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Thermal stresses in a semi-infinite body with a cylindrical hole 

J. B. ALBLAS, A. A. F. VAN DE YEN, W. J. J. KUYPERS (EINDHOVEN) 

IN THIS PAPER the rotationally symmetric problem of a semi-infinite body with a cylindrical 
hole, with prescribed heat input along the boundary of the hole and on the plane bounding 
surface, is investigated. The temperature distribution in such a body may easily be obtained 
and from it a particular solution for the equations of linear thermo-elasticity may be derived. 
This solution does not satisfy the boundary conditions and the problem is reduced to the solu
tion of a residual problem in linear elasticity. The results are obtained by applying integral 
transform techniques to the displacement equations of equilibrium over the region (0, oo) x 
x (1, oo). 

W pracy rozwata si(( obrotowo-symetryczne zagadnienie dla p6lnieskonczonego ciala z otworem 
kolowym przy danym przeplywie ciepla wzdlui: otworu kolowego oraz na plaskiej powierzchni 
ograniczaj~j osrodek. Rozklad temperatury w takim ciele, latwy do wyznaczenia, pozwala 
uzyskac rozwi~ia szczeg61ne ukladu r6wnan liniowej termospr((i:ystoSci. RozwillZ3.Jlie to nie 
speloia jednak warunk6w brzegowych i problem sprowadza si(( do rozwillZ8Jlia uzupelniaj~go 
zagadnienia liniowej teorii spr((i:ysto8ci. Wyniki uzyskuje si~ drog'l zastosowania transformacj i 
calkowych do przemieszczeniowych r6wnan r6wnowagi w obszarze (0, oo) x (1, oo). 

B pa6ore o6c~aercn Kpyroso-cHMMeTpHtman npo6JieMa AJIR: noJIY(iecKoaetmoro TeJia 
C KpyroBbiM OTBepCTHeM IIPH 31,1l;aHHOM Te'lleHHH TeiiJia B,ll;OJib Kpyrosoro OTBepCTHR:, a TaK>Ke 
HI IIJIOCKOH IIOBepXHOCTH orpaHHtm;BIIO~H cpe.zzy. Pacnpe)l;eJieHRe TeMIIepaTypbl B TIKOM 
TeJie, KoTopoe nerKo onpe~eJIHT&, no3BOJIR:eT noJiytiHT& 'liiCTHble pemeHHR: CHCTeMhl ypasaemrli 
JIHHeitHoA repMoynpyroCTH. 3To pemeHHe He y,ll;oBJieTBopneT o.qaaKo rpaHHtmbiM YCJIOBWIM 
H npo6JieMa CB:J,Il;llTCR: K pemeHHIO ,ll;ODOJIHRTeJihHOH npo6JieMbl JIHHeiiHoii TeOpHH ynpyrOCTH. 
Pe3yJihTITbi nonyqarorcn nyreM npHMeHeHHR: HHTerpam.HbiX npeo6p13osamm K ypasaemmM 
pasaosecnn B nepeMe~eanmc B o6naCTH (0, oo) x(l, oo). 

1. Introduction 

IN A RECENT p3.p~r [1], one of the present authors investigated the problem of the three
dimensional stress concentration around a cylindrical hole in a semi-infinite elastic body, 
subjected to a uniform plane field of stress that is parallel to the bounding plane. He found 
the solution by decomposing it in the form of a plane strain solution, holding for the in
finite body, and a solution of a residual problem that holds in the halfspace. The boundary 
conditions of the residual problem were so selected that the bounding surfaces became 
free from stress. Owing to the complicated geometry of the body - it is bounded by two 
surfaces of infinite extension and different type, upon which boundary conditions have 
to be prescribed -the residual problem appeared to be very difficult. However, as a conse
quence of the existence of suitable integral transforms -the FoURIER and the WEBER -

it was possible to reduce the residual problem to the solution of one integral equation for 
an auxiliary function and so to put it within reach of numerical analysis. 

Techniques similar to those used in [I] are developed by YoUNGDAHL and STERNBERG 

[2] in their treatment of the same problem. Y OUNGDAHL and STERNBERG give an extensive 
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motivation for their investigation together with a review of papers dealing with the three
dimensional aspects of the plane problem. 

In [1] it is pointed out that a similar method might be used for the solution of a large 
class of corresponding boundary value problems in linear elasticity. This class is further 
extended by taking into consideration problems from the theory of thermo-elasticity for 
the same body. This extension is based upon the possibility of decomposing in linear 
thermo-elasticity a solution in the form of a particular temperature-dependent solu
tion and a residual one. The residual problems are of the same type as that discussed in 
[1 and 2]. 

In this paper, we consider the rotationally symmetric problem of a semi-infinite body, 
with prescribed heat input along the boundary of the hole and on the plane bounding 
surface. We reduce the problem to the solution of a Fredholm integral equation of the 
second kind for an auxiliary function and solve this equation with numerical methods. 
All the quantities of interest may be expressed in the auxiliary function. 

The results of this investigation may be of some use for the calculation of the stress 
distribution that exists in a long thick pipe, conducting a hot fluid. In particular the circum
ferential stress on the pipe near the plane bounding surface is of interest. 

We note that in most practical problems- e. g., the heat transfer problem of a fluid 
in a thick pipe -the wall temperature and heat input are unknowns and have to be de
termined. Although it is beyond the scope of the present article to enter into the details 
of problems of this kind, we shall derive an integral equation for the wall temperature. 
The solution of it may give the boundary value of the heat input for the present problem. 

The analysis to be presented is rather complicated, while in a later stage of the investi
gation numerical methods have to be used to obtain the final results. Therefore, one might 
wonder whether a direct numerical analysis would not be preferable. There are two reasons 
for answering this question in the negative. First, it may be expected that a direct numerical 
treatment of the equilibrium equations of elasticity will be much more laborious than the 
corresponding treatment of the Fredholm integral equation. In addition, the analytical 
treatment is more general and can be applied to a number of different boundary value 
problems. 

2. Statement of the problem 

In the Cartesian coordinate system (x1 , x 2 , x3) we consider the region of space charac
terized by 

(2.1) 

occupied by an elastic solid body. The body is deformed by the action of a stationary in
homogeneous temperature field. We shall confine ourselves to an isotropic homogeneous 
body, with respect to both the mechanical-i.e. the shear modulus G and Poisson's 
ratio "' - and thermal properties, the coefficient of internal heat conduction x and linear 
expansion a. If there are no heat sources, the stationary temperature field is determined 
by the Laplace equation 

(2.2) T,kk = 0, 

http://rcin.org.pl



THERMAL STRESSES IN A SEMI-INFINITE BODY WITH CYLINDRICAL HOLE 613 

where T represents the increment of temperature from the initial stress-less state in which 
T = 0. We assume that the change of temperature is small, and therefore it has no influence 
on the mechanical and thermal properties of the body. 

According to the linear theory of thermo-elasticity, the displacements · ui satisfy the 
equations of equilibrium: 

(2.3) 
I 2(I-v) 

U· kk+--u,. "·- ---r:t.T · = 0 
'• I - 2v ' ' I - 2v ' ' 

for the case of vanishing body forces, while the stresses aii are given by 

(2.4) "u = G [ U;,;+u;,t+ C :V2• u •. • -
2{~~:) aT) d;;]. 

where t5ii is the Kronecker symbol. 
The temperature field is completely determined if we prescribe the flow of heat - "T. n, 

where T,n = arjon denotes the outward normal derivative of the temperature on a surface 
element, at all points of the bounding surfaces r = I and x3 = 0, and take T = 0 at 
infinity. 

The body is free from stress at infinity and .. at the boundaries. This may be expressed by 

(2.5) 

and 

(2.6) 

(2.7) 

respectively. 

for 
r-·-

JI r2 +z2 = oo, 

a3 i = 0, for x 3 = 0, 

aiini = 0, for r =I, i,j = 1,2, 3, 

Assuming T to be known, we find the solutionS of the problem (2.3) to (2.7) by decom
posing it in the fo11owing form: 

(2.8) S = S+S, 

where S is a particular solution, derived from a thermo-elastic displacement potential 
according to (cf. ref. [3]) 

(2.9) Uj =X.;, 

and S is the solution of the residual problem that will be formulated later on. 
Substituting (2.9) in (2.3), we obtain: 

(2.10) X "kk+ _I_. X kk · - ~(I +v) r:t.T · = 0 
'• 1 - 2v ' ' 1 - 2v ' 1 

' 

and these equations can be integrated with respect to x;. We find: 

(2.11) 

where 

(2.12) 

4* 

X,kk = mT, 

l+v 
m= - -r:J.. 

1-v 
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From (2.4) and (2.11) we calculate the stress field, belonging to the solution S, as 

(2.13) (i .. = 2G(x ··-<5·1x LL). I} ,IJ I ,..,.. 

For the representation of SandS, cylindrical coordinates (r, cp, z) defined by the mapping 

(2.14) 
x1 = rcoscp, x2 = rsincp, x3 = z, 

O~r~oo, O~cp~2n, O~z~oo), 

are more convenient. 
Since the problems under discussion are rotationally symmetric, (2.2) takes the form 

iJ2T 1 oT o2 T 
<2·15) or2 + r ar + oz2 = 0 

and (2.11) may be written as 

(2.16) 

The stresses derived from the thermo-elastic potential are given by 

a,= -2G (x.zz+ ! X.r ), 0'91 = -2G(X,::+ x,,,), 

i!, = -2G(! x.,+x ... ). T,. = T,. = 0, T, = 2Gz,,. 

(2.17) 

The solutionS does not satisfy the boundary conditions (2.5), (2.6) and (2.7). There

fore, we superpose a solutionS of (2.3), with T = 0, so that forS defined by (2.8) these 
boundary conditions are met. 

3. The temperature field 

A solution for (2.15) in the region (2.1) which satisfies the boundary conditions 

(3.1) - 2nr oT = q(z) , at r = 1, 
or " 

(3.2) oT =0 at z=O, and T=O, for Jl fZ+z 2 =oo, oz ' 
is assumed in the form: 

(3.3) 

00 

T(r, z) = J A(I.)K0 (1.r)cos l.zdl., 
0 

where the heat input q(z) is a given function that is continuous and integrable in [0, oo ). 
In (3.3) K0 ().r) is the modified Bessel function of the second kind of order zero. 

From (3.1) and (3.3) we find an expression for q(z): 

00 

(3.4) ~~~ = J I.K1 (I.) A(!.) cos l.zdl.. 
0 
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Inverting this result, we have: 

00 

(3.5) 1 ;· ).Kl().)A().) = ·- 2- q(z)cosJ.zdz. 
nx 

0 

It follows from the representations (3.4) and (3.5) that AK1 ().)A(J.) is ultimately de
creasing, bounded and integrable in (0, oo ). We derive from these properties that the in
tegral (3.3) exists and represents indeed a bounded function T(r, z), as 

00 00 

(3.6) j. J K0 (Ar) 
A().)K0 (Ar)d). = ).K ().) [AK1 ().)A(A)]d). < oo. 

0 0 
1 

Note that we have suitably restricted the function q(z) in order to obtain simple condi
tions for the existence of the integral representations. Of course, some of the restrictions 
may be weakened. Further we can formulate the problem for the case of prescribed tem
perature at r = 1 under appropriate conditions. 

For future reference we give the inversion formula of (3.3): 

00 

(3.7) 2 1 f A().) = 7i Ko(i) T(1, z)cos).zdz. 
0 

4. The particular solution 

The temperature field being known, we first derive a particular solution of (2.10). The 
function x(r, z), represented by 

(4.1) 

00 

x(r, z) = -; f ;.- 2 A().)[).rK1(Ar)cosAz-AK1 (A.)]d)., 
0 

satisfies (2.16), and may be used for the derivation of the stresses of Sby (2.17). We obtain 
the following expressions: 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

1 -
2G- a,. 

00 

-; J A().)cos).z{K0 (Ar)+ArK1().r)}d)., 
0 

00 

2~ (itp = -; J A().)K0 (Ar)cos).zd)., 
0 

00 

2~- O':r = - ; J A(A)cos ).z{2K0 (Ar)- Ar K1 (Ar)} d)., 
0 

CX) 

2~- T,.z = - ; r J AA().)K0 (Ar)sin).zdA. 
0 

We note that the integrals (4.1) to (4.5) converge for z ~ 0 and r ~ 1. 
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It is obvious that the decomposition (2.8) is not unique. But now we have chosen the 

function x(r, z) by (4.1), the residual problem Scan be formulated and it has a unique 
solution. We proceed with the discussion of this problem. 

5. · Reduction of the residual problem 

In cylindrical coordinates the displacements u and w are governed by the equations: 

= 1 a ( au u aw) L1w+-- -- -+-+- =0. 
1 - 2v oz or r oz 

By means of Love's function L (cf. [3]), that satisfies 

(5.2) L1L1L = 0, 

we can represent the solutions of ( 5.1) in the following form: 

(5.3) 
= iJ2L 
U= --

iJriJz' 
- iJ2L w = 2(1-v)L1L- · oz2-. 

If we take L in the form 

(5.4) 

with 

(5.5) L1P = L1Q = 0, 

the displacement equations (5.3) become: 

= a ( aP aQ o2Q ) 
(5.6) u = - Tr Tz + oz + z iJz2 ' 

= a [aP aQ o2Q] w = -- ---(3-4v)-+z-- . 
oz oz oz oz2 

From (5.6) we derive by means of (2.4) the stresses of S: 

(5.7) 

1 = ( 1 a o2 
) aP [ 1 a o2 z o2 o3 J aQ 

2G u, = rTr + oz2 Tz + r -or +(I + 2v) oz2 + r oroz +zaz3 oz ' 

1 -
2G urp = - .!._ _!___ -~~ - (_!_ -~- - 2v ~~ + _:__ ~) iJQ 

r or oz r or oz2 r or oz oz ' 

= - - -0~ iJP + [<I-2v)~ - -z~J !_Q 
oz2 oz oz2 oz3 oz ' 
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It appears that the displacements and the stresses are only dependent on the derivatives 
oP/Dz and oQfoz. Therefore, we may confine ourselves to giving only the integral represen
tations for these functions: 

CO 

aP J (5.8) oz = clogr+ (1- 2v) A. - 2 B(A.)[K0 (A.r)cos A.z-K0 (A.)+ A.K1 (A.)logr]dA. 
0 

CO CO 

+ f A. - 2 B(A.)[A.r K1 (A")cosA.z- A.K1 (A.)]dA.+z f A. -t B(A.)K0 (A.r)sin A.zdA. 
0 0 

-I). -2 C(l)K0 (lr)coslzdl+vn I ;.-2 G(A{ <li0 (r, A).-""+ ! (1- Az)J dA, 
0 0 

and 

CO 

(5.9) ;; = J A. - 2 B(A.)[K0 (A.r)cos A.z- K0 (A.) + A.K1 (A.)logr]dA. 
0 

-~ I ;.- 2 G(A{ <li0 (r, A)e-"" + ! (1- Az)JaA. 
0 

In (5.8) and (5.9) have been introduced the unknown coefficient functions B(A.), C(A.) 
and G(A.). Further, a new function <P0 (r, A.) is used, defined by 

(5.10) 

where J,. and Y,. are Bessel functions of the first and second kind, respectively. 
For the function </>0 (r, A.) the relation 

(5.11) <Po(1, A.) = 
2 

holds. 

We also shall make use of the function </>1 (r, A.), related to the derivative of <P0 (r, A.) 
with respect to r 

(5.12) 

that satisfies 

(5.13) 

The coefficient functions B(A.), C(A.) and G(A.) are assumed to behave in such a way that 
the integrals in (5.8) and (5.9) may be differentiated a sufficient number of times under 
the integral sign. Formulation for the conditions is postponed. 

The representations of oP foz and oQfoz are broken up into separate integral forms 
in order to obtain simple expressions for the stresses at the boundaries. An elementary 
solution is added to (5.8) to meet the boundary condition (2.7). 
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We derive from (5.7) to (5.9) the following formulae for the stresses: 

00 

1 = c 2(1-v) J (5.14) 
26 

n, = 72- -,-2 - .A.- 2 B(.A.) [.A.r K1 (.A.r)cos ).z- .A.K1 (.A.)]d). 
0 

00 00 

-J B(.A.)[K0 (.A.r)+ .A.r K1 (.A.r)]cos ).zd).+ ,
1
2- J ). -2 C(.A.).A.r K1 (.A.r)cos Azd). 

0 0 

00 00 

+ J C(.A.)K0 ().r)cos ).zd).+ ;, J ). -1 G(A.)[(l- 2v)- ).z](/)1 (r, .A.)e-).zd). 
0 0 

00 

00 --; J G(.A.)(I- ).z)(/)0 (r, .A.)e-;.zd)., 
0 

1 -=- c 2(1-v) J (5.15) 
26 

u, = -72+-,-2 - ;.-
2 B(.A.)[.A.rK1(.A.r)cos.A.z-A.K1 (A.)]d). 

0 

00 00 

+(l-2v) J B(.A.)K0 (.A.r)cos.A.zd).-! J ).- 1 C(.A.)K1(.A.r)cos).zd). 
0 0 

00 00 

- ~ J A-1G(.A.)[(I-2v)-.A.z](/)1 (r, .A.)e-Azd.A.-vn J G(A.)(/)0 (r, .A.)e-;.zd)., 
0 0 

00 

(5.16) 2~ az = J B().)[.A.r K1 (.A.r)- 2K0 (.A.r)]cos ).zd). 
0 

00 00 

-J C(.A.)K0 (.A.r)cos ).zd).- ; J G(.A.)(l + ).z)(/)0 (r, .A.)e-).zdA., 
0 0 

and 
00 00 

(5.17) 2~ tz = - J B(.A.).A.rK0 (.A.r)sin.A.zd).+ J C(.A.)K1 (.A.r)sin.A.zd). 
0 0 

00 

- n;- J A.G().)(/)1 (r, .A.)e-).zd).. 
0 

6. Boundary conditions at r = 1 

The boundary conditions (2. 7) require the vanishing of the stresses n, and T rz at r = 1. 
We can derive from (4.2), (4.5), (5.14) and (5.17) formulas for these stresses. Before doing 
so, we introduce the function g(.A.): 

(6.1) 
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With (6.1) we are able to transform the Laplace integral in (5.14) into a Fourier integral, 
using the relation: 

00 00 

(6.2) J (1- 'fJZ)e-'~zG('fJ)dYJ = J A -l g(A)cos Az dA. 
0 0 

The proof of (6.2) is provided by substituting (6.1) in (6.2) and interchanging the order 
of integration. 

By means of (6.1), we arrive at the following expressions for the stresses at r = 1: 

00 

(6.3) 2~ a,(l, z) = J ;.-'cosk{- ~ [J.+K(J.)]J.2 K1(J.)A(J.) 
0 

- [2(1-v)+ A2 + AK(A)]AK1(A)B(A)+ [1 + AK(A)] AK1 (A)C(A) 

00 

+ J.g( J.)} d).+ 2(1 -v) J ;. -• K, ( J.)B( J.)dJ. + c, 
0 

and 

(6.4) 

00 

-2~ T,(I, z) = J sink {- ~ AK(J.)K1 (J.)A(J.)- J.K(J.)K, (J.)B(J.)+ K1(}.)C(J.)} dA, 
0 

where the function K(A) is defined by 

(6.5) 

We can satisfy (2.7) for each value of z by putting equal to zero the coefficient of cos Az 
in (6.3) and of sin Az in (6.4) and by taking - c equal to the last integral of (6.3). This leads 
to the following expressions for B(A), C(A) and c, formulated in terms of the known func
tion A(A) and the unknown g(A): 

(6.6) 

(6.7) 

and 

(6.8) 

B(A) = - ~ A[1-K2 (A)]A(A)A(A)+ A1~~~) g(A), 

C(A) = (1-v)mK(A)A(A)A(A)+ K~~~~A) g(A), 

00 

c = -2(1-v) j A- 1 B(A)K1(A)dA. 
0 

In (6.6) to (6.8) a new function A(A) is introduced, defined by 

(6.9) 
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This function is monotonic and lies between zero and one. In fact we have 

(6.10) 

while 

(6.11) .A(J.)--+1, J.-+oo. 

7. Boundary conditions at z = 0 

From (4.4), (4.5), (5.16) and (5.17), we find for the total stresses az and r,z at the 

boundary z = 0 : 

00 00 

(7.1) 2~ az(r, 0) = ; J [2K0 (J.r)-J.rK1 (Ar)]A(J.)d}.- J [2K0 (J.r) 
0 0 

00 00 

- J.rK1(J.r)]B(J.)d}.- I C(J.)K0 (Ar)d}.- T J G(J.)cp0 (r, .A.) d)., 
0 0 

and 

(7.2) 
1 

2
G r,z(r, 0) = 0. 

Eliminating B(J.) and C(J.) from (7.1) by means of (6.6) and (6.7), and substituting in 
the boundary condition (2.6), we obtain the integral equation: 

00 00 

(7.3) - (1-v)m I _Ai}.) {[2+ J.K(J.)]K0 (J.r)- J.r K1 (J.r)} A(J.)d}.- J ).1().(~) x 

0 0 
1 

00 

x {[2+A.K(A.)]K0 (}.r)-A.rK1 (A.r)}g(J.)d}.- ; I G(A.)(/)0 (r, J.)d}. = 0. 
0 

As will be shown later on, the function G(A.) behaves at infinity as 

(7.4) G(A.)-+c1 .A.- 1 +0(J.- 2), A.-+oo, 

while, as follows from (6.1) 

(7.5) 

where c1 is a constant. 
As a consequence of (7.4) and (7.5) the integrals 

00 

J G(A.)(/)0 (r, .A.) d). 
0 

and 

00 1 A~;~~) { [2+ AK( A)]K0 (.1.r)- Ar K1 (Ar)} g(A)d)., 
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taken separately are divergent at r = I. However, it appears that the integrals taken to
gether converge, as can easily be seen. 

For the solution of the Eq. (7.3), we use the following inversion theorem for the Weber 
integral (cf. [4], pp. 86-88): If 

CX) 

(7.6) f S().)(/)0 (r, A)d). = E(r), 
0 

then, 

CX) 

(7.7) A[Ji(A) + Yf(A)]S(A) = f r.E(r)(/)0 (r, A)dr, 
1 

under the condition that 

CX) 

(7.8) J !.E(r)IJ1;dr < oo. 
1 

To be able to apply this theorem we first write (7.3) in another form. The integrals 
(cf. [5]) 

(7.9) 

and 

are considered as Weber transforms and after inverting them we can derive the relation: 

(7.11) 

We introduce (7.11) into (7.3) and obtain: 

00 

(7.12) - (1-v)m f 3~A) {[2+ AK(A)]K0 (Ar)- Ar K1 (Ar) }A(A)dA 
0 

00 

- !!__ r G().)(J)0 (r, },)dA = 0. 
2 .. 

0 
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The order of integration in the second term of (7.12) may be interchanged for r > 1, 
whereby (7.12) takes the form: 

00 

(7.13) - (1-v)m f A~A) {[2+ AK(A)]K0 (k)- Ar K1 (k)}A(A)dA 
0 

We note that in the limit for r-+ 1 the integrals in (7.13) converge, so that we can 
consider (7.13) as an integral equation in the whole interval. To proceed, we multiply 
this equation by rC/>0 (r, s) and integrate over r from 1 to infinity. We again apply Weber's 
inversion theorem and find: 

Substituting (6.1) in (7.14) and interchanging the order of integration, we arrive at 
the following definite form of the integral equation for the unknown G(s): 

8. Discussion of the integral equation (7.15) 

We may consider our boundary value problem (2.3) to (2.7) to be solved if we succeed 
to obtain a solution for the Fredholm Eq. (7.15) that leads to convergent integral represen
tations for the stresses. Because of the complicated character of this equation, an analytic 
solution is out of the question. However, a numerical solution can only be obtained if we 
can find some general data as to the behaviour of the function G(s). To this end, we write 
(7.15) in the form: 

00 

(8.1) G(s) = J R('Y), s)G(fJ)d'Y)+rx(s)D(s), 
0 

where 

(8.2) 
32 1 

rx(s) = :n3- s2[Jf(s)+ Yf(s)] ' 

http://rcin.org.pl



THERMAL STRESSES IN A SEMI-INFINITE BODY WnH CYLINDRICAL HOLE 

(8.2) 
[cont.] 

In the neighbourhood of s = 0, these functions behave as follows: 

(8.3) 
n2 

D(s) = 3f mA(O)+O(s), 

while it can easily be seen that the integral in (8.1) tends to zero. We conclude that 

(8.4) 
n 

G(s) = -~r mA(O)+O(s). 

Ifs tends to infinity we have: 

(8.5) 

from which we derive: 

(8.6) 

16 1 
a(s)-+ - 2 - +O(s- 3), 

n s 

a(s)D(s)-+ O(s- 2
). 

From this result we conclude that the function G(s) goes to zero as 

(8.7) 

because only in this case we have 

(8.8) 

00 

J R(rJ, s)G(rJ)drJ-+ c; +O(s- 2
). 

0 

From the definition (6.1) we find for g(A.) 

(8.9) 

(8.10) 

2 
g(A.) =- A.+O{A.2), A.-+ 0, 

n 

633 

With the data (8.4) and (8.7) we were able to solve the integral equation (8.1) on the 
computer. We note that c1 was an unknown and had to be determined in the course 
of the process. 

For the numerical calculations we have rewritten (8.1) in the form: 

(8.11) G(s) = .Q(s)+ a(s)D(s) 

with 

00 00 

(8.12) .Q(s) = J R(rJ, s)G(rJ)drJ = : a(s) J (A.2 ~s2)2 A(A.)g(A.)dA., 
0 0 
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from (8.2) and (6.1). We now write (6.1) as 

with 

In (8.13) and (8.14) we have introduced the number N, such that 

(8.15) 

With 

(8.16) 

we write for .Q(s): 

N~l. 

M~ 1, 

+ : a(s)c1 Z(s, M)= a(s) l G('7){'7 { (s2 +A2;::~2 + A2) 2 A(A)dA} d1) 
0 0 

M 

J s3 n 
+c1 ~(s) (s 2 + ;.2)2 A(J.)Z(J., N)dJ.+ 4 c1 ~(s)Z(s, M} 

0 

N 

= J RM('J, s)G(l])dl]+c1 a(s>[V(s) + : Z(s, M)]. 
0 

with 

(8.18) 

and 

M 

(8.19) J s3 
V{s) = (s 2 + J.2 ) 2 A(J.)Z(J., N)dJ.. 

0 
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We have now reduced the integral equation (8.1) to an integral equation with finite 
bounds : 

N 

(8.20) G(s) = J RM('YJ, s)G(rJ)drJ+E(s), 
0 

with 

(8.21) E(s) = a(s) [D(s)+c1 {v(s)+ : Z(s, M)}]. 

We note that the contribution of E(s) to G(s) can not be neglected. In our derivation 
we have used the asymptotic formulas (8.7) and (8.10) and as a consequence our result 
depends on the choice of N and M. Considering our G(s) found from (8.20) as a first 
approximation, we may improve our result by calculating further terms in the asymptotic 
expansions. However, we cannot get rid of truncation errors due to the infinite bound 
in (8.1). 

The constant c1 in (8.7) is found from (8.20) by continuity considerations. In fact, 
we have in this process: 

N 

(8.22) G(N) = J RM('YJ, N)G(rJ)drJ+E(N), 
0 

determining c 1 

We can give an explicit expression for c1 by writing (6.2) in the form: 

(8.23) 

If we take the limit z--. 0 in (8.23) we arrive at: 

(8.24) foo { g(A)} 
c1 = G(A)- --r dA, 

0 

for which derivation we have used the asymptotic expression (8.7). For our numerical 
results the Eq. (8.24) is of great value. 

From the behaviour of the functions G(A) and g(A) at A--.0 and A-. oo, according to 
(8.4), (8.7), (8.9) and (8.10), follow the limit values of B(A) and C(A) by (6.6) and (6.7). 

We have 

(8.25) 
B(A) = 0(A2), A--.0, 

AK1 (A)B(A) = 0(1), A-. oo, 

(8.26) 
C(A) = 0(A2 1ogA), A--.0, 

K 1(A)C(A) = 0(1), A-. oo. 

Froin the results of this paragraph it can easily be seen that the relevant integrals contain
ing the coefficient functions do converge and may be differentiated under the integral sign. 
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9. The stresses 

From (4.2) to (4.5) and (5.14) to (5.17) and by means of (6.6) to (6.9), the following 
relations for the stresses can be deduced: 

00 

I f f K0 (Ar) (9.1) 2:fi u,(r, z) = -m(l-P) A(A).1(,1.) l [I- AK(A)] -A-
0 

00 

+ [Ar2
- A-K(A)+ AK2 (l)] K,i:")_l cosAzdA- .f A~~(A) g(A) { [1- AK(A)]K0 (Ar) 

0 

00 

+ [2(1 -•)+ A2r 2 - AK(A)] K,fl} coslzdA+ ;, J G~A) [(I -2v) 
0 

00 

- Az]<P1(r, A)e-J.zdA- ; J G(A)(I- Az)<P0 (r, A)e-J.zdA, 
0 

00 

(9.2) 2:~ u!(r, z) = -m(! -v) f A(A)A(A) {[I+ l 2
- A2 K 2 (A)] ~oill-L 

0 

00 

+ [K(l)+ A- AK2 (A)] K,t)} cosAzdA+ J ;.~~~~) g(A) {(I -2v)]K0 (lr) 
0 

00 

K1 (Ar)} n f G(A) +[2(1-P)-AK(A)]-- cosAzdA- -- -[(I-2P) 
Ar 2r A 

00 

0 

00 

- Az]$1 (r, A)e-J.zdA-Pn J G(A)<P0 (r, A)e- 1zdA, 
0 

(9.3) 2~ az(r, z) = -m(l-P) f A(A)AA(A) {[2+ AK(A)]K0 (Ar) 

and 

0 

()() 

- ArK,(Ar)}coslzdA-J ;.~~~~) g(l){[2+ AK(l)]AQ(.Ar) 

00 

-ArK1 (Ar)}cosAzdA- ; J G(A)(l+Az)<P0 (r, A)e-~zdA, 
0 

00 

I f A(A)A(A) . (9.4) 
2
G T,z(r,z) = -m(l-P) A {ArK0 (Ar)-AK(A)K1(Ar)}smAzdA 

0 

00 ()() 

-f A1(A(i)g(A){ArK0 (Ar)-AK(A)K1(Ar)}sinAzdA-; f A.zG(A)4>1 (r, A.)e-.tzdA.. 
0 1 0 
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It can be shown that the stresses satisfy the boundary conditions for z = 0, r > 1 
and r = 1, z > 0. In the cornerpoint z = 0, r = I, the stress component T rz also meets 
these conditions. 

If we approach the comerpoint along z = 0 from r > I, the stress component a z also 
satisfies the prescribed boundary condition. A similar behaviour is shown by the stress 
component a, provided we approach the cornerpoint along r = I from z > 0. There 
is a jump in these stresses if the cornerpoint is reached along any other path. The values 
of these jumps are proportional to c1 • 

10. Numerical results 

We have solved the integral equation (7.I5) for the special case 

(10.1) 

where Q is the total heat input: 

(10.2) 

For this choice (3.5) gives 

(10.3) 

from which follows by (8.4) 

(10.4) 

Q 
q(z) = (I+ z2)312 ' 

00 

Q = J q(z)dz. 
0 

Q 
A(,\)= --, 

un2 

G{O) = mQ. 
4nu 

In Fig. I is shown the graph of G(s). For Poisson's ratio v the value 0.3 is taken. 

Fro. 1. Solution of integral Eq. (7.15) for q(z) according to (10.1) and v = 0.3. 
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The most interesting stress component is the circumferential stress a(/J, especially along 
the pipe. We have from (9.2): 

(10.5) 

00 

2~ a.(!, z) = - mQ"~;>) J [I+ { (2+ A2 )K(A)- K2 (J.) 
0 

00 

- AK3 ( A) J A( A) K1 (A) cos i.z dA + J A( A~g( A) [ AK2 {A)-2v K( A) 
0 

-~<l.p(l.zl 
mQ 2G 

t 
2.5 

\ 
\ 

\ 
2.0 \ 

\ 

1.5 \ 

1.0 

0.5 

' \ 
' ' ' ' ' ' 

00 

-A]cosAzdA+ J G(}.)[(l+2v)-),z]e-i.zd).. 
0 

10--z 

FIG. 2. Circumferential stresses along the pipe as a function of z. 

In Fig. 2, (~P~ z)) is represented as a function of z. We see from this figure that 

the stress concentration at the point r = 1, z = 0 

(10.6) a(/J(l.O) = -0 993 mQ 
2G · 4nu · 

To show the influence of the free surface z = 0 on the circumferential stress a'~'' we 
have also calculated this stress for the infinite body with a cylindrical hole under the same, 
symmetrical heat loading. The solution of this problem is obtained in a trivial way from 
our more general equations. In Fig. 2 we have plotted this stress by a dotted line. 

11. Extension of the problem 

We have discussed a special problem associated with the temperature field (3.3), since 
a general discussion is impossible. However, on the same lines, many temperature fields 
may be treated for the region (0, oo) x (1, oo ). The following possibilities may be noted: 

http://rcin.org.pl



THERMAL STRESSES IN A SEMI-INFINITE BODY WITH CYLINDRICAL HOLE 639 

1. The loading need not to be rotationally symmetric. We may expand the boundary 
values in Fourier series with respect to cp. Each of the terms is treated similarly. Weber's 
formulae have to be adapted correspondingly. 

2. We may prescribe stresses at the bounding surfaces. Only the residual problem will 
change accordingly. 

3. We may prescribe zero temperature at z = 0. In this case we use a sine integral 
instead of (3.3). The residual problem can be treated by taking sine integrals in (5.8) and 

(5.9). 
4. Other temperature fields, corresponding to mixed boundary value problems, may 

be considered by expanding in the associated Fourier transform and formulating the sur
face bounding values by the appropriate Weber transforms. 

5. We may even admit some classes of body forces. 

12. The boundary values 

In the problem under consideration, the heat flow at r = 1 was prescribed and we 
were especially concerned with the stress field that occurs in the solid body. However, in 
many problems of practical interest the heat flow at r = 1 is not given a priori, but has to 
be determined, whether by calculation or by measurement. In such a problem, we consider 
the heat-transfer problem of a hot fluid, flowing in the pipe z ~ 0, r < 1. We denote the 
temperature increment by () and assume that it is governed by the equation 

(12.1) 

where v is the mean velocity and fJ is the coefficient of temperature conductivity of the 
fluid. The coefficient fJ satisfies 

(12.2) fJ = !!_}__' 
(!C 

where x 1 is the coefficient of internal heat conductivity, c is the specific heat and (! the 
density. The boundary conditions for (12.1) are: 

(12.3) () = 00 for z = 0, r < 1, 

(12.4) () = f(z) for r = 1, z > 0. 
OCJ 

In this problem, /(z) of (12.4) has to be identified with J A().)K0 (A)cos ).zd). and is an 
0 

unknown function. We further have the continuity of the heat flow: 

(12.5) 
ao ar 

"ta,="a,• at r = 1, z> 0. 

To simplify the analysis we suppose () 0 to be constant. We transform (12.1) into an equation 
for the Laplace transform 0, defined by 

(12.6) 

5* 
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by multiplying it by e-M: and integrating over z from zero to infinity. We obtain: 

(12.7) 
o20 1 oO 2v .A 2 - 2v 2 

0
, 2 +----,:a,:--p-(1-r )0 = - 73 (1-r )00 • 

The solution of (12.7) can be written: 

(12.8) 
- Oo 
0 = T +D{A)VJ(A, r), 

where 1p{A, r) is defined as the solution of 

(12.9) 
02

1p + _ _!_ jVJ - ~~~ (1-r2)VJ = 0, 
or2 r or {3 

which is bounded at r = 0 and is normalized according to 

(12.10) 1p{A, 1) = 1' 

while D(J.) is a factor which has to be determined. 
00 

If we represent the function f(z) in the form J A(.A)K0 (.A)cos J.zd.A, where A(J.) is 
0 

now an unknown function, and apply Laplace's transform, the boundary condition (12.4) 
becomes: 

(12.11) 

Repeating this procedure we find from (12.5): 

(12.12) 

Eliminating D(J.) from (12.11) and (12.12) yields the integral equation for A(jt): 

(12.13) 

With 

(12.14) 

this equation takes the form: 

(12.15) 
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which can be written as an integral equation for f(z) from (3.7) 

CXl 

(12.16) A2 J f(z)S(z, A)dz = 00 oy_~~ I)_, 
0 

where S(z, A) has been defined by 

CXl 

(12.17) S(z, A) = ~ J _cosp,z { otp(A, 1) - j(r ")} d 
n A2+t-t2 or p V" ft 

0 

For numerical purposes, (12.15) seems to be preferable to (12.16). 
In (12.15) and (12.17) an abbreviation K(p) has been introduced, defined by 

- K1(p) 
(12.18) K(p) = - ft Ko(p) · 
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