XXVI

ON AN EQUATION OF THE ELLIPSOID

Communicated 9 April 1849.
[Proc. Roy. Irish Acad. vol. Iv (1850), pp. 324-5.]
The Secretary of Council read the following communication from Sir William Rowan Hamilton, on an equation of the ellipsoid.
'A remark of yours, recently made, respecting the form in which I first gave to the Academy, in December 1845, an equation* of the ellipsoid by quaternions-namely, that this form involved only one asymptote of the focal hyperbola-has induced me to examine, simplify, and extend, since I last saw you, some manuscript results of mine on that subject; and the following new form of the equation, which seems to meet your requisitions, may, perhaps, be shewn to the Academy tonight. This new form is the following:

$$
\begin{equation*}
\mathrm{TV} \frac{\eta \rho-\rho \theta}{\mathrm{U}(\eta-\theta)}=\theta^{2}-\eta^{2} \tag{1}
\end{equation*}
$$

'The constant vectors η and θ are in the directions of the two asymptotes required; their symbolic sum, $\eta+\theta$, is the vector of an umbilic; their difference, $\eta-\theta$, has the direction of a cyclic normal; another umbilicar vector being in the direction of the sum of their reciprocals, $\eta^{-1}+\theta^{-1}$, and another cyclic normal in the direction of the difference of those reciprocals, $\eta^{-1}-\theta^{-1}$. The lengths of the semiaxes of the ellipsoid are expressed as follows:

$$
\begin{equation*}
a=\mathrm{T} \eta+\mathrm{T} \theta ; \quad b=T(\eta-\theta) ; \quad c=T \eta-\mathrm{T} \theta . \tag{2}
\end{equation*}
$$

'The focal ellipse is given by the system of the two equations

$$
\begin{equation*}
\mathbf{S} . \rho \mathbf{U} \eta=\mathbf{S} . \rho \mathbf{U} \theta \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{TV} . \rho \mathrm{U} \eta=2 \mathrm{~S} \sqrt{ }(\eta \theta) \tag{4}
\end{equation*}
$$

where TV. $\rho \mathrm{U} \eta$ may be changed to TV. $\rho \mathrm{U} \theta$; and which represent respectively a plane, and a cylinder of revolution. Finally, I shall just add what seems to me remarkable-though I have met with several similar results in my unpublished researches-that the focal hyperbola is adequately represented by the single equation following:

$$
\begin{gather*}
\text { V. } \eta \rho \cdot \mathrm{V} \cdot \rho \theta=(\mathrm{V} \cdot \eta \theta)^{2} \cdot \tag{5}\\
*[\text { See XLII. }]
\end{gather*}
$$

