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On the description of cyclic deformation processes using a more 
general elasto-plastic constitutive law 

0. BRUHNS (BOCHUM) 

To DESCRIBE large elasto-plastic deformations, a constitutive law is assumed that includes: a) a hy
poelastic behaviour in the elastic range and b) a combination of "incremental theory" and "defor
mation theory" in the plastic range. The proposed yield condition permits an expansion as well 
as a translation of the yield surface. Taking into account a more general non-linear work-harden
ing rule some typical phenomena observed during cycling experiments can be described. 

Dla opisu duzych odksztalcen spr~zysto-plastycznych wprowadzono r6wnanie konstytutywne 
uwzgl~dniajllce a) wlasnosci hypospr~zyste w obszarze spr~zystym, b) kombinacj~ "teorii przy
rostowej" i "teorii odksztalceniowej" w obszarze plastycznym. Zaproponowany warunek pla
stycznosci zezwala zar6wno na rozszerzanie si~ powierzchni plastycznosci jak i na jej przemiesz
czenie. Uwzgl~dniajllc og6lniejsze, nieliniowe prawo wzmocnienia, opisac moi:na szereg ty
powych zjawisk wyst~pujllcych w doswiadczeniach z obci~eniem cyklicznym. 

II pe.IVIaraeTCH onpe,l:{emuo~ee ypasHeinle, ozm:cbmaro~ee KOHetffibie ynpyro-nJiaCTWieCIGI;e 
.l:{e<}>opMaU:H:Il C ~eTOM a) rllUoynpyrJlX CBOHCTB B ynpyroH o6JiaCTH, 6) KOM61lHan;llll ".l:{e<}>op
Man;llOHHOH TeOpllll'' ll ''Teopllll TeqeHilH'' B nJiaCTWieCKo:H o6JiaCTil. IIpeWio>KeHHoe ycJIOBile 
Te~eCTil OIIHCbmaeT KaK pacnmpeHHe llOBepXHOCTil nJiaCT}fqHOCTil, TaK H ee CMetqeqe. 
C ~eToM 6oJiee o6~ero, HeJlllHe:HHoro 3aKOHa ynpo~eHJlH, Mo>KHo OUilCaTL pH.!:{ xapaKTepHbiX 
HBJieinlH, B03Hm<aiO~IlX npll ollbiTax Ha I.UU<JlllqeCKoe Harpy>Kelnle. 

1. Introduction 

ONE of the aims of present deliberations in the theory of plasticity is to select from the 
large number of suggested constitutive laws for large plastic deformations those which 
approximate most to a real material behaviour. 

Therefore, two things are evidently necessary. First, the different constitutive laws 
have to be applied to simple deformation processes- for example tension, simple shear 
and pure shear. Then the special effects of these formulations can be observed. 

In the second place, we must compare these theoretical results with interpretations 
of experiments, to be able to judge the quality of the formulation. 

Let us begin with the second: 
There are already some interpretations of stretching and shearing experiments which 

enable us to obtain at least qualitative statements of real material behaviour [I to 5]. 
But useful results of experiments for a quantitative judgement of deformation processes 
with finite elasto-plastic deformations are not so far known. 

On the theoretical side, we have better results: 
Here, the research on the different formulations of constitutive laws in connection 

with loading processes only seems to be completed (see e.g. [6, 7](1)). Besides the effects 

(1) Especially in [6], further' bibliography can be found. 
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536 0. BRUHNS 

of higher order discussed there, now another group of effects can be noticed which are 
mainly caused by subjecting the tested model to - slowly proceeding - cyclic loading. 

Particularly in the field of cyclic loading processes, extensive research has recently 
been carried out. Thus it has been shown experimentally that for cyclically varying exter
nal loads or displacements there exists a limiting steady state to which the cycles tend 
after an initial period of expansion (see especially Ref. [5]). 

It should be emphasized here that the known hypotheses of isotropic as well as kine
matic work-hardening models are not in general capable of representing this asymptotical 
behaviour of the cycles. 

Thus, for instance, for stress cycling between prescribed limits in uniaxial tension and 
compression, the isotropic work-hardening model predicts transition to a purely elastic 
oscillation between the prescrited limits, whereas the kinematic work-hardening model 
predicts steady plastic cycling after the first cycle of loading. A similar situation occurs 
for cycling with prescribed strain amplitude involving plastic deformations. 

BACKHAUS [8], BESSELING [9], IWAN [10], KAFKA [11] and MR6Z (12, 13] try to elimi
nate this discrepancy between experiment and theoretical results - in part in a very 
different manner. All these statements, however, succeed only with great difficulty in 
formulating a constitutive law- representing real material behaviour; moreover, these 
considerations are restricted to small deformations only. 

The purpose of the present paper is to compile a constitutive law from certain formu
lations for the description of finite elasto-plastic deformations capable of really describing 
cyclic loading processes. 

We limit our investigation to phenomenological treatment of finite elasto-plastic 
deformations. 

2. The constitutive law 

2.1. General remarks 

In what follows, elastic deformation processes will be described by the deformation
relatione) 

(2.1) d~ = d( 
(el) 

Since it is well known that unloading of a body also runs elastically, we shall add this 
unloading here - without any great distinction between loading and unloading. 

(2) Here and in what folJows we denote by 

al tensor of strain rate, 

al stress tensor, 

T1 stress deviator, 
( )/ 0 covariant derivation with respect to time, 
(') partiaJ derivation with respect to time, 

e.g. aL!o = lTL+d;at-dia! 
etc. 

All these quantities are relative to a body-fixed coordinate system ~i. 
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ON THE DESCRIPTION OF CYCUC DEFORMATION PROCESSES 537 

For elasto-plastic deformations a junction of elastic and plastic parts of strain rate 

(2.2) d£ = dl+dL 
(el) (pl) 

will be used (see also [14]). 

2.2. Elastic deformations 

The elastic part of strain rate is described by the equation e) 

(2.3) di 1 i / 1 • r <5i 
k = 2G r k o + 9 K a r k • 

This approach coincides with a hypo-elastic behaviour of the material. It will be shown 
that this is at least a good approximation for all reasonable assumptions concerning the 
elastic part of deformations involved in the complex behaviour of material. 

2.3. Elasto-plastic deformations 

The plastic part of elasto-plastic deformations is regarded as incompressible. Further
more, the deformations are assumed to be isothermal and depending only on stress. 
or strain history. 

Under these assumptions, the constitutive law consists of: 
(a) a condition of plasticity, limiting the range of elastic deformations in relation to 

that of elasto-plastic deformations, 
(b) a deformation law which connects stresses and strains (or their increments) and 
(c) a hardening rule governing the changes of the yield condition during elasto-plastic 

deformation. 

Condition of plasticity 

The general form of the condition of plasticity can be described by the tensor function: 

F(ak; ... )=A +A~rf+Ai:sr~r;+ ... = 0, 
(2.4) (0) (I) (2) 

= f(rL; ... )-k 2 (w) = 0 

with 

and 

(2.5) f(rl; .. . ) = A~rf+AL~rfr:+ ... 
(l) (2) 

(see e.g. [15]). 

C) The constants of material: Young's modulus E, shear modulus G, modulus of compression: Kp 
and Poisson ratio fl depend on each other by the well known relations: 

10* 

l+fl 
K = 2G--, E = 2G(1+fl). 

3(1-2fl) 
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.538 0. BRUHNS 

After simple conversion, this can be written in the special form: 

(2.6) F(a~; ... ) = Af:s('l'~-~X~)('l';-!X;)-k2 (w) = 0. 

(A special version of this condition of plasticity was first studied by BALTOV and SAWCZUK 
[16]). A more special form is the yield condition according to MELAN-PRAGER-SHIELD 
(ZIEGLER-KADASHEVITCH)NOVOZHILOV [17 to 19, 21] 

(2.7) 

Here, the tensor !X~ is defined by 

(2.8) 

Deformation law 

~Xilo = cd~. 
(pi) 

As the deformation law, we choose according to LEHMANN [14] 

(2.9) (a) dk = A oF (type I), 
(pi) 0(1~ 

(2.10) (b) d~ = 'l'Llo (type 11), 
(pi) 

Connecting these two formulations by means of a parameter "' the deformation law 
of elasto-plastic deformations can be represented in the form: 

(2.11) 

Substituting now the condition of plasticity (2. 7) into (2.11 ), we obtain: 

(2.12) 

The still free parameter ~ of this relation will be determined as follows. The secondary 

condition of the condition of plasticity F = 0 leads us to 

. 2( i i) ( k k' ) dk2 . 0 (2.13) F = 'l'k-!Xk 'l'do-!Xi o - dw w = · 

On the other hand, valid for the plastic work w is 

(2.14) w = 'l'Ldf, 
(pi) 

or 

(2.15) 

Using (2.13), we can from this . determine the parameter i whence we finally obtain: 

[ {1-c")(T:- a;)- ~~ T;" J r.lo 
.(2.16) dk = ('t'~-~XL)+?e'l'llo+dl. 

dk2 
/) 

ckz + 2dw ( 'l':- !X~) 'l'; <e 

This law is now of such a form that it combines the effect of four different deformation 
laws. 

http://rcin.org.pl



ON TilE DESCRIPTION OF CYCLIC DEFORMATION PROCESSES 539 

If we put for instance: c = 0, then we obtain automatically ctf = 0 and a deformation 
law with isotropic hardening: 

(2.17) dk = " -----;Jk2 - I ---;n--n- rk + rll o + dk, . I [ I ] r~ r; I 0 
• • l . 

"-- Tn Tm (e/) 

dw 

which can be reduced to a formulation according to type I or type 11 according to the
choice of the parameter. 

"=0 

(2.18) (type I), 

(2.19) 
. 2 . . 

dk = ---rklo+dk (type 11). 
dk2 (el) 

dw 

The same also can be said for c =1= 0. According to the choice of u, the law wiiJ be reduced 
to a formulation of type I or type 11. 

Hardening rule 

The upper bounds of the parameters " and c include the hardening rule k 2
, so far 

still undetermined, as a function of the plastic work U'. Usually, this function is determined 
by adapting the deformation law (2.16) to the uniaxial tensile test- i.e., we define the 
function k 2 (w) in such a way that the deformation law becomes independent of the two 
parameters w and c. 

6 

k2_£02 
o- 3 o 

e 
FIG. 1. Non-linear hardening-rule. 

As formulation for the tensile test, we use a general statement 

(2.20) ~ + ---::------:-:(J:---- (_!!_)m- 2 

e = E 3Bf2m C10 , 
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540 0 . BRUHNS 

which represents the well known linear formulation for m = 2, which is sublinear for 
m > 2 and hyperlinear for m < 2. This general formulation is very well adapted to ap
proximate diagrams of stretching experiments - much better than would be possible 
by a linear formulation (see [20]). 

After extensive calculations, this process of accommodation provides the relation: 
I m-2 

(2.21) 
2 3Bw m cm 3Bw m cm 

{ )-[ )-] }2 
F(w) = 3"~ (I+ 2a~ I- B(m- I) (I+ 2af + li(m- I) 

which by substitution of 

(2.22) 

becomes: 

(2.23) 

k'5 = ~ a'5 and C = cm 
B(m-1) 

By differentiation with respect to w, we find finally : 

m-2 1-m 

+-c<m-I>( I+{~)"'}(!+ !r)--m 
3. Examples 

3.1. General remarks 

The constitutive law thus investigated will now be applied to three simple deformation 
processes: 

(a) to an uniaxial tensile test, 
(b) to simple shear and 
(c) to pure shear. 

i6 
x1 

Uniaxial tension 

T:r x1 

Simple sHear 

FIG. 2. Deformation processes. 

I:T~~I 
x1 

bo 

Pure shear 
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ON THE DESCRIPTION OF CYCLIC DEFORMATION PROCESSES 

Thereby we denote: 
{} the tangent of shear angle, 
e the normal strain in tension and in pure shear, 
(] the normal stress in tension and in simple shear, 
r the shear stress. 
First, we shall study the tensile test. 

3.2. Tensile test 

541 

In formulating the constitutive law, we had to adjust the hardening rule to the tensile 
test in order to determine the free parameters. 

Vice versa now, seeking a general solution of tensile test it must be possible to formu
late this in closed form by the general hardening rule (2.20). 

For loading only this result will obviously be trivial- and therefore is not further 
dealt with here. More difficulties will arise from cyclic loading processes. 

In this case, the solution (2.20) only can be used for the first half-cycle of the deforma
tion process. All subsequent cycles are relatively undetermined as to their shape. Careful 
consideration of the particular deformation history enables us to describe them easily 
in the form of a more general recurrence formula. 

For the nth cycle, we have 
Step 4n+ I 

C5 
Step 4n+2 

Step 4n.,.3 

FIG. 3. Cyclic tension-compression curve. 

_ (] 2m (]o { \.'; [' (J4i-1 l]m-l ~ [' (J4i-21Jm-l e--+------/ ·- - +/1 --
E 3(m-I) B ~ I (]o I ~ ! (Jo 

1=0 . 1=0 . 
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Step 4n+2 

(J 

c:=-+ 
E 

Step 4n+3 

(J 

c:=-+ 
E 

Step 4n+4 

0. BRUHNS 

2m .!!_!l_ {[l~l]m- 1 
_ ~[I (J4 i IJm- 1 

_ ~1 [I·(J4i:.!_l]m-1 
3(m-l) B \ (Jo ? (Jo .? (Jo 

1=0 1=0 

+ $.[1 a~:z lr' + i[l a~:·lfl 
2m .!!_!l._{ ~[I(J4i+l]m- 1 _ ~[I(J4;1Jm-l 

3(m-l) B L.J (J0 L (J0 
i=O i=O 

-$.[1 a~:· lr' + $.[1 a~:' lrl 

c: = ~ + 2m .!!_!l._{- [l~l]m-1 + ~[I (J4i+21Jm-l + ~[I (J4i+t j]m-1 
E 3(m-l) B (Jo I .? (Jo I .? (Jo I 

1-0 1=0 

Thereby, we have the initial conditions: 

.!!!.__ = { 0, 
(Jo I' 

(X= 0, 

i < 0, 

i = 0, 

i ~ 0. 

Moreover, the condition of constant yield surface during elastic deformation processes 
leads to some transition conditions. Thus, 

(J4i = 3rx4i-1- (J4i-t, 
(J4i+2 = 3rx4i+1- (J4i+l· 

Now, the results of these considerations are presented in Figs. 4 and 5(4
), linear har

dening hypothesis (m = 2) in Fig. 4 and non-linear hardening hypothesis (m = 2.83) 
in Fig. 5 within the cyclic tension-compression behaviour between fixed limits of de
formation. 

Thereby it is shown very clearly (Fig. 4) that in the case of linear hardening neither 
an isotropic work-hardening model ( cmf B = 0) nor a kinematic hardening model (cm/ B = 1) 
is able to represent real material behaviour. An isotropic hardening model describes pure 
elastic behaviour after a transitory period of permanent increase between the fixed limits 

(
4

) The results presented in this paper are based on brass alloy 70/30 with data: 
G = 300 Mp/cm2

, p = 0.3. 
B = 52.9 Mp/cm2

, 

O'o = 0.9 Mp/cm2
, 
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ON TilE DESCRIPTION OF CYCLIC DEFORMATION PROCESSES 543 

(J 

FIG. 4. Tensile test under cyclic loading m= 2. 

(J 

c; =0.5 
4 

FIG. 5. Tensil test under cyclic loading m = 2.83. 

(dash-dotted line), whereas the rule of kinematic work-hardening implies a steady f,tate 
after the first cycle of loading. For every intermediate value of cmfB, there will also appear 
a behaviour as for cmfB = 0 (isotropic behaviour). 

It is otherwise, however in sublinear hardening (Fig. 5). Indeed, for cmfB = 0, the 
effect above described of approaching the pure elastic deformation process can be seen. 
But every change of the parameter cmfB (here cm/B = 0.5) makes the loading cycle go 
to a limit state after an initial phase of increase. 
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544 0. BRUHNS 

3.3. Pure shear, simple shear 

For the simple geometric conditions of a uniaxial tensile test, a closed solution of this 
problem may be found. In the cases of pure shear and simple shear, however, a numerical 
integration of a system of 5 non-linear differential equations of 1st order is necessary. 
The results of these extensive calculations are shown in Figs. 6 to 9. Fig. 6 and Fig. 7 
represent pure shear, Fig. 8 and Fig. 9- simple shear. 

Thus in Fig. 6 and Fig. 8, the final values of stresses or strains in each of the half-cycles 
are plotted versus the number of these half-cycles. That happens alike for a deformation 
law of type I (KB/m = 0) and for a combination of type I+Il (i<B/m = 0.1). In Fig. 7 
and Fig. 9, the progresses of the second-order effects are finally plotted against the variable 
shear angle (here only for a combination of type I+ II). 

2.0 

1.0 

lrl,ltH=2.5-10-2 cm 
8 
a 

2.0 
01 

1.0 
05 
1.0 

n 
1.0 

a5 

0.1 4·10-3 

0 ~-o (I) 

lrl, hJ/=2.5·10-2 cm 
T 
0 
Q1 

05 
1.0 

r-~~~-7--~~~n~1a 

E 
~8-a1 (I +II) 

05 

01 

0 

FIG. 6. Amplitudes of loading (pure shear) m = 2.83. 

z,;,8 .. 01 : Type I+II 

c; =0.5 

1.0 

FIG. 7. Normal strain under cyclic loading (pure shear) m= 2.83. 
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ON THE DESCRIPTION OF CYCLIC DEFORMATION PROCESSES 545 

cm 
8 /r/, hJI-1.5·10-2 cm 

8 
0 

0 

/r/, hJ/=2.5·10-2 

0.1 0.1 

0.5 0.5 
1.0 1.0 

1.0 1P .5 
05 

Q04 
0.1 

0.1 
001 

/61 
~ =0 (I) 

0 0 

/cri 
~=0.1 (I~ II) 

FIG. 8. Amplitudes of stresses during cyclic loading (simple shear) m = 2.83. 

~8 =0.1 : Type I+II 

c:=0.5 

Fio. 9. Normal stresses under cyclic loading (simple shear) m = 2.83. 

\Ve must emphasize in particular that the curves of Fig. 7 are obviously in qualitative 
accord with the experimental results of RosE and STUWE [4]. 

All four figures show very clearly that both parameters (x and C) can be so determined 
that stresses as well as strains in pure and simple shear aim at a fixed limit with an increas
ing number of half-cycles n. 

4. Concluding remarks 

Taking a special form of deformation law which comprises the deformation laws 

studied so far (') by suitable choice of the parameters (" and C = m":__ 
1 
~) (the pa-

(
5

) Except those deformation laws based on already initially anisotropic yield conditions. This will 
be dealt with a further paper. 
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546 0 . BRUHNS 

rameter " represents the influence of type 11 in the deformation law, the parameter C 
denotes existing kinematic hardening), and taking a more general (non-linear) hardening 
model, we can describe in a simple manner real material behaviour in such deformation 
processes as uniaxial tension, pure shear and simple shear. 

Further quantitative experiments are necessary for a more exact determination of 
the parameters " and C. 
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