 4] investigated the elastic, visco-plastic properties of a steel bar by using 
the method of characteristics to solve the longitudinal wave propagation problem. His 
analysis prompted further investigations designed to expand on his significant develop

ment. 
PLASS [5] investigated the problem of flexural impulses on an elastic, visco-plastic 

beam. He used the method of characteristics to solve the dynamic response in this medium. 
Reflected waves were not considered. The following constitutive equations were used to 
describe the bending and shear visco-plastic effects respectively, 

aw aM 
El OX =7ft +y(M-My) 

and 

GK,A ( ~~ +to) = a;; +y(V- V,), 

where My and Vy are determined from the von Mises yield condition. It should be noted 
that these strain rate terms, when included in an elastic stress-strain relationship, cannot 
be classified as constitutive equations. True constitutive equations are independent of the 
initial loading conditions [6]. When My and Vy are dependent on the initial loading the 
relationship is really a structure equation. PLASS solved the flexural wave problem by neglect
ing the effect of shear visco-plasticity. 

BEJDA [6] solved the same problem as PLASS, using different constitutive relations. 
The bending and shear constitutive equations BEJDA used are, 

_I ow = __!__ 8M + _3_ ~ t/J(F)M 
ax E ar 3 v J2 

and 

( 
av ) 1 av r 

KsA OX -w = G fu- + }/ J2 t/J(F)V, 

where F = y' (M I My) 2 + (V/Vy) 2 -1 is the von Mises static yield condition, when My and 
V, are related by a simple tension test. J2 is the second stress invariant and t/J(F) = F6

• 

The unloading condition is F ~ 0. The problem was solved using the method of charac-
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teristics. Although a technique was postulated to solve the reflected wave problem, no 
numerical results were presented. 

PERZYNA [7] examined strain rate theory for a generalized state of stress based on the 
von Mises yield condition. He derived the form of the visco-plastic terms employed by 
BEJDA and discussed the motivation for using this particular form. 

PERZYNA and BEJDA [8] analyzed one dimensional wave propagation. They used known 
test data to determine the numerical values for the parameters in the constitutive relation
ships determined by PERZYNA. The same numerical values were used by BEJDA for his 
research and are employed herein. 

2. Strain rate theory 

The following discussion on strain rate theory is initially restricted to describing stress 
wave propagation in a one dimensional bar. This restriction is imposed to simplify the 
discussion of strain rate theory. A more detailed description of strain rate theory may be 
found in a discussion by CRISTESCU [9]. 

It is well known that the strain in a bar is composed of two components, an elastic 
portion ee and a plastic portion eP. The constitutive equation for elastic behavior is Hooke's 
Law 

while the constitutive equation for plastic behavior is described by two arbitrary func
tions [9] 

oeP oa -- = fP(a e)--+ IJ'(a e) e = ee+ eP. at ' ar ' ' 
The instantaneous plastic properties of a material are associated with the flJ function. 

The flJ function is a measure of the part of the strain directly proportional to an increase 
in stress. In this way an increase in stress results . in an immediate increase in strain. The 
fP function affects the stress wave speed as demonstrated by examining the instantaneous 
stress strain relation. 

!!__ = (~ +f!J) oa __ 
ar .. E ar 

The IJI function is indicative of the non-instantaneous properties of the material under 
consideration. The IJI function is a measure of the visco-plastic strain and depends on the 
actual value of the stress rather than on the increase in stress. The relationship between 
the IJI function and the plastic strain is time dependent and, therefore, the wave speed 
is not affected by the existence of the IJI function [9]. The wave speed is a function of the 
instantaneous stress-strain relationship as it cannot depend on the non-instantaneous 
stress-strain function because by its very nature the IJI function is influential only after 
the stress has been in existence for a period of time. 

The vanishing of the fP function is indicative of high speed elastic loading of ductile 
metals [9]. High speed elastic loading when combined with visco-plastic effects is commonly 
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known as strain rate theory. Thus, for high rates of loading on ductile metals the l/J func
tion can be assumed to vanish [9]. This assumption results in the following stress-strain 
equation, 

ae 1 aa 
a!= £ai + 'P(a, e). 

The above equation is the standard strain rate equation for a one-dimensional bar. 
This equation when combined with the longitudinal equation of motion and the kinematic 
relation yields the speed of propagation of the stress wave. The propagation speed is equal 
to the elastic wave speed (independent of the 'P function). 

An important characteristic of strain rate theory is the absence of permanent set. 
This characteristic can be readily verified by examining the time integrated strain rate 
equation for the condition existing when the variables do not vary with time. For this 
condition, the strain rate equation degenerates to Hooke's Law validating the above 
contention. 

The theory of strain rate cannot be used successfuJJy for static loading as it is a dynamic 
characteristic of high speed loading. Strain rate theory is compatible with impact analysis 
and was, therefore, selected to solve the elastoplastic segment of this paper. 

The constitutive equations used in this work are the same constitutive equations that 
were used by BEJDA [6]. 

3. Physical Jaws 

Four equations completely describe the problem of stress wave propagations in beams. 
They are the angular and translational impulse-momentum laws and the bending moment 
and shear force constitute equations. 

Angular impulse-momentum law 

~ (Vidx~+ yi+ 1 (dxi-dx~))+Mi-Mi+l 
eldxl 

where the centroidal variables (c subscript) are computed by the standard procedures 
resulting in the folJowing equation: 

. 1 . 
dx~ = 2 dx1 • 

Translational impulse-momentum law 

dv yi+l_ yi 
dt = · eAdxi · 

Constitutive equation for bending moment (Bejda's equation) 

-I aw =_!__-~M+~. y cf>(F)M. 
ax E at 3 V J2 

If the second term on the right side of the above equation is ignored the elastic beam 
bending equation results. Similarly, if the first term on the right side of the equation is 
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ignored the visco-plastic beam bending equation results. The elastic beam bending equation, 
in direct analysis notation, is 

Mi+l = -lEe~, 

where the bending strain is defined across two adjoining elements: 

. 1p}+1_1pj 

e~ = (dxl -dx~)+dx~+ 1 • 

Substituting the elastic beam bending equation into the visco-plastic beam bending equation 
and writing the resulting equation in direct analysis notation results in the following equation 

':;~ =- ~ E( ¥~;~ + :;~: 1 )w. 
Constitutive equation for shear force (Bejda's equation) 

( 
av } 1 av r 

KsA Tx -CO = G dt + y:J; l/>(F) V. 

Dividing the equation into parts, as was done for the bending equation, results in the 
elastic shear force equation: 

Vi+t = KsAG(e;-VJi), 

where the translational strain is defined across two adjoining elements: 

. yi+•-yl 
e: = (dxi -dx~) +dx~+ 1 

and the visco-plastic shear force equation is: 

~ =- ~ Gu;~ + :~~;T)v. 
The two wave speeds are defined in the following form 

- (£)1/2 c.-e 
and _ (KsG)

112 

C2- --
e 

The boundary conditions used herein correspond to those of a cantilever beam; namely, 
zero deflection and zero bending rotation (no restriction on shear rotation). 

4. Method of solution 

It is the purpose of this section to illustrate, in detail, the procedure used to solve the 
problems presented in this paper. Only one computer program is needed to solve all the 
different problems investigated in this work. 

As in most problems the first step is to specify the parameters needed to solve the 
problem. 

(1) Specify time parameters dt, Km. 
(2) Specify beam parameters Ku B, L, E, G, e, H. 
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THE TRANSIENT RESPONSE OF ELASTIC, VISCQ-PLASTIC BEAMS 599 

After specifying the above parameters the foJiowing parameters must be calculated: 
(3) Calculate C1 , C2 , dx1, dx~, A, I, jm. 
The value of dxi is selected to fulfil the requirements of the characteristic assumption. 

For a transverse impulse the shear wave speed is used to satisfy the characteristic assump
tion so that the excess of momenta does not have to be corrected along this discontinuity. 
An analogous situation exist for a flexural impulse. For a combined flexural and trans
verse impulse the characteristic assumption is satisfied by arbitrarily using the dilatation 
wave speed. If neither wave speed satisfied the characteristic assumption the flexural 
variables would have to be corrected more often than the transverse variables. All other 
considerations being equal, it seems reasonable to eliminate the momentum correction 
from the wave that is corrected most frequently. 

Separate clocks must be established in each element to measure the propagation of 
the dilatation and shear waves. 

(4) Determine clocks dt~ = dx1jC1 , dtk = dxljC2 • 

The problem is solved for a predetermined time interval (t = Kmdt). The foJiowing 
procedure (steps 5 through 9) must be repeated Km times until the time interval has been 
achieved. 

The problem can be solved for various loading conditions including either flexural 
or transverse impulses (or a combination of the two types). Four different impulse func
tions were programmed to be analyzed. They are step, ramp, parabolic and harmonic 
functions. 

( 5) Specify loading conditions. 

The clock method is employed to test whether to propagate the dilatation or the shear 
wave for each element. 

(6) Test to determine which wave is to be propagated (each element has to be indivi
dually examined). The cyclic procedure is divided into two segments; namely, the dila
tation cycle and shear cycle. 

I) D i I a t a t i o n c y c I e 

(7) Propagate wave across elements selected under condition 6. 
a) AIM1 = AIM1+(Mi-Mi+t)dtb 
b) AIV1 = AIV1 +(Vidx~+Vi+ 1 (dxi+ 1 -dx~)) 

X (tb+dtb-t{) 
c) LIV1 = LIV1+(Vi+t_ V1)(t6+dtb-t{) 

. ·( dt~) d) W 1 = w1 1 - ---
2rl 

e) dw = (AJMi+AJVi)feJidxi 
f) w1 = wi + dw 

g) w1 = w1 (1 - 1_ dt~ ( 1 . <f>l E 
3 ~/ J~ 

+ . 1. . <f>l + t E)) 
,; J~+l 

angular impulse due to moment 
angular impulse due to shear 

linear impulse due to shear 

damping of angular velocity 
(first portion) 
angular impulse-momentum law 
cumulate angular velocity 

contribution due to rotational 
viscoplasticity 
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. . ( dt~ ) damping of angular velocity 
h) w1 = w 1 1 - --

2-rl (second portion) 
i) AJMi = 0 initialize angular impulse 
j) AWi = 0 initialize angular impulse 

(8) Calculate forces due to impulses for each selected element. 
a) de"' = ( wi + 1 

- wi) dtb/ ( dxi- dx~ + dxic+ 1) angular strain 

b) dM = -Eldc"' moment constitutive equation 
c) Mi+I = Mi+ 1 +dM cumulate moment 
d) dV = - KsAGwi+I dt~ shear constitute equation (dilata

e) yi+I = yi+I+dV 

f) 1pi = 1pi + wi dt~ 

g) ~~ = t~+dtb 
h) t{ = tb 

II) S h e a r c y c I e 
(7) Propagate wave across element selected. 

a) AJVi = AWi+ (Vidxi+ yi+ 1 (dxi-dx~)) 

X (tk + dtk - t{) 
b) LJVi = LJVi+(Vi+l_Vi)(tk+dtk-t{) 

. . ( dtk) c) v1 = v1 1 - --
2r2 

d) dv = LJVifeAdxi 
e) ~,i = vi +dv 

. . ( y . ( 1 . 
f) v1 = v1 1- 2 dtk y' J~ c/>

1G 

1 . 1 )) +- :...= cJ>l+ G 
y' J~+l 

tion portion) 
cumulate shear 
cumulate rotational deformation 
advance dilatation wave front 
record last time 

angular impulse due to shear 

linear impulse due to shear 

damping of linear velocity (first 
portion) 
linear impulse-momentum Jaw 
cumulate linear velocity 

contribution due to translational 
viscoplasticity 

. . ( dtk ) damping of linear velocity 
g) v1 = v1 1 - -·-· 

2r2 (second portion) 
h) LJVi = 0 initialize linear momentum 

(8) Calculate forces due to impulses for each selected elements. 
a) dty = (vi+ 1 -vi)dtk/(dxl-dx~+dx~+ 1 ) linear strain 
b) dV = KsAGdcy shear constitutive equation (shear 

portion) 
c) yi+ 1 = yi+I +dV cumulate shear 

d) yi = yi +vi dtk cumulate deflection 

e) tk = tk+dtk advance shear wave front 
f) t{ = tk record last time 

At the completion of the propagation cycle the boundary conditions must be satisfied; 
for a cantilever beam the boundary conditions are satisfied automatically. This automatic 
process is obtained by analyzing the strain over the half element at the restrained boundary. 
For ail other types of beams a boundary condition must be imposed. 
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(9) Apply boundary conditions. 
This cyclic propagation procedure continues until the allotted time expires. 
The damping terms and visco-plastic terms are listed in their proper order and may be 

included or omitted as desired. No distinction is made between right running and left 
running waves as in other numerical procedures such as the method of characteristics. 
At the termination of a time increment both waves (left and right running waves) are pro
pagated across the cell together. In this manner, all waves are considered simultaneously. 

For all cases considered in this work, the following dimensionless variables are used 
for presenting the results. 

L = 1 
x = xjL 
ji = (xjL) X 1000 

tp = (VJ) X 1000 
v = (v/C2) x 100 
w = (wL/C1) x 100 

V= (VL 2 /EI) X 100 
M= (MLJEI) X 100 
lt = 1C1/L 
l2 = tC2/L 
13 = tJT. 

The following numerical values were assigned to the beam parameters in this paper: 

E = 30 x 106 psi H = 1.0 in 
D = (}g = 0.31 lbjin3 y = 450 sec- 1 

'V = 0.3 (j = 1.0 
L = 1.5 in 
B = 1.0 in 

r 0 = 34 700 psi. 

It takes 7.76 microseconds for a dilatation wave to travel 1.5 inches in a steel beam. 
It takes 13.71 microseconds for a shear wave to transverse an identical path. 

r----------------------------------------.---x 

y 

FIG. 1. Typical jth element. 
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FIG. 2. Wave index technique. 
a - wave has not propagated out of cell, 
b - wav.: has propagated OLit of cell. 
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l 
dx 

I 

l 
dt0 dtR ~dt0 3dto 2dtR 4dt0 

b V 

FIG. 4. Variation of shear force with respect to wave arrival. 

5. Results 

All of the parameters which were used to describe an elastic, visco-plastic beam in 
this paper are the same parameters which were used by BEJDA. Bejda's analysis of an elastic, 
visco-plastic beam was selected because he presents the most realistic yield criterion of 
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FIG. 5. Transient response of bending moment at x = 0.333 for an elastic, visco-plastic beam. 
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all papers which were read. Bejda's method of analysis was modified before employing 
the Direct Analysis method to solve the following problems: a step moment input, a step 
shear input, and a step linear velocity input. Finally, the resonant solution for a harmonic 
shear input is discussed. 
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0 .50 
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M ~ (,--I --f:;:~ 

ME=_,t,l 
0.6 

'• 
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u 7 er: 
~ 
er: 
"' ~ 
:I: -0.50 
Cl) 

- 1.00 

-1.50 

FIG. 6. Transient response of shear force at x = 0.333 for an elastic, visco-plastic beam. 
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FIG. 7. Transient response of bending moment at x = 0.333 for an elastic, visco-plastic beam. 
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Figures 5 and 6 illustrate the transient response of the bending moment and shear 
force respectively, due to a step moment input. In this particular example, the step 
moment input is in the elastic range. There is no visco-plastic effect at the test point until 
the reflected discontinuity wave arrives. The visco-plastic effect is essentially an attenuation 
condition as evidenced by the diminishing amplitude of the discontinuity. Because the 
visco-plastic term is only included in the plastic range, there is no mechanism that permits 
the energy to be dissipated in the elastic region. Therefore, a steady state solution is un
obtainable. Instead, a solution is obtained that fluctuates around the static solution. 

2.0 

1.0 

0 
I> 7 

w 
u 

~ -1.0 
a:: 
c( 
w 
:I: 
en 

-2.0 

-3.0 

FIG. 8. Transient response of shear force at x = 0.333 for an elastic, visco-plastic beam. 

Figures 7 and 8 depict the transient response of the bending moment and shear force 
respectively, due to a step moment input. In this example the input is in the plastic range. 
When the discontinuity reaches the test point it has already been influenced by the visco
plasticity effect. The effect of the visco-plasticity is clearly demonstrated in figure 7, where 
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FIG. 9. Transient response of bending moment at x = 0.333 for an elastic, visco-plastic beam. 
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the solution is compared to the solution for an elastic beam under identical loading condi
tions. In this problem the steady state solution is reached. 

Figures 9 and 10 depict the transient response of the bending moment and shear force 
respectively, due to a step shear input. The steady state solution is approached more quickly 

jV 
g 

5.0 I 
V(o,t2 ) :ur=-=-

• tz 
4.0 

3.0 

I> 
w 2.0 V 

~ 
a: 
4 .... 
J: 1.0 1/) 

0 
3 4 5 

TIME, t2 

FIG. 10. Transient response of shear force at x = 0.333 for an elastic, visco-plastic beam. 

than in the previous example, because the input loading is further into the plastic range. 
The lack of significant fluctuations in the bending moment supports a contention that 
fluctuations in the shear force do not significantly influence the bending moment. 
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FIG. 11. Transient response of bending moment at x = 0.333 for an elastic, visco-plastic beam. 

http://rcin.org.pl



THE TRANSIENT RESPONSE OF ELASTIC, VISCO-PLASTIC BEAMS 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

I> 

u.i 1.0 
u 
11: 

I? 0.5 

11: 
<( 

0 ILl 
:X: 
en 

-0.5 

-1.0 

-1.5 

-2..0 

-25 

"M rv ( ,..-------¥.~ 
M(o,t1) 

1.21 
V(o,t,i'----+•\ 

6 

3.1'·----+ ••• 

7 

FIG. 12. Transient response of shear force at .X = 0.333 for an elastic, visco-plastic. 

607 

Figures 11 and 12 illustrate the transient response of the bending moment and shear 
force, respectively, to a combined input (step moment and step shear). In this example 
the visco-plastic effect is more predominant than in the previous examples. This is because 
the values of the bending moment and shear force cause the dynamic response of the beam 
to be in the plastic range more frequently than in previous cases. The visco-plastic damping 

.2 

DISTANCE, X 
.4 .6 1.0 .a 

- fv 
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3.&f'----'• 
(>-

FIG. 13. Static deflection profile of an elastic, visco-plastic beam. 
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causes the discontinuity to diminish to a negligible value as the steady state solution is 
approached. 

The damped solution (Fig. 13) for an elastic, visco-plastic beam is identical to the 
damped solution for an elastic beam. This is a consequence of the dynamic characteristics 
of visco-plasticity and the inability of strain rate theory to account for the existence of 
permanent set. The input for this problem is in the plastic range rendering the damped 
solution physically meaningless. The absence of any permanent set is inconsistent with 
plastic deformation theory and is therefore, incorrect. Strain rate theory is limited to a dy
namic problem, and in particular, for a short duration following impact. The transient 
response presented herein are consistent with the above limitations. 
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FIG. 14. Transient response of bending moment x = 0.333 for an elastic, visco-plastic beam. 

FIG. 15. Transient response of shear force at x = 0.333 for an elastic, visco-plastic beam. 
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Figures 14 and 15 illustrate the transient response of the bending moment and shear 
force respectively, due to a step linear velocity input in the plastic range. This example 
is presented for completeness because it is common practice to specify a shock input in 
the form of a velocity profile. 

Figures 16, 17, 18 and 19 represent the response of an elastic, visco-plastic beam to 
an elastic harmonic shear input. The period of the harmonic input is determined from the 
first modal period for a comparable elastic beam [10]. The dynamic response of an elastic 
beam is identical to the dynamic response of an elastic, visco-plastic beam until the solu-
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FIG. 16. Transient response of bending moment at x = 0.333 for an elastic, visco-plastic beam. 
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FJG. 17. Transient response of shear force at x = 0.333 for an elastic, visco-plastic beam. 
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FIG. 18. Transient of deflection at x = 0.333 for an elastic, visco-plastic beam. 
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FIG. 19. Elastic-plastic map for a harmonic input. 
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tion enters the plastic region. At this point the visco-plastic effects influence the response. 
Two noticeable characteristics are evident, namely, the existence of harmonic distortion 
and the existence of a bounded solution. 

Harmonic distortion is symbolic of visco-plastic damping. In Figs. 16 and 17 the effect 
of harmonic distortion on the bending moment and shear force respectively, is demonstrated. 
A particularly interesting aspect of harmonic distortion is the resulting unsymmetrical 
dynamic response. The nonsymmetry can best be observed by examining the shear force 
in Fig. 17. The ascent portion of the shear force (near the crest of the response) is steeper 
than the descent portion. The appearance of this nonsymmetry is caused by two se
parate phenomena. The visco-plastic term is a non-linear quantity because its value is 
dependent on the value of the bending moment and shear force. In addition, a symmetrical 
response is a characteristic of a steady state solution and not a transient characteristic. 
The response depicted in Figs. 16 and 17 is in actuality a pseudo steady state solution 
composed of a cyclic chain of transient solutions. Every time the response enters the plastic 
range from the elastic range (or vice versa) the equations representing the beam are altered 
by the addition (or removal) of the visco-plastic terms. Whenever this happens a new 
initial value problem must be solved. 

Interestingly, there is not noticeable harmonic distortion present in Fig. 18, the deflection 
curve. The characteristic can be attributed to the fact that the deflection is the time integra
tion of the velocity. The harmonic distortions that exist are not of sufficient magnitude 
to be evidenced in a numerical integration. 

The region in which the solution is bounded, as well as the amount of harmonic dis
tortion, is dependent upon the beam geometry, the loading functions and the visco-plastic 
terms. New numerical values used in the visco-plastic terms may become more appropriate 
than the values or terms now being used. To incorporate these changes into the Direct 
Analysis method requires very little reprogramming. 

Figure 19 is a diagram depic.;ting the degree of plasticity. The higher numbers indicate 
a response further into the plastic range than response indicated by the lower numbers. 
This figure is presented for a qualitative comparison rather than a quantitative comparison. 
The number "one" signifies the elastic-plastic boundary. 

The diagram confirms the fact that the highest degree of plasticity exists at the fixed 
end of the cantilever beam. At the free end of the beam, and the surrounding neighbourhood, 
the response is always in the elastic range as the response must follow the elastic harmonic 
input. 
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