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A minimum principle in dynamics of elastic-plastic continua at finite 
deformation 

L. H. N. LEE and CHI-Mou NI (NOTRE DAME) 

THE CONCEPT of employing finite acceleration-variations in formulating a variational principle 
as depicted by the Gibbs-Appell principle in classical mechanics is employed to establish an 
absolute minimum principle in dynamics of elastic-plastic continua in finite deformation. The 
minimum principle is expressed in terms of Lagrangian strains, Piola-Kirchhoff stresses and 
the constitutive relationships developed by GREeN and NAGHDI and which include thermo
dynamic effects. The minimum principle is valid for continuous as well as sectionally discontin
uous acceleration fields. The miniffium principle may be employed to establish governing equa
tions or to solve a problem by using a direct method of variational calculus. The application 
of the principle is illustrated by two examples: one on the non-linear vibrations of elastic beams 
and the other on the impulsive loading of rigid-plastic beams with axial constraints. The results 
of this analysis agree with the analytical and experimental results of the two problems avail
able in the literature. 

W pracy przedstawiono koncepcj~ zastosowania skonczonych wariancji przyspieszenia do sfor
mulowania zasady wariancyjnej, odpowiadaj(lcej zasadzie Gibbsa-Appella w mechanice kla
sycznej; jest to zasada absolutnego minimum w dynamice oSr-odk6w spr~zysto-plastycznych 
przy odksztalceniach skonczonych. Zasad~ t~ wyraiono w opisie materialnym odksztalcen 
Lagrange'a i napr~i:en Pioli-Kirchhoffa za pomQCCl zwi(lzk6w konstytutywnych Greena i Nagh
diego, uwzgl~dniaj(lcych efekty termodynamiczne. Zasada minimum jest sluszna zar6wno dla 
ci(lglych jak i odcinkami nieci(lglych p61 przyspieszenia. Zasad~ t~ mozna stosowac do formulo
wania podstawowych r6wnan jak i do efektywnego rozwi<tzywania zagadnien · za pomoc(l metod 
bezposrednich rachunku wariancyjnego. Zastosowanie tej metody ilustruj(l dwa przyklady do
tycZ<lce drgan nieliniowych belek spr~zystych oraz udarowego obci(li:enia belek sztywno-plas
tycznych z wi~zami w kierunku osi belki. Wyniki analizy SCl zgodne z wynikami analitycmymi 
i eksperymentalnymi, znanymi z literatury. 

B pa6oTe npeACTaBJieHa KOHQeiiUWI npRMeHemui KOHetrnbiX BapRaQ~iH yci<opeHifH AJIH «<K>P
MYJII{POBI<n BapnaQI{OHHOro npnHQI{na, OTBe'tlaiO~ero DPnHI.UUIY rH66ca-AnneJIH B I<JiaCCJl
qecKOH MexaHJU<e; 3TO npHHIUUI a6comoTHoro ~yMa B AnHaMIU<e ynpyro-IIJiaCTHti~ 
cpeA npn I<OHetrnbiX Ae«i>OpM8J..UI.HX. 3TOT UpnHQHII BbipamaeTCH B M8TepiW'IbHOM OilHCaHnH 
Ae<PopMaQifii JiarpaH>Ka H HanpHmeHH;ii Tinonn-KHpxro<Pa npn noMo~ onpeAeJIHIO~ co
oTHOIIIeHnii rpnHa H HarAn, y'tii{TbiBaiO~ TepMOAIUiaMntieCI<Ile 3<P<Pei<Tbl. llpi{HQ.Iln MHHn
MyMa cnpaaeAJII{B Tal< .z:vm HenpepbiBHhiX, Kai< n .z:vm oTpe3KaMn paapbiBHbiX noneii yci<ope
HHH. 3TOT DPIUIUHD MO>KHO npnMeHHTL Tal< AJlH cPOPMYJII{POBI<n OCHOBHbiX ypasHemtii, 1<81< 

n .z:vm 3cPcPei<TnSHoro peweiDUI npo6neM npn noMo~Qn HenocpeACTBeHHbiX' MeTOAOB BapHa
J..UI.OHHoro nctincJieHWI. llpnMeHeHne 3Toro MeTOAa nJIJIIOCTpHpyroT ABa npnMepa, Kacaro~nec.a 
HeJinHeiiHhiX I<OJie6aHnit: ynpyrRX 6aJIOI< n YAaPHOH Harpy3KR >KeCTKo-IIJiaCTntiecl<l(X 6aJIOK 
CO CBH3HMH B HanpaBJieHRR OCR 6aJII<n. PeayJibT8Tbl 8Hann38 COBDllAaiOT C aHaJII{Tn'tlecKHMH 
R 3KcnepHMeHTam.HbiMn peayJibTaTaMn n3BeCTHbiMn na mcrepaTYPhi. 

1. Introduction 

THE VARIATIONAL methods of formulations and direct solutions have been extensively 
investigated in the field of solid mechanics [1]. The concept of virtual work or virtual 
displacement has been the basis of variational formulations in infinitesimal and finite 
elasticity. For static problems, the principle of virtual work leads to the principles of 
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458 L. H. N. LEE AND Cm-Mou NI 

stationary and minimum potential energy. It has been further generalized by the introduc
tion of Lagrange multipliers to yield a family of variational principles which includes 
the principle of minimum complementary energy. For dynamic problems, the Lagrange's 
equation of motion and the Hamilton's principle may be derived from the principle of 
virtual displacement. It is to be noted that, in general, the Hamilton's principle is a sta
tionary principle and not an extremum principle for non-conservative systems. 

In the theory of elasticity, whether linear or non-linear, the steps of establishing a vari
ational principle are reasonably straightforward. Additional considerations must be 
given to that in the theory of plasticity. As a consequence of the irreversible property, 
the constitutive equations of a plastic continuum are expressed in terms of the velocities 
or the rates of stress and strain and not of the stresse~ and strains themselves. Therefore, 
variational and extremum principles of plasticity have been expressed in terms of veloc
ities [2, 3, 4]. In applying these principles, the velocity or rate variations are only allowed 
along some permissible paths [2], such that regions of loading or unloading associated 
with admissible velocity fields must be agreeable with the true regions of loading or un
loading. Special care is usually required in carrying out the velocity variations for a real 
problem. 

A variational principle is not necessarily very helpful in solving problems. The assum
ed velocity fields may not be close to the true one. What is required instead is an absolute 
maximum or minimum principle. In classical mechanics, the Gibbs-Appell variational 
principle [5], which can be deduced from Gauss's principle of least constraint [5], is an 
absolute minimum principle. The principle employs finite, variational differences in ac
celerations and is particularly well suited to the study of non-holonomic systems. A parallel 
minimum principle in dynamic plasticity has been developed by TAMUZH [6] for rigid
plastic bodies involving infinitesimal deformations. 

In this paper, the concept of finite variations in accelerations is employed to establish 
a minimum principle in dynamics of elastic-plastic continua subject to finite deforma
tions. The minimum principle can be used for formulations as well as for approximate 
solutions of problems. Two examples involving motions of beams are given as illustrations. 

2. Kinematics 

Consider a body of a continuum occupying in its natural state a region V and bounded 
by a piecewise smooth surface A. Let the initial position {XK} and the position {xi} at 
time t of a particJe of the body be referred to a fixed system of rectangular Cartesian co
ordinates. Let { U K} be the displacement vector of the particle at time t. The history of 
deformation of the body under influences of external forces is then given by the functions 

(2.1) 

or 

(2.2) 

m = 1, 2, 3, 

M=l,2,3; 
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In general, lower case Latin indices are associated with the coordinates { x;} and upper 
case Latin indices are associated with {XM}· The functions Xm and Ux are assumed to 
be piecewise continuous and differentiable within the domain of the body. 

Consider an element of initial length dS in the neighborhood of a typical point. The 
length at time t of the element in the configuration {xi} is denoted by ds. If at time · t the 
body is conceptualJy unstressed in the neighborhood of the typical point and has its tem
peratures reduced to the initial temperature 00 , the thermo-elastic strains will be released 
and only the plastic strains will remain. Upon unstressing, the length of the element be
comes ds* which may be measured in a configuration represented by the partical position 
{xi}. It is assumed that the functions 

(2.3) 
i= 1,2,3, 

M= I, 2, 3 

and their derivatives are continuous only in the neighborhood of the typical point. The 
configuration {xi} is a conceptual configuration embedded in the memory of the material, 
only under certain conditions, which may coincide with a real configuration. The confi
guration {xi} is used here strictly to characterize the constitutive relationships. 

The finite strains and other variables of the body may be expressed in terms of either 
Lagrangian {Xx} or Eulerian {xi} coordinates. The Lagrangian variable rates, which 
contain no convective terms, are usually preferred for materials with memory. The Lagran
gian strain tensor ExL is given by 

(2.4) ds 2 -dS2 = 2ExLdXxdXL, 

where 

(2.5) 

or 

(2.6) 

Here, a partial differentiation of a variable with respect to X K is designated as ( ), K. ~ KL 
is the Kronecker symbol and the repetition of an index in a term indicates summation. 
The Lagrangian strain may be divided into the elastic and plastic parts by the relationship 

(2.7) ds 2 -dS2 = (ds 2 -ds* 2)+(ds*2 -dS2
) = 2(E](L+E~L)dXKdXL, 

where the elastic strain, EKL, is given by 

(2.8) 2EKL = ( ax~ axk _ ~ · ·) axr . ~xj_ 
axr axj IJ axK axL 

and the plastic strain E~L is given by 

(2.9) 

Equations (2.4) and (2. 7) show that the finite Lagrangian strain can be expressed as 

(2.10) 

Consider that, at timet = t0 , the true displacement field U~ (X1 , X 2 , X3 , to) and velocity 
field if+(X1 , X2 , X3 , t0 ) are either predetermined or given in the body. The superscripts + 
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denote here and in the sequel the true fields. The dot above the letter denotes differentia
tion with respect to time. The true acceleration Ut is to be determined by the minimum 
prin,ciple from a set of admissible acceleration fields, U K, which satisfies the kinematic 
boundary conditions and the continuity condition of the body. The admissible strain 
accelerations EKL may be expressed as 

(2.11) 
.. 1 .. .. .. .. . . 

EKL = T(UK,L+UL,K+UM,Ku~.L+UM,Lu~.K+2U~.Ku~.L). 

Accompanying the strain acceleration variations, there may be stress variations. It 
is known that prescribed external forces depending on the accelerations of a body are not 
admissible in Newtonian dynamics [5]. It is also recognized that the dependence of stresses 
on time rates of strains of higher orders is permissible by existing constitutive theories. 
However, the effects of strain accelerations on the general constitutive relationships of 
specific continua have not been theoretically or experimentally determined. 

3. Constitutive relationships 

The constitutive relationships of elastic-plastic continua at finite deformation have 
been investigated in recent years and notably by GREEN and NAGHDI [7, 8], and by LEE 
and Lm f9, 10]. A Lagrangian representation as well as its alternative forms are employed 
by the former, and a representation involving both Lagrangian and Eulerian variables 
is used by the latter. The Lagtangian representation is employed in the present analysis. 

GREEN and NAGHDI assume that the Lagrangian strain can be divided into two parts, 
elastic and plastic such as it is shown in Eq. (2.10) except that EiL and E~L may be 
non-symmetric while EKL is symmetric. EiL and EKL as given by Eqs. (2.8) and (2.9) 
may be physically measurable and can be the subsets of the conceptually general elastic 
and plastic strains postulated by GREEN and NAGHDI. The essence of their results [7, 8] 
are given, for convenience, as follows. 

The constitutive equations developed by GREEN and NAGHDI are based on the first 
and second laws of thermodynamics, invariance conditions and the classical concept of 
a yield surface. It is postulated that the constitutive equation, in terms of Piola-Kirchhoff 
stress tensor SKL has the form 

(3.1) SKL = SKL(E;.{N, E;{N, 0). 

The yield surface may be described by a function of Piola-Kirchhoff stress tensor, plastic 
strain E~L and temperature 0 such as 

(3.2) f(SKL' E~L' 0) = u, 

where f is a regular (continuously differentiable) function of its variables and u is a scalar 
which depends in some way on the history of motion. It is assumed that 

(3.3) 

where hKL are tensor functions of SMN' E;{N and 0. The constitutive relationships may 
be expressed as 

(3.4)1 
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. ar . 
Whenf = x(x ::/: 0) and (}SMN S 

and 

(3.4h 

when 

EKI.=O. 

of · of· f = x(u = 0) and --SMN+ -0 ~ 0 osMN oO 
or when[< x with x = 0. 

In Eq. (3.4)1 , A. is a scalar function of SMN' El.IN and 0 and fJxL is a symmetric tensor 
function which may be determined by the condition that during loading / = u and con
sequently 

(3.5) 

In order to satisfy the Clausius-Duhem entropy production inequality, the elastic 
strains follow the relationship 

oA 
(3.6) SKL = (!o oEh , 

where eo is the initial mass density and A is the Helmholtz free energy function which is 
afunction of EiL, EKL and 0. Equation (3.6) can be used to express ExL in terms of SKL· 

Although the constitutive relationship by GREEN and NAGHDI as just described is 
of a "rate type", the effects of strain rates are not included. It is known experimentally 
[11, 12] that, in one-dimensional cases, the strain rate does influence the yield stress. 
Empirical relationships between yield stress and strain rate for one-dimensional cases 
have been suggested [13, 14]. General constitutive relationships for rate-dependent mate
rials, excluding thermal effects and at infinitesimal deformations, have also been suggested 
[14, 15]. However, the effects of strain rates and temperature on the constitutive relation
ships at finite strains require further investigations. In the subsequent analysis, it is assumed 
that the constitutive relationship is not influenced by the strain acceleration but may be 
influenced by the strain velocity such as 

(3.7) 

4. Minimum principle 

The true accelerations Ut and EtL are distinguished from all possible ones by satisfying 
the equations of motion in the Lagrangian coordinates: 

(4.1) 

where FM is the body force per unit mass. The true Piola-Kirchhoff stresses, StL, satisfy 
the boundary conditions 

(4.2) 
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on that part of the initial surface area AT, where the surface force per unit area T M is 
prescribed. Nx is the outward unit normal to A. 

Consider a class of arbitrary small acceleration increments, <5UM, which are continuous 
triply differentiable over the domain V, and which vanish over the boundary surface 
Au, where the displacements are prescribed. Multiplying Eq. (4.1) by <5UM, integrating 
the products over V and employing Eq. (4.2) and the Gauss theorem, it is found that 

(4.3) f TM<5UMdA- f StL<5ExLdV+ f eoFM<5UdV- f eoUtr~UMdV= 0. 
AT Y V V 

Equations (4.3) may be restated as 

(4.4) <5accl = 0, 

where 

(4.5) J = f eo 
0f dV+ f SKLEKLdV- f TMiiMdA- f eoFMUMdV 

V V AT V 

and <5acc J is to be interpreted as the first variation of the quantity J as the acceleration 
is varied in accordance with the compatibility and boundary conditions. Equation (4.4) 
states a variational principle, that is, of all accelerations satisfying the given boundary 
conditions, those which satisfy the equations of motion are distinguished by a stationary 
value of the functional J. Furthermore, it may be shown that the true accelerations are 
those which minimize the functional J. 

The functional J is a function of acceleration U M, velocity U M, displacement U M and 
its history. Consider that the body has a prescribed or predetermined configuration and 
velocity field at time t0 • Let U M be any kinematically admissible acceleration field distinct 
from the true acceleration field u:r . The difference between J+(UJt, if:;, UJt) and 
J(UJt, d:;, UM) may be expressed as 

(4.6) J+-J = f ~0 (Ut/-Ui,)dV+ f StL(EJL-ExL)dV 
V V 

-J eoFM(UJt-UM)dV- J TM(U:i-UM)dA. 
V VT 

The first term at the right-hand side of Eq. (4.6) may be transformed to 

(4.7) J ~0 (Ut/- Ui,)dV = J eo UJt(UJt- UM)dV- J ~o (UJt- UM)2dV. 
V 

Using Eqs. (2.11), (4.1), (4.2) and the symmetry property of SxL, the following integrals 
may be written as: 

(4.8) f eo UJt(U:i- UM)dV- f eoFM(UJt- UM)dV- f TM(U:i- UM)dA 
V V AT 

= J {eo(Utr-FM)- [StL(<5ML + UA'i,L)1.x} (U:i+ UM)dV 
V 

J SJL(<5ML + Utr,L)(UA'i- UM),xdV = - J SJL(EJL -EKL)dV. 
y V 
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Substitution of Eqs. (4.7) and (4.8) into Eq. (4.6) yields 

(4.9) 

In the foregoing evaluation, it is assumed that the Piola-Kirchhoff stresses are functions 
of elastic strain, plastic strain, strain velocity, temperature and their history but not strain 
acceleration. As the integral at the right-hand side of Eq. (4.9) is positive definite, an 
absolute minimum principle is established, i.e. 

(4.10) 

If Piola-Kirchhoff stresses depend on stram accelerations, the mmtmum principle 
remains valid for a limited class of acceleration fields subject to the kinematic boundary 
constraints and the requirements that 

EKL(StL- SKL) ~ 0 in V 

and 

(4.11) 

The minimum principle given by Eq. (4.10) shows that the acceleration field satisfying 
the equations of motion and kinematic conditions at each instant is unique. 

5. Discontinuous fields 

It is possible to generalize the minimum principle depicted above to the acceleration 
fields which have discontinuities on the surface dividing the body into a finite number of 
regions inside which the accelerations are continuous. Such a generalization is necessary 
since in practical problems the spatial derivatives of accelerations may be discontinuous. 
The value of the functional J for the entire region of a body is equal to the sum of that 
of its sub-regions such as 

(5. I) 

where Ji is the value of the functional for the ith region which may be bounded by a true 
discontinuity surface a+, and/or an assumed discontinuity surface a. Here, a discontinuity 
surface is a material interface on which the displacement, velocity and stress traction 
must be continuous and they are either prescribed or pre-determined. Thus, by Eq. (4.10), 
the value of the functional Jt of the true acceleration field for the ith region is less than 
that of any other corresponding admissible field or 

(5.2) Jl-Ji ~ 0. 

Eq. (5.2) shows that 

(5.3) J+ -J = }; (Jl-Ji) ~ 0. 
; 
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Therefore, the minimum principle remains valid for a body having discontinuous accelera
tion fields. Using the Green-Gauss Theorem, Eq. (5.1) may be expressed as 

(5.4) J = 2 Ji = f ~ Ul,dV + f SxLEKLdV 
I V-a ~a 

- J (!oFK UxdV- J TxUxdA + J [SxLNx(bML + UM,L)UM]dcr, 
Jl-a AT a 

whereby the last integral is extended over all discontinuity surface cr. Here and in the 
sequel, quantities enclosed by a boldface bracket indicate the jump, that is, the difference 
between their values from the positive and negative sides of the discontinuity surface. 

The minimum principle obtained above may be employed to derive the exact or ap
proximate field equations of any non-holonomic problem. However, the exact solution 
of a non-linear or non-conservative problem is usually difficult to obtain. Nevertheless, 
the minimum principle in conjunction with a direct variational method can be applied 
to obtain an approximate solution of a problem. Two examples are given as follows. 

6. Non-linear vibration of an elastic beam 

Consider the large-amplitude, free vibrations of a flexible rectangular beam of uniform 
width b, and thickness h and of length /. The beam is pinned at the ends to a rigid base. 
The beam is initially straight and subjected to an initial axial tensile force of N0 • The plane 
motion of the beam may be described by the displacements (U1 , U3) in the directions 
of the axial and transverse coordinates (X, Z), respectively. Employing the Bernoulli
Euler assumption, the displacements may be expressed as 

(6.1) 
U1 (X, Z, t) = U(X, t)-ZW,x, 

U3(X, Z, t) = W(X, t), 

where (U, W) are the displacements of a point at the centroidal axis of the beam and 
W,x = 8Wf8X. Assuming that a linear relationship between Piola-Kirchhoff stress and 
Lagrangian strain prevails and that 

(6.2) U(X, t) = 0, 

the functional J, by Eq. (4.5), for the beam in the absence of surface tractions and body 
forces, may be expressed as 

(6.3) J = j { ~ EAW,2x(W,x+ w .• W.'x)+E{ W,xxW.xx+ ; W.'x(W,xxW.xx+ W.'xx) 
0 

+ + W.'xx(W,x W,x+ w~.) J + ~ Elh' W.'xx( W,xx w. XX+ W.'xx) 
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where E is Young's modulus, A and I are the area and moment of inertia of the cross
section, respectively. 

A variation of the functional J with respect fo W may yield an equation of motion of 
the beam. However, it is t~dious to obtain a solution of the non-linear equation. Instead, 
an approximate solution may be obtained by assuming that 

(6.4) W 
. :~enX . = asm-

1
-smwt, "= 1,2,3 

and 

.\\ W.. 2 • :~enX . .\\ u = -w sm-
1
-smwtua. 

Using Eq. (6.4) in the condition t5acc J = 0, omitting the second and higher order terms, 
and equating the coefficient of sinwt t5a to zero, it is found that 

(6.5) 

where 

(6.6) 

The approximate relationship between the frequency w and the amplitude ratio ajh, 
as given by Eq. (6.5), agrees very well with the analytical and experimental results by 
RAY and BERT [16]. 

7. Impulsive loading of a rigid-plastic beam with axial constraints 

As another example, the subject problem solved by SYMONDS and MENTEL [17] is consid
ered. A rectangular beam (b x h) of length 21 and mass m per unit length is subjected to 
a very short pulse of uniform pressure that imparts a uniform velocity v 0 to the beam, 
with zero initial displacement. The ends of the beam are pinned to immovable supports. 
It is assumed that the Piola-Kirchhoff stress versus Lagrangian strain relationship of the 
material is rigid-plastic and that the strain-rate effect is negligible. At any section, there 
is an axial force N and a bending moment M. Plastic deformations occur at regions or 
surfaces of discontinuities satisfying the plasticity condition [17] 

(7.1) 

where M 0 is the limit moment in pure bending and No is the axial force at yield in simple 
tension or compression. The corresponding flow rule [17] takes the form 

(7.2) 
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where e is the strain at the beam center-line and "P· is the curvature; dots indicate time 
rates. 

An approximate solution of the problem may be obtained by assuming that Eqs. (6.1) 
and (6.2) hold for the present problem and an admissible velocity distribution, which is 
symmetric and given by 

(7.3) 

. X 
W = -v for 0 ~ X ~ ~I, 

~I 

W = <5 and W = v for ~I ~ X ~ I, 

where X = ~/ is a surface of discontinuity in W. Here v, ~ and <5 are functions of time 
with the initial conditions t = 0, v = v 0 , ~ = 0 and <5 = 0. For the rigid-plastic beam, 
ExL = 0 everywhere except at the surfaces of discontinuity, it is assumed that the square 
of the slope of the deflection curve is small as compared with unity and that the axial 
force N may be taken as constant along the beam. With these assumptions and the velocity 
field by Eq. (7.3), the functional J, by Eq. (5.4), for this problem may be expressed as 

(7.4) J = ; (V~-/v)2/ + mV2l(l-~)+2(M-Nd) V~~:/" . 

Equating the derivatives of J with respect to v and ~ to zero, the following two equations 
are obtained: 

(7.5) 

and 

(7.6) 

Equation (7.5) shows that 

and 

· M-N<5 3 
~ =- ~/ mvr 

v = v 0 = constant 

(7.7) <5 = v 0 t for 0 < t < t*,+ 

where t* is the time when~ first reaches the value of unity.lf has been shown by SYMONDS 

and MENTEL [17] that Eq. (7.2) may be expressed as 

(7.8) 
N N 0 6 
N 0 = lM0 • 

Employing this equation and the plasticity condition Eq. (7.1), the solution of ~ from 
Eq. (7.6) is found to be 

(7.9) z: 2 = 6Mo ( 1 N5v~ !:___) 
~ mv0 P + 12M

0 

1 
· 

The timet* may be determined by Eq. (7.9) by setting~ = I. 
For t ~ t*, ~ = 1 = constant, there is one surface of discontinuity in acceleration at 

the center of the beam. Assuming that 

(7.10) · Xv 
W=-

1 
for 0 ~X~ I. 
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The functional J by Eq. (5.4) may now be written as 

(7.11) [ 
m/v

2 v] 1=2 -6-+(M+N~)T. 
Minimization of J with respect to v yields an equation which leads to the solution 

(7.12) v2 = vz - 6 [M2(o-~*)+ N6(o3-~*3)] 0 M0 mP 0 12 ' 

where o* = v 0 t*. The maximum deflection which occurs at v = 0, may be readily de
termined by Eq. (7.12). The foregoing results are identical to those by SYMONDS and 
MENTEL [ 17]. 

8. Conclusions 

An absolute minimum principle, which is based on the concept of acceleration-varia
tions, has been developed for dynamics of elastic-plastic continua at finite deformation. 
It has been shown that the principle is valid for continua whose constitutive relation
ships are independent of strain-accelerations; for such continua, there are no stress vari
ations accompanying strain-acceleration variations. The limitations of the principle for 
strain-acceleration dependent continua may be further evaluated when specific constitutive 
relationships are known. 

The minimum principle is valid for continuous as well as sectionally discontinuous 
acceleration fields. The minimum principle may be employed to establish governing 
equations or to solve a problem by using a direct method of variational calculus. 
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