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Initial strains in multiphase media
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CZ. EIMER (WARSZAWA)

IN THIS PAPER, the problem is solved of determination of the strains of a muitiphase medium
when the initial stresses or strains (distortions) of the individual phases are known. Distortions
which are homogeneous within the grains are considered, and they may follow from various
sources (such as thermal expaasion). The phase strain — i.e. the mean real strain for a given phase
following from the interaction of distortions and elastic strains is determined, and also the macro-
strain — that is, the mean strain for the entire medium together with the macro-effect of distor-
tions (e.g. the thermal expansion coefficient of the material). The internal geometry of the medium
is of random character and may be described by the method of correlations. The solution in the
elastic range is represented in an integral form by means of the Green tensor and the polari-
zation tensor method.

W pracy rozwiagzano problem wyznaczenia odksztalceni osrodka wielofazowego, gdy znane sa
naprezenia lub odksztalcenia poczatkowe czyli dystorsje poszczegélnych faz. Rozwaza sie
dystorsje jednorodne w obrebie ziaren jakiegokolwiek rodzaju, np. wynikajace z rozszerzalnosci
cieplnej, i okresla si¢ odksztalcenie fazowe, tzn. érednie odksztalcenie rzeczywiste dla danej
fazy, wynikajace ze wspéldziatania dystorsji i odksztalcen sprezystych, oraz makro-odksztalce-
nie, tzn. odksztalcenie $rednie dla calego oérodka, a tym samym makro-efekt dystorsji, np. wspél-
czynnik rozszerzalnosci cieplnej materiatlu. Geometria wewnetrzna o$rodka jest przypadkowa
i opisuje si¢ ja metodami korelacyjnymi. Rozwiazanie w zakresie sprezystym przedstawia sig
w postaci calkowej za pomoca tensora Greena i korzysta si¢ z metody tensora polaryzacji.

B paGore pemena 3agaya o0 ompejenennu nedopmaumii B mHorodasHoil cpeme B ciyuae,
KOT'[la M3BECTHbI HauaJbHbIe HANPAMKEHUA WIH Jedopmaluy, TO eCTh JUCTOPCHM OTHAENBHBIX
¢as. PaccmarpuBaroTcsi MHCTOPCHH IPOH3BOJIBHOTO THIA OJHOPOJAHBIE BHYTPH OTHEIBHBIX
3epeH, HANpUMEP BO3HMKAIOIME B Pe3y/sTaTe TEILIOBOro pacuiMpenns. Onpemensorcs da-
30Bble JlehopMAaLHE, TO €CTh cpejiHHe AeficTBHTeNbHbIe Aedopmauuy And AaHHoi daskl, che-
OYIOlIHE H3 B3aUMOACHCTBHMA MUCTOPCHI M YOpPYrux AedopManmii, a TakiKe Makpo-Aedopma-
MM, TO ecTh cpefHue Aecdopmaumu i Beeit cpempl. Tem cambim m3yuaercs maxpo-addext
mHMCTOpcHii, Hanpumep KoaddHIMeHTa TEMIOBOro pacliHpeHMs. BHYTpeHHAA TreoMeTpHs
cpefibl ABJIAETCA CIIy4aiHOi | OMHMCBIBAETCH KOPPENALHOHHLIME MeToaMH., PelieHne B ypy-
ro# obnacTu NpeAcTaBieHO B MHTErPATLHOM BHIE C IOMOLIBIO TeHsopa I'puua, mpuuem Mc-
NOJIB30BAH METOJ TEH30pa MOJIAPH3ALH.

INITIAL strains and stresses are usually understood as strains and stresses which appear
independently of the external loads. They are mainly defined according to their cause
by calling them thermal, shrinkage, casting, etc. strains or stresses, though the terminology
usually refers to the stresses. If they result from certain loads which have been removed,
we term them residual stresses. From the point of view of the scale of the phenomenon,
certain authors distinguish between the stresses of first, second and third orders (or even
a greater number of orders). They correspond to the stress field nonhomogeneity in the
macroscopic scale or in the scales of grains, particles or lattice constants. The first non-
homogeneity is of a deterministic character and often follows from the material non-
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homogeneity; the second is stochastic and follows from the grain structure (multiphase
media), the third one results from the atom-scale phenomena.

In the present paper, we shall deal with initial strains of the second kind, within the
framework of the linear theory of elastic multiphase media. The medium is assumed
to consist of a finite number of phases (regions filled by one type of material), each phase
consisting of a countable number of grains (regions filled by a homogeneous material,
including its spatial orientation). The internal geometry is of random type (distribution
and density, mutual position and form of grains), and is described by probabilistic methods;
its changes occurring during the physical process are negligible — a more detailed descrip-
tion of the theory is given in [1]; thus the assumption of infinitesimal strains holds true.
The stress and strain fields are assumed to result from initial strains (distortions) which
are homogeneous —i.e., strains which would be homogeneous within a single given
grain after removing the constraints (the continuity condition on passing the grain bound-
ary). In various grains belonging to the same phase, the initial strains may differ only
by their orientation — i.e., the corresponding strain tensors are fixed (constant) with
accuracy up to an orthogonal transformation (in the sense of the full group of orthogonal
transformations, including the mirror reflection). For different phases they are generally
different, possibly also equal to zero. The source of such initial strains may be, for example,
the temperature, and we shall confine ourselves to a stationary and homogeneous tem-
perature field. Owing to the generally different elastic and distortional properties of the
phases, they produce initial strains and stresses.

The aim of the present paper is to determine the macroscopic effect of distortions —
that is, the macrodeformations of the medium and of the individual phases. In such a man-
ner, we can calculate such magnitudes as the macroscopic coefficient of thermal expansion,
the drying shrinkage coefficient, the electro- and magnetostriction effect, etc. The problem
has been inadequately treated in the literature so far, and — in addition — only in the
context of the thermal expansion coefficient, where certain approximate formulae were
obtained. They were derived, in particular, by W. M. LEVIN [2] for an isotropic two-phase
medium in which the relations are considerably simplified. B. W. RoseN and Z. HASHIN
[3] generalized the problem to a two-phase anisotropic medium and to multiphase media.
In the both cases, the variational Hashin-Hill approach is utilized, making it possible
to bound the macro-value sought for in a certain interval, provided the concentrations
of individual phases are known. The bounding formulae contain the macro-moduli of
elasticity (the bulk modulus in particular), and for a two-phase medium the inequalities
are transformed into equalities. Thus the problem is reduced — under known elastic
and thermal properties of the phases — to the determination of the macrotensor of elasticity
which, by means of such a variational approach, may be bound in a definite interval.
A discussion of thermal stresses in the context of rheological phenomena in fiber-reinforced
media was presented by A. R. T. Da SiLvA and G. A. CHApwick [4]. All those papers
try to “circumvene” in a certain sense the effect of internal geometry of the medium,
giving up the determination of an exact solution. In the present paper, in contrast to those
mentioned above, we shall concetrate our attention upon the problem and derive an
accurate solution (i.e. with a prescribed accuracy), while the physical background of the
phenomenon will play a secondary role.
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In the present section, we shall consider the relations between the macro-quantities
and the phase quantities, and define the quantities sought for, beginning from the
description of a distortion. The problem may be formulated in two ways, reflecting the
dualism of the methods of forces and deformations.

Let us separate a grain from the medium and consider it under the conditions of the
second boundary value problem, the stress vector at the boundary being equal to zero.
Subjecting the grain to a homogegeous initial strain (distortion), we obtain the respective
strains and stresses:

@.1) =& a=0.
Let us consider, on the other hand, the same problem under the conditions of the

first boundary value problem with vanishing displacements at the boundary; then we
have:

2.2) €e=0, o=d

Here € and o denote the initial strain and stress tensors, respectively — i.e. the distortions
and selfstresses. The tensor quantities are written here and henceforth in absolute nota-
tion (unless otherwise explicitly indicated), the indices at the symbols denote the numbers
of phases, which enables us to avoid double index notation.

In the first case [Egs. (2.1)], in order to eliminate the results of distortions, a homo-
geneous stress field has to be applied

(2.3) ¢ = —Cel= o',

where C is the elasticity tensor of the medium; in the second case [Egs. (2.2)], a homoge-
neous strain field must be applied

(2.4) € = —Sa? = ¢,

where S is the deformability tensor. The senses of the vectors o and €? are clearly oppo-
site; strictly speaking, the scalar products o? - €? are negative owing to the positive defi-
niteness of the matrices C, S. Tensors € and & will be considered as 6-dimensional vectors,
and the fourth rank tensors C and S — as symmetric matrices containing 6 x 6 terms,
while CS = I, I being the unit matrix.

By €{ we denote the distortion tensor for the phase i having a fixed reference orientation
in a given (arbitrary) phase, usually such that the principal axes of the tensor have the same
senses and directions as the coordinate axes of the Cartesian coordinate frame (uniform for
the entire medium). By €? is denoted the phase distortion tensor; this is the strain averaged
over all orientations of grains belonging to the given phase and separated from the phase
without changing their positions and orientations, and remaining in the conditions indi-
cated by the Eqgs. (2.1). The symbol €; represents the phase strain tensor — that is, the strain
occurring in the real medium (with internal constraints), averaged over the given phase.
€ denotes the macrostrain — i.e., the strain of the real medium averaged over all the phases;
if it is exclusively produced by distortions, it will be called the initial strain. In a similar
manner are defined the quantities of, o¢, o;, . A dash over the symbol denotes every-
where the result of the averaging operation, and if the symbol does not possess the phase
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index, the averaging includes all the phases —e.g., € = {€), while in the opposite case,
averaging is limited to the phase indicated —e.g., €; = {€);. It should be remembered
that the symbol { ) denotes averaging at a fixed point over all elements of the population,
by contrast with the symbol { );, which denotes averaging over those elements whose
points are located within the phase i. If the random fields considered are stochastically
homogeneous and ergodic, then the process of averaging over the population may be re-
placed by averaging over the volume, either total or concerning a single phase i.

The relations between the macro-magnitudes and the phase magnitudes are as follows:

@) e= Y,

i
_ v _
2.6) = na,
i
where »; denotes the concentration of the phase i — that is, the ratio of its volume to the
entire volume (mixture rule). Remaining within the linear domain, we may postulate the
following relations (which will result later from accurate considerations):

@7 €= ol = D auel = D' aidt = D e,
k k k k

28) & = D buel = O Buct = D bjel = D Bhat.
k k k

Here a;, ... are certain constant tensor coefficients of the fourth rank (in absolute no-
tation); the indices denote the phase numbers. Our considerations are aimed at determi-
nation of the coefficients since they combine the known initial values in the reference
system with the phase quantities. It should be observed that in a body of finite dimensions
they depend, in general, on the position of the point and on the type of (macro-) boundary
conditions; thus such a relation also holds true in the case of phase strains and stresses.

Knowing the phase magnitudes, we may easily determine the global quantities by
inserting the Egs. (2.7), (2.8) into (2.5), (2.6); for instance,

@9 €= nanei= D Auel,
ik k

where
h
Ay = 2‘ Vi ik
i

and in a similar manner for the remaining relations. In the case of distortions depending
on a single parameter, as in the typical case of thermal deformations, we obtain

(2.10) el = 91,
9y being the tensor coefficient of thermal expansion for the material of the phase k, and ¢

denoting the temperature. In such a manner, the expansion coefficient of the medium is
expressed by the formula

(2.11) 9 =D Aoy
k

It is seen that it depends on the elastic constants of the medium contained in Ay.
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All relations are considerably simplified in the case in which the medium is isotropic.
It should be borne in mind, however, that in the theory of multiphase media various no-
tions of isotropy occur (cf. [1]); in particular, micro-isotropy — i.e., the physical isotropy
(the elastic and distortional properties of the grains) — should be distinguished from the
geometric isotropy or macro-isotropy following from the form and distribution of the
grains. The directional characteristics of the both types may be correlated and the problem
becomes, in general, rather complicated. In the case of full isotropy (both physical and
geometric), the phase deformations become voluminal, the phase stresses — uniform,
while the coefficients in the Eqs. (2.7), (2.8), (2.15), etc. — are transformed to scalar mag-
nitudes.

Let us now pass to determination of the global and phase macro-strains defined in the
preceding section. The first step will be the derivation of a deterministic solution in a form
suitable for averaging.

The multiphase medium is characterized by elastic and distortional nonhomogeneity.
The derivations are considerably simplified if the medium is replaced by a homogeneous
medium loaded by certain tensor fields of stresses T or strains ¥, defined by means of the
following formulae:

3.1 ¢ = Cle—ef) = Che+r,
(32 o= Sla==S0=1,
where

3.3) T=—ce+a!, ¢=C—-Cy;
(3.4) n=s0—¢, s5=5,-85.

Here C,, S, denote the respective tensors of elasticity and deformability for the reference
medium which may be assumed to be an arbitrary (though subject to certain limitations
to be mentioned later) elastic and homogeneous medium; for instance, it might be the
medium with the properties of one of the isotropic phases, or with the mean elasticity tensor.
The terms ce and so are called the tensors of stress and strains of polarization, respectively.
Together with the fields of o, €’ they constitute the load of the reference medium. In this
manner, an analogy is established with the electric polarization vector induced by the
electric field. Introducing the Egs. (3.3), (3.4) into (3.1), (3.2), we may easily verify the
formulae. Inserting (3.1) into (3.2) and conversely, we arrive at the formulae:

(3.5) t=0Com, N =S5t

The signs in the Eqgs. (3.1)-(3.4) were so selected that the relations (3.5) become symmetric,
and that — under a proper choice of the reference medium — the matrices ¢ and s are
simultaneously positive definite. Let us observe that once a certain isotropic phase is select-
ed as the reference medium, then for that phase we have ¢ = s = 0.

The Egs. (3.1), (3.2) furnish the stress-strain relations (corresponding to Hooke’s law),
the prescribed values being in Eqgs. (3.1) the strains, and in the Eqgs. (3.2) — the stresses.



110 Cz. EMER

In particular, we obtain from the Egs. (3.1) & = 0 when € = €%, and ¢ = ¢ when € = 0,

while from the Egs. (3.2) we have € = 0 when 6 = ¢, and € = € when ¢ = 0; these

relations may be interpreted as conditions of equality of the corresponding fields.
Consider now the equations of equilibrium

dive+P =0,
where P is the intensity vector of the deterministic body force per unit volume. Strictly
speaking, P also contains the fluctuations of the specific weight which, in general, varies
from phase to phase; that influence is, at least in static problems, negligible. Thus P will
contain the possible body forces in the averaged sense — i.e., calculated as for a homo-
geneous medium and other external loadings. Substituting the Eq. (3.1), we obtain;:
div(Cy€)+divt+P = 0.

The solution is decomposed into two parts € = €,+€’, the first of which satisfies the
equation

(3.6) div(Coeo)+P = 0,
and the second — the equation
3.7 div(Coe)+K =0, K = divr.

Expressing the strains in terms of displacements and assuming for the reference medium
C, an isotropic medium, we obtain, in particular, the Lamé equations in the classical form,
the loading term in the second equation having the form K = dive. The solution is found
to consist of the solution €, for the (homogeneous) reference medium loaded by given
deterministic forces, and of the solution €' for the reference medium loaded by the tensor
field =. In the subsequent part of the paper the solution €, will be considered as known,
the considerations being confined to the Eq. (3.7).

The solution of the Egs. (3.7) for an isotropic medium has the form (written in coor-
dinates):

uy(®) = [ Gpe(x, E)K,dV,

- Ao+ o (x,—&,) (x,—&,) Ao+3p0 Opg
. Gra = 8o (Ao +2J-‘o)|: r i Ao+ po TJ
Ll ]/Z(x?—gp)z’

G denoting the Green tensor of the Lamé problem for the reference medium which was
assumed to be isotropic (Kelvin’s solution), x is the given point, § is the point of applica-
tion of the force KdV; Ay, uo are the Lamé constants of the reference medium. Passing
from K to 7, we assume the existence of div 7, and hence the proper smoothness of t(x);
we shall return to this problem later. This leads to approximation of the multiphase me-
dium by a medium with smoothly changing nonhomogeneity at the grain boundaries and
releases us from discussion of smoothness of the surfaces bounding the grains; the mul-
tiphase medium can now be achieved by means of a suitable limit procedure. In a more

general approach, the notion of a surface divergence may be applied, the function 7(x)
being assumed to be a regionally smooth function and discontinuous at the grain bound-
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aries. The derivations require a certain generalization, though the changes will not be
substantial and the notations will remain the same.

For the time being (provided that no assumptions concerning the behaviour of (x)
at infinity have been made), let us separate from the infinite medium a finite region D
outside of which T = 0 (i.e. there are no inclusions and distortions). The point x is sur-
rounded by a small sphere K (K = D) of area Sk, and the integral (3.8) is decomposed in
the following manner:

uy= [ GuKedV+ [ GpuKyav.
K D-K

In order to pass to the strains, the derivatives of that expression have to be calculated.
The first term may be differentiated under the sign of integration, which can readily be
demonstrated similarly as in the proof of existence of the first derivative of the voluminal

potential, since G,, tends to zero as 1/r. The integral obtained, f Gpe,sKedV, tends to
zero together with the radius of the sphere. In the second integral, K is expressed in terms
of = and differentiation is performed under the sign of integration; the use of the Gauss
transformation is justified by the fact that the integration domain does not contain sin-
gular points. Disregarding the first integral, we obtain:

Uys % [ GroKydV = [ GpasTarsdV = [ (Gpgste)cdV
Dk bk D-K

— [ Grusrta @V = § GpostunedS— § GpostumdSx+ [ GooutadV,
Dk $ Sk Dk

where § is the surface bounding D. The signs on the right-hand side result from replacing
the differentiation of G(x—E) with respect to &, into differentiation with respect to x,,
and from the assumption that the outward unit normal n to Sk is positive. The first
right-hand integral vanishes together with t,,, provided the surface S bounding D lies
outside the region containing the inclusions, which may always be assumed. The third
integral is calculated in the sense of its principal value when the radius of K approaches
zero. The conditions of existence of the integral connected with the properties of the
function =(x) will be given later. In the second integral, under the assumptions presented,
the function ©(E) — T(x) and may be taken outside of the integration sign. Taking this
into account, we finally obtain:

(39) 8;13 = uEPpS) = apsqrrqr o f -"1psqr (X, E) rqr(E) dV’
D

where
Apsqr = Gq(m)' ’

Qpyqr = — lim qu(p,,]n,de.
OSK

Putting the indices into parentheses denotes symmetrization; the dash over the in-
tegral means that the principal value of the integral should be evaluated. It is easily verified
that the tensor A exhibits symmetry properties similar to those of the elasticity tensor C
and, moreover, that its sign is independent of whether G is differentiated (twice) with



112 Cz. EIMER

respect to either x or §. Once the differentiations prescribed are performed in the Eq. (3.6),
we obtain for the isotropic reference medium the formula (detailed calculations are pre-

sented in [1])
Ao+ Ho

= HBo _
(3‘10) Aysqr e 8?5#0(/10‘}‘2#0)’3 {AOJ’_‘”O (asq apr+ apqasr) 6{}!693

3 0
+ f_2 [ - "i“;{‘m asq(xp_ Ep) (xr = E') + 6qr(xp_ Ep) (xs_ '53)+ 5ps(xq_ Eq) (x," Er)

+ apr(xs" E.s) (xq_ Eq) + 53,()61,—' p) (xq“ Eq) = A:‘—-:#.o_ 6pq(xs == Es) (xr_ Er)]

15
- F (xp_Ep) (xs_ Es) (xq_ Eq) (xr T ‘fr)} .

The tensor a is calculated by taking into account [after performing the differentiations
in the Eqgs. (3.8)] that

_ Ao+po
fG""n'dS‘ = —8::#0(10+2p0)_ : [(6,qn,+ Oystp+ Ospng—3n,n non,
lo +2Ha
= m 0pg(Onnnts+ Opshty+ Ogunt, 3n,,n,,n,)r,.] ds,,

where n, = (x,—&,)/r are the corresponding direction cosines, and the integration is
performed over the surface r = 1.
Taking into account that

f ngn,dS, = % 70y, fnpn,n,n,dsl = % 72 (8pq 05+ Ops Ogr + 0r0y5),

S\ S
we obtain, after certain calculations, the result
Ao+ o
15p0(4o +24t0)
There remains the problem of conditions to be imposed on the function T(x). When
using the Gauss transformation we assumed the function 7(x) to be continuous together

with its derivatives, and hence t(x) € €' (using the divergence in its classical sense). This
ensures the existence of (3.9) (for a finite region), since there exists the integral [ G, . K,dV
D

1
(3.11) Qpsgr = m (6pq Ogr+ éprasq} - (apq Ogr+ éqsapr+ aspaqr) .

(used in the derivation) in which the expression G, increases as 1 /r? for E — x. Observe
that in deriving the generalized divergence, it suffices to require the function t(x) to satisfy
the Lipschitz condition for the exponent 0 < a < 1 (cf. [1]). In passing to the unbounded
region we have to assume, moreover, that (x) is bounded and that the integral (3.9) exists
in the improper sense. Passing to polar coordinates and taking into account the Egs.
(3.10), we can express the integral in the form

[ ]

f:—,fp,qr(n)‘rq,(n, ridodr = f %{ffp,q,(n)rq,(n, r)dw} dr,
0
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where r = x—E, w is the solid angle, n — the direction vector (unit with direction consines
n,), f(n) — a certain function of the direction. It is seen that t(m, r) must be such as to
satisfy the condition

_1_7_ o >0,
’

o !

(3.12) EnO =1 [ Soua @@, )] <

where B is a positive number independent of r. The meaning of this condition is partic-
ularly clear on the background of probabilistic considerations. Let us observe that the
condition (3.12) should hold true (for fixed « and B) for each x, independently of the
choice of the origin of the coordinate system. This translative invariance characterizes
the stochastically homogeneous medium.

The basic relation (3.9) is conveniently written in the operator form

(3.13) €= Ar,

where A is the linear tensor operator [acting on T(E)],
(3.14) A=(afavs+ [ava).

Tensors A, a are given by the formulae (3.10), (3.11), and § = 6(x, E) is the Dirac func-
tion. Let us observe that, owing to the symmetry properties of tensors a, A, A may be
treated as a matrix, as was explained in Sec. 1.

In a similar manner, the dual formulae may be derived in the case of loading the me-
dium by the strain field n; this problem will not be dealt with in the present paper.

Let us consider the medium in which the only sources of deformations and stresses are
the initial strains (distortions) of certain phases. Then €, = 6, = 0 and the problem is
reduced to solution of the Eq. (3.7). Using the Egs. (3.3), (3.4) and (3.13), we obtain

4.1) € = Ad?+ (Ac)e.

The field ¢(x) is known from our assumptions (in the deterministic approach), and hence
it is contained in the operator parentheses. The above relation represents an integral
equation for the unknown function e(x).

The solution becomes almost trivial in the case of elastically homogeneous (but dis-
tortionally nonhomogeneous) media. Then ¢ = 0 and we obtain

4.2) e = Ad’.

The appearance of the second term of the Eq. (4.1) is then due to the elastic nonhomoge-
neity of the medium. Simultaneously we see that, for example, the macroscopic coefficient
of thermal expansion will depend on the elastic properties of the phases.

We shall try to obtain the solution of the Eq. (4.1) in such a form as will yield, after
averaging, the explicit correlation functions. To that end, they are expanded into the
Neumann type series

4.3) € = [[+(Ac)+ (Ac)* + (Ac)* + ...] Aa?,
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where I is the identity operator. This expansion is obtained in an iterational process, by
applying the operator Ac consecutively to both sides of the Eq. (4.1) and adding the cor-
responding results. Thus we obtain
(4.9) €= [I+(A)+(Ac)*+ ... +(Ac)" V] Ag?+ (Ac)™e.
The last term on the right-hand side denotes the remainder of the series, and the entire
expression represents the iterated integral equation for €.
The consecutive terms of the expansion have the form:
Ac® = A(x,, x;)0'(x;) = Ao, 01,
AcAa® = A(xo, X1)c(x;) A(xy, X5)0%(X;) = Agyc; Ayr08 = Agysc408,
(Ac)mn"d = Agic; A0, A5308 = Agjr30, 0,08,
etc. The notation is clear and does not require any explanation; the indices refer to the
points which are the arguments of the function. Let us observe that, when the tensors are

written in coordinates, no contractions (in tensor indices) appear in the quantities denot-
ed by a common symbol; we have, for instance,

(AOI ‘hpq(cl)pqrs(AI z)rsuw(ci‘)-w = (AOI.Z)g.'amrnw(cl )pqu(“g)uw’
etc., which simplifies the notation. The expansion (4.4) written in the same formalism has
the form:
4.5) €= Ao101+ 020,05+ ... + Doy nCy oo Ca1O3+ Agin nCioaCans

the last right-hand term being the remainder of the series.

Now, the passage from deterministic to random fields does not present any difficulties.
Taking into account the random character of c, €, 6%, preserving the deterministic oper-
ators /A and averaging the Eq. (4.5) on both sides (which can be done owing to finite
sums), we obtain

4.6) <€) = Doy (01 +Dgy24c, 08>+ ... (+ Aoy nle) ... Cr€r)).

The quantities in averaging brackets are, in general, correlated and cannot be separat-
ed. They represent the corrclation functions (non-centred), and we shall return to the
problem in the sequel.

In an unbounded, stochastically homogeneous medium, loaded by fields of distortion
also stochastically homogeneous, both the operators A and all the correlation functions
are independent of position (translatory invariance), and the expression (4.6) may be
reduced to a simpler form. We have namely:

Aoyz... = A(Xy—Xg, X3—Xy, ...) = Aoy, Fy2, ...),
(e162¢3..) = f(X12, P23, -.),
where r; = X;—X;. Thus we obtain, in accordance with (3.14),
Ao <oty = acody + [ Ao, (aty ¥, = ad?,
and generally,
DoyneiCy ... 03) = Doy Ay;y.0{cy..00) = (adel o1 +de1 Agi) Ay ndcy.00)
= al\,,..,{coC;...08y = const,
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use being made of the fact that [ A(r)kdV = 0, provided k is a tensor constant [which
is easily verified by expressing the kernel (3.10) in polar coordinates], of the formulae
applied in the derivation of (3.11), and of the fact that A,, ,<{¢, %) = const. Changing
the indices appropriately, we finally obtain

“.7) €=a[e*+A;;{c;08)+Njp3{c 080+ ..].

In the calculations, it should be borne in mind that the first part of the operator (3.14)
yields the correlation functions at zero, for instance

3f 8;24c 05> dV, = af O(ry2) f(ry2)dV, = af(0).

Passing to the centred functions — that is, assuming C, = C — we obtain the correspond-
ing central statistic moments. The macro-strain (4.7) constitutes the solution of the
problem if the series is convergent, which can be demonstrated. Discussion of the con-
vergence is somewhat difficult owing to various types of probabilistic convergence and
various definitions of norms of stochastic operators; that problem will be presented in
a separate paper.

If the general expression for the n-point correlation moment is known from the the-
oretical hypotheses, then it suffices to apply the usual convergence criteria of numerical
series. If, however, the correlation functions are determined experimentally, then on the
basis of n-th order functions all the lower order functions can be determined, while nothing
can be said about the functions of higher orders.

In order to perform the calculations from the series (4.7), the correlation moments
must be expressed in a manner enabling us to isolate the influence of internal geometry.
The general formula for the n-th order moment yields:

48) <leiey ... "ﬁ) = _”. f €16 ... 03f(cy,65 ... o8 x, s Xz...Xp)de, de; ... dof,

where the integration is extended over the entire region of variability of random variables
(at fixed points), and f represents the probability density function of the relevant n-dimen-
sional vector (with tensorial components). The function is to be taken in the generalized
sense —i.e., it can also describe the probability distributions of a discrete variable (by
means of impulse functions).

To avoid possible ambiguities, let us denote the indices pertaining to phases by capital
letters and consider first the N-phase medium consisting of isotropic phases. The random
variables ¢, o may then assume, at a given point, only one of the N possible values, and
hence

@9)  fler,car s ) = D) proksmnd(er—cx)0(ca—Cx,) ... (Gh—o0ty),

where the impulse (Dirac) functions appear and summing is extended over all possible
combinations (combinatoric variations with repetitions) of n indices K; selected from
N; Pk, .k, represents the probability that the point x; will lie in the phase K, point
X, — in the phase K, etc. This probability is experimentally established by parallel shifting
of the fixed (“rigid”) set of points x, , X,, ..., X, within the medium in an arbitrary (random)
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manner; this creates the statistics of events consisting in “hitting” the phase K, by the
point x,, phase K, by the point x,, etc.(*)
Inserting (4.9) into (4.8), we obtain

(4.10) {€163 ... 6% = pr,x,,,.g,,(xl, Xz, ... Xp)Ck, CK, +++ Ofys

where cg, ¢k, ... ok, are tensorial constants in the regions of the corresponding phases.
Taking into account (4.10), we may write the n-th term of the expansion (4.7) as

@11)  Ayzenlc0r e 08> = D) [ArzaPrs-uXes X2y o Xe)]Cx,Cx, -on O,
= 2 Zg’gn-»x.cx,fxz oo ks

where
()
j'xl)xr"xn = Au“.npmxz---x.. (%, X5, ... Xp)

is a constant tensor coefficient (of order 4m). It expresses the “secondary” interactions of
the n-th order (that is of the n-th point “via” the preceding points) when the points are
located in the phases indicated (combined effect). The probabilities p depend exclusively
on the internal geometry of the medium (and not on the physical properties of the phases),
and thus the coefficients 4 depend on the geometry and on the reference medium assumed
in the considerations. Their existence depends on the form of the function p — i.e. on the

geometry.
Taking into account the Eq. (4.11), we write the solution (4.7) in the form
(4.12) e =o'+ ) Mk ox,ohi+ D Mk, cxiCx,0h, + ]

In the case of anisotropic phases, the tensors ¢, o may vary in a continuous manner
within the phase owing to the variable orientation of the grains. Let us assume these orien-
tations to be correlated neither with the internal geometry of grains nor with the proper-
ties of the neighbouring grains. Then the probability of hittings the phases K, ... ,K,
with fixed orientations [in the sense of the formula (4.8)] by the respective points X, , ..., X,
equals

Prixe-xaf (Qx )f (Qx,) - f(Qk) 40k, Ak, .. dOki

where Qk, denotes the orthogonal transformation of order 4 (while Qk, — of order 2)
grains belonging to the phase K;. Substitution of that expression in the Eq. (4.8) yields

@13)  {erayos 08> = D prints [ [ oo [ Ok, 68,0k, R, . QkioBS (Ox,) %
xf(Qx)f @x,) .../ (Qk)d0x, d0x, .. A0k,

where the index o denotes the corresponding quantities in the reference system, and
dashes above the symbols — the phase quantities (averaged), explained earlier in Sec. 2.

(*) Certain assumptions concerning the ergodicity of the random field are needed here, and also the
possibility of cross-sectional measurements. These assumptions and a detailed description of the measure-
ments evaluation are given in [1].



INITIAL STRAINS IN MULTIPHASE MEDIA 117

Thus in this case it suffices to replace the isotropic tensors ¢ by the averaged tensors (phase
tensors) and, similarly to (4.12), we obtain

(4.14) €= afo'+ D) A% 5 58+ D) Axieur,Br,On,Th + - |-

Now, it remains to determine the phase strains and the coefficients a;, appearing in the
formulae (2.7). To that end, the averaging procedure should be performed over the points
X, lying only in a definite phase which, for the sake of uniformity of notations, should be
denoted by K,. Analogously to the expansion (4.6), the phase strain €y, is obtained in the
form

(4.15) €k, = No1 (oDk, +No124cy Ug>xn+
where ¢ ), is the expected value operator over the phase K. The correlation moments
become conditional and, in accordance with (4.8), are expressed as follows:

@16) (eier oy, = [[ . [ercr . difler, ... al(Xo = Dy Xo, .. X2)dey ... dof
Here f'is the corresponding conditional probability density given by

@.17) f= ) Pre-xigsd(c1— ) 8(c;—cx,) ... 8 (ch—ok),

PK,...K./K, 1S the conditional probability of “hitting” the respective phases by the points

X;, ---, X, if point x, lies in the phase K, and summing is extended over the indices K,
., K,. This probability is expressed, as is known from the theory, in the following manner:

418) Py iy = Dt Pk
Pk, VKo
where px, = v, denotes, according to Sec. 2, the concentration of the phase K,. The
conditional probability estimator is then the ratio of the number of “hittings” of the res-
pective phases by Xo, ..., X, to the number of hittings of K, by x,.
The above relations being taken into account, the n-th term of expansion is found to

be (similarly to (4.11))
1
4.19)  Aoyz a<cyc; ... d)x‘, = Z[— AOIZ,.J!pKnKI‘"Ku:I CK,CK; -+ of,
'.I’x“

1
== ;- "“} KnCK,CK; - . ogl,
)’xo
where = pxnx,,.-x.Pxox,-ux..(xo, X1 ooy Xn) = PKoKyKaTo1s Tiz oo 5 Ta1,n), SO finally

(4.20) &, = [ Z Srz}{ ey Z l%ox K.k, Ok, + Z 3&»1: K2k CK, €k, Ok, T - ]

It is seen that the difference, by comparison with the expression for the macro-strain,
consists in the fact that the order of the geometric correlation at the corresponding terms
increases. The coefficient a; in the Eq. (2.7) is readily expressed as

4.21) arL = —[ i+ v ZIK;LCK1+ Zﬁﬂx;:.fx;fxz‘*” ] ,

KnK;
which solves our problem. The method of calculation of the remaining coefficients and
the generalization to anisotropic media are obvious.
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