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Yield surfaces for thin shells accounting for transverse shear 

H. M. HA YDL and A. N. SHERBOURNE (WATERLOO) 

UPPER and lower bounds to the Ilyushin-Shapiro yield surface for thin shells are derived. The 
extension of several approximations of this yield surface to account for transverse shear is 
proposed. 

Okreslono kres g6rny i dolny dla powierzchni plastyczno8ci Iliuszyna-Szapiry w teorii powlok 
cienkich. Zaproponowano takie uog61nienie szeregu przyblii:en tej powierzchni, kt6re pozwo
liloby na uwzgiC(dnienie wplywu scinania poprzecznego. 

OnpeAeJieHbi aepxHHH u HHmHHH npeAeJihi AJIH noaepXHocrn TeKyt~eCTH 11JILIOIIIH;Ha-IllanHpo 
B TeopuH TOHKHX o6oJIOtleK. TipeAJIOmeHbl Ta.I<He o6o6~eHH;H PHAa anpoKCUMM3QHH 3TOH 
llOBepXHOCTH, KOTOpbie ll03BOJIHJIH6hi yqeCTL BJIIDIHHe nonepetiHOrO CABHra. 

Introduction 

ILYUSHIN [I] and SAwczuK and RYCHLEWSKI [2] have proposed parametric yield surfaces 
for plates and shells based on the von Mises yield criterion. SHAPIRO [3] has extended the 
Ilyushin yield surface to account for transverse shear, but also points out that this surface 
is too complicated for engineering estimates of collapse loads. A number of approxima
tions to Ilyushin's yield surface have been proposed in the published literature. Most 
recently RoBINSON [4] has studied these approximations and has established bounds on the 
accuracy of these surfaces. 

It is the purpose of the present paper to propose extensions to the Ilyushin-Shapiro 
yield surface approximations when transverse shear is included. We assume that the plates 
and shells are made of a rigid-plastic material which obeys the von Mises flow condition. 
It is also assumed that the plates and shells yield on the "average" and that velocities are 
linear through the thickness. Only the axisymmetric problem is considered, but the exten
sion to the more general case is trivial. Our analysis follows in part the ideas of RozEN
BLYUM (5]. 

Symbols 

at. a2, Tt 3 stresses, 
Tt, T2 membrane forces, 

Q13 transverse shear force, 
Mt, M2 bending moments, 

h thickness of shell wall, 
z coordinate direction from middle surfaces, 

To yield stress in shear, 
a0 yield stress in simple tension, 
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f;, m;, q 

To 

non-dimensional membrane forces, bending moments and transverse shear, 
= a0h, 

aoh2 
Mo - -

4
- , 

Qo 

P:, P;, P;,, Prm 
ex, e2, e3, e13 

kt, k2 

= r 0h, 
quadratic terms of the yield surface, 

velocities, 

Et,e2,e3,ex3 
velocity fields, 

.;1, .;2, .;3, 1Jt3 
P; collapse loads, 
P0 collapse load based on exact Ilyushin yield surface. 

1. Lower bound 

Consider the statically admissible stress field for a symmetrically loaded shell element 

(1.1) 

Equation (1.1) contain the assumption of "average" yielding through the thickness. The 
von Mises flow condition is 

(1.2) 

Let us use the notation 

(1.3) 

T; 
!; = To , i = 1, 2, 

Mi 
m;= Mo, 

1 h2 
Mo=4Go' 

q = Q13 - J/ 3 Q_!__~ Q h 
- ' o = io · Qo To 

Using the notation (1.3), we substitute (1.1) into (1.2) and obtain 

(1.4) 

where 

P,2 = tf-t1t2 +ti, 

P~ = mf-mtm2 +m~, Pi= q2
, 

2Prm = 2t1m1 + 2t2m2 - 11m2 - t2m1 • 

Since P,P m~ IPrml, it follows that a lower bound is given by 

(1.5) 

Equation (1.5), without consideration of transverse shear, has been first derived by ROZEN

BLYUM (5]. The yield surface described by (1.5) is shown in Fig. 1. 
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+1 

FIG. 1. Lower bound for yield surface. 

2. Upper bound 

Assume a kinematically admissible velocity field of the form 

(2.1) 
e1 = e1 +zk1, e3 = -(e1 +e2), 

Equations (2.1) contain the assumption of linear velocity distribution through the shell 
thickness. 

Using the minimum properties of the functional [6], 

(2.2) J =To J Hdv- J (Xnu+Ynv+Znw)ds, 
V 

where 

.. ;-[ ]1/2 
H= V ~ (~l-~2)2 +(~2-~3)2 +(~3-~1)2 +~-1JI3 ' 

and considering the velocity field (2.1), i.e. 

~I = e1, ~2 = E2, ~3 = e3, 1J13 = e13 
the conditions 

oJ = o 
oei ' 

oJ 
ok· = o, 

I 

lead to Shapiro's [3] equations 

(2.3) 
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(2.3) 
[cont.] 

Here we have 

P = Pe+2zPek+z2Pb 

2 2 1 2 
Pe = e1 +e2+e1e2+ 4e13, 

1 1 
Pek = e1k1 +e2k 2 + 2 e1k2 + 2 e2k1, 

pk = ki+k~+ktk2. 

Equations (2.3) represent the yield surface in parametric form, i.e. F(Ni, Mj, Q13) = 0. 
Without consideration of transverse shear they were first presented by ILYUSHIN [1]. We 
shall refer to (2.3) as the Ilyushin-Shapiro yield surface. 

2.1. Membrane action 

For this case of constant deformation the velocity field is 

~t =et, ~2 = e2, ~3 = -(et +e2). 

Equations (2.3) reduce to 

(2.4) 

where 

a1 1 

/1 = J (ei+d+e1e2) - 2 dz. 
-al 

Eliminating e1 and e2 from (2.4) leads to the relation 

ti-ttf2+ti = 1 

or 

(2.5) p~ = 1. 

Equation (2.5) is shown in Fig. 2. 
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FIG. 2. Upper bound for yield surface. 

2.2. Moment action 

The velocity field is given as 

~~=zkt, ~2=zk2, ~3=-(~~+~2). 

Using the same procedure as before, we obtain the relation 

mi-m1m2+mi = 1 

or 

(2.6) p~ = 1. 

Equation (2.6) is shown in Fig. 2. Note that Eqs. (2.5) and (2.6) have been first pro
posed by RozENBLYUM [5] and are given here for the sake of completeness only. 

2.3. Membrane-shear interaction 

The velocity field is 

~~=e1, ~2=e2, ~3=-(~~+~2), 'Y/13=e13· 

From Eq. (2.3) 

(2.7) 

where 

I !
01 

( 2 2 1 2 )- ~ d 1 = et+e2+e2e1+4e13 z. 
-at 

The ratios a = e1je13 and b = e2je13 can be eliminated from Eq. (2.7). 
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These ratios are 

211-12 
a=------

2y'3q' 

and the resulting relation satisfying Eq. (2.7) is 

If- 1112 + l~+q2 = 1 

or 

(2.8) P'f +Pi = I. 
Equation (2.8) coincides with the lower bound, thus we have obtained the exact solution 
for this intersection. 

2.4. Moment-shear interaction 

An admissible velocity field is 

~1 = zk1, ~2 = zk2, ~3 = -(~1+~2), 'Y/tJ = e13. 

Equations (2.3) become 

(]0 
(2.9) M1 = jiJ (2k1 +k2)/3, 

where 
DJ 1 

l1 = J [! ei3 +z2(ki+kl+k1kz)J
2 

dz, 
-DJ 

DJ 1 

l3 = J [! ei3 +z2(kl +k~+k1k2)T2 
z2 dz. 

-DJ 

Equations (2. 9) lead to 

(2.10) 

where 

(2.11) 

With the aid of (2.10) and (2.11) we can reduce (2.9) to the quadratic equation 

(2.12) Ab2 -Bb+C = 0. 

In the process of obtaining (2.12) we used the square of the resulting equation, thus 
only the value of b of which its single value is applicable. The "non-uniqueness" of b obtain
ed in (2.12) is therefore a consequence of the structure of the equations. 

In (2.12), we have used the notation 

A = 3(mf-mtm2 +mi)(mf-m1m2 +mi-1)(m1 -2m2)- 2, 

B = 2]1Jq(mi-m 1m2 +mD(m1-2m2)-I, 

c = q2-I. 
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The solution of (2.12) can be written as 

(2.1 3) 

Obviously, b is single-valued if 

(2.14) B2 = 4CA. 

If we now substitute A, B~ and C into (2.14), we obtain the relation 

m~-m1m2 +m~+q2 = 1 

or 

(2.15) P:+P:, = l. 

669 

Again (2.15) coincides with the lower bound and is therefore the exact solution. SHAPIRO 
[3] has stated that the lower bound and upper bound approaches for the exact solution 
coincide, which has been shown for the P9 -P,. and P9 -P, intersections in the present 
paper. Equation (2.15) is shown in Fig. 2. 

3. Comparison of yield surfaces 

ROBINSON [4] has presented an excellent comparison of yield surfaces for thin shells. 
We shall examine these surfaces and propose their extension when transverse shear is 
included. 

3.1. Rozenblyum-Sbapiro-Schroeder yield surface 

RozENBLYUM [5] has suggested that a reasonable approximation to the yield surface 
(2.3) would be 

(3.1) 

SHAPIRO [3] has stated that inclusion of transverse shear would lead to 

(3.2) P~+Pt+P:, = 1. 

More recently ScHROEDER (7] has derived (3.2) in a somewhat more consistant manner. 
We have shown in the preceding section that the yield surface (3.2) reduces to the exact 

surface if either Pt = 0 or P;. = 0. When P; = 0, the Eq. (3.2) is an approximate solution 
to (2.3), the accuracy of which has been examined by RoBINSON [4]. 

3.2. Mroz-Bing-Ye yield surface 

The yield surface recommended by MR6z and BING-YE [8] is 

(3.3) Pt+P,. = I. 

With the inclusion of transverse shear (3.3) would become 

(3.4) 
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The intersection in the P q- Pm plane is exact, according to (2. 8). For the intersection in 
the Pq-Pm plane to be exact, we require that bin (2.12) be single valued. If Pi+Pm = 1 
were a unique solution of (2.9), then for b to be single-valued, we must satisfy the condi
tion Pi = 1 or Pi+ P;. = 1 , which is contradictory to (3.4). Therefore, we conclude that 
for bending-shear interaction this yield surface is not exact, except for the pure shear case 
Pi = 1 and shear-membrane interaction. The use of (3.4) results in a lower bound on 
yield surface (3.2) when shear-bending interaction is considered. 

3.3. llyushin and Rozenblyum yield surface 

The approximation to the exact yield surface (2.3) of ILYUSHIN [1] is written with the 
transverse shear term included as 

(3.5) 2 2 2 1 lP I - 1 Pq +Pt +Pm+ yJ rm - • 

Similarly, the extension of RozENBLYUM's [5] lower bound, which has been derived in 
the first section of the present paper, is 

(3.6) 

Both these surfaces are exact, if either P;. = 0 or Pi' = 0, as has been shown in the second 
section of the present paper. We conclude therefore that any surface of the form 

Pi+Pi'+P;.+KIPrml = 1 

is exact, if shear-bending or shear-membrane interaction is considered. 

3.4. Ivanov yield surface 

IvANOV [9] has given some higher order approximations for the yield surface (2.3). 
If transverse shear is concluded, they are 

(3.7) 

and 

(3.8) 

According to the second section of the present paper, these yield surfaces are exact, 
if either P;, = 0 or Pi' = 0. ROBINSON [4] has also given error estimates on the collapse 
load for the yield surfaces discussed above, when shear is not included. In Table 1, we 
have given a summary of the yield surfaces examined by RoBINSON and we show the modi
fied surfaces when transverse shear is included. In Fig. 3, we show schematically all yield 
surfaces of Table 1. 
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4. Summary and discussion 

ll Lower bound 
Upper bound 

+1 - __________ / _________ , 

I 1 

P/+P.2 s1 
(Sur1acet I ,JJI-VI) 

FIG. 3. Yield surfaces of Table 1. 

Interactions of 
yield surfaces 

of Tab/e1 
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We have extended the approximate yield surfaces examined by RoBINSON [4] to account 
for transverse shear. In Table 1 is shown a summary of Robinson's results and our pro
posed extensions when transverse shear is considered. It may be of interest to point out 
that some of these yield surfaces have been used to find collapse loads when transverse 
shear is included in the analysis. A summary of such solutions is given in Ref. [10]. 

RoBINSON [4] has made a study of the accuracy of the yield surfaces of Table 1 (without 
transverse shear) and has suggested the error bounds given in this table. Although these 
error bounds apply only to the P,- Pm intersection (Fig. 3), we should like to suggest 
that the total range of these bounds, when transverse shear is included, will not be exceeded 
for each particular surface. This conclusion may not apply to surface 11. For this surface, 
the inclusion of transverse shear, as proposed herein, may result in more conservative 
collapse loads as shown in Table 1. Therefore we conclude that the use of the modified 
yield surfaces of Table 1 will give collapse loads which are within the bounds proposed 
by ROBINSON [4]. 
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Table 1 

II 

0:: ..... Ill 
~ 

IV 

V 

VI 

Yield surfaces with 
transverse shear included 

P:+Pf+P~ = 1 

P:+Pf+Pm = 1 

2 2 2 1 
Pq+Pt +Pm+ y'JIPrml = 1 

P:+Pi+P.!+21Prml = 1 

2 2 1 2 [ 1 4 2 ] l/l 
Pq+P, + 2Pm+ 4Pm+Prm = 1 

_!__ [P,2 p~- Pfm) 
4 

2 2 1 p2- 2 

P4 +Pt + 2 m Pi+0.48Pm 

[ 
1 ]1/2 

+ 4 P!, + Plm = l 

Yield surface without 
transverse shear, Robinson [4) 

Pf+P~ = 1 

Pi+Pm = 1 

2 2 1 
Pt +Pm+-!Prml = 1 y3 
Pl+P~+21Prm1 = 1 

2 1 l [ 1 4 2 ] 
112 

P, +2Pm+ 4Pm+Ptm = 1 

_!__ (Pip~- Pfm) 
4 

2 1 p2 -- 2 

Pr +2 m- Pi+0.48Pm 

[ 
1 ]1/2 + 4 P!.+Pfm = 1 

Error bounds on collapse 
load, Robinson [4] 

0.955Po ~ P1 ~ 1.155P0 

0.833Po ~ P2 ~ Po 

0.939Po ~ P 3 ~ 1.034Po 

0.8Po ~ P4 ~ Po 

0.955Po ~ Ps ~ Po 

0.999P0 ~ P6 :;;;; 1.005P0 
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Note added in proof 

Since the writing of this paper it has been pointed put to us (P. G. HoooE, Jr., personal com
munication) that Eq. (2.15) is a lower bound on Eq. (2.3) since the substitution into Eq. (2.9) 
does not lead to an identity. This fact may result in slight changes of the range for collapse loads 
as given in Table 1, when shear is included in the yield surface. 

We feel however, that these changes are insignificant for engineering applications. 
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