XXXVI

ON THE GEOMETRICAL DEMONSTRATION OF SOME THEOREMS OBTAINED BY MEANS OF THE QUATERNION ANALYSIS

Communicated 11 April 1853.
[Proc. Roy. Irish Acad. vol. v (1853), pp. 407-15.]
Professor Sir William Rowan Hamilton, LL.D., communicated a few remarks on the geometrical demonstration of some theorems lately obtained by means of the quaternion analysis.*

1. (Rule of Derivation.) Let $C D$ be a given right line, bisected in L, and $L I$ a given perpendicular thereto. Assume at pleasure any point P in the same plane, and derive from it another point Q, by the conditions that

$$
C Q \perp D P, \quad C Q \cdot D P=C D \cdot L I
$$

and that the rotation from the direction of $C Q$ to the direction of $D P$ shall be towards the same hand as that from $L D$ to $L I$. From Q derive R, and from R derive S, \&c., as Q has been derived from P. It is required to investigate geometrically the chief properties of the resulting arrangement.
2. (First Case: $L I<L D$). If the given line $L I$ be less than $L D$, then, parallel to the latter line, there can be drawn, through the extremity I of the former, a chord $A B$ of the circle (L), described on $C D$ as diameter: and we may suppose that the point B is nearer than A to C. Then,

$$
C Q \cdot D P=C A \cdot D A=C B \cdot D B, \quad \text { and } \quad A C Q=A D P, \quad B C Q=B D P
$$

even if signs of angles (or directions of rotation) be attended to. Thus the two triangles $A C Q$, $P D A$, and in like manner the two triangles $B C Q, P D B$, are equiangular, but oppositely turned, like a figure and its reflexion in a plane mirror, or like the two triangles $A B C, B A D$: which relations we may perhaps not inconveniently express, by saying that in each of these three pairs the two triangles are inversely similar, or by writing,

$$
\begin{equation*}
A B C \propto^{\prime} B A D, \quad A C Q \propto^{\prime} P D A, \quad B C Q \propto^{\prime} P D B \tag{1}
\end{equation*}
$$

and then either of these two latter formulae of inverse similarity of triangles is sufficient to express the rule of derivation of the point Q from P.
3. Hence, attending still to signs of angles, we may see (even without referring to the figure) that

$$
C Q A=P A D, \quad C Q B=P B D
$$

[^0]and that therefore
\[

$$
\begin{aligned}
A Q B & =C Q B-C Q A=P B D-P A D \\
& =(A D P+D P A)-(B D P+D P B)=A D B-A P B=A C B-A P B
\end{aligned}
$$
\]

or that

$$
\begin{equation*}
A P B+A Q B=A C B \tag{2}
\end{equation*}
$$

The sum of the two angles subtended by the fixed chord $A B$, at the assumed point P and at the derived point Q, is therefore constant, and equal to the angle which the same chord subtends at the point C (or D); these angles being supposed to change their signs when their vertices cross that fixed chord. (This result was given in the Philosophical Magazine for February 1853, as one of several which had been obtained by applying quaternions to the question.)*

Fig. 1
4. In like manner if we continue to derive successively other points, R, S, T, U, \ldots we shall have

$$
A Q B+A R B=A C B, \quad \& c .,
$$

and therefore

$$
\begin{equation*}
A P B=A R B=A T B=\ldots, \quad A Q B=A S B=A U B=\ldots \tag{3}
\end{equation*}
$$

the alternate points, P, R, T, \ldots are therefore situated on one circular locus (M), and the other alternate and derived points Q, S, U, \ldots are on another circular locus (N); or rather these two sets of alternate points are contained on two circular segments, both resting on the fixed chord $A B$ as their common base (as stated in the Philosophical Magazine just cited).
5. It is evident also that if E, F be (as in fig. 1) the summits of the two semicircles on $C D$, of which the former contains the chord, and if M, N be the centres of the two loci, then

$$
A P B=A M I, \quad A Q B=A N I, \quad A C B=A L I=2 A F I
$$

so that, by (2),

$$
\begin{equation*}
A F I-A N I=A M I-A F I, \quad \text { or } \quad F A N=M A F: \tag{4}
\end{equation*}
$$

wherefore the centres M, N are harmonic conjugates with respect to the given circle (L), or its diameter $E F$, and we may write

$$
\begin{equation*}
L M . L N=L F^{2} . \tag{5}
\end{equation*}
$$

6. The similar triangles (1) give

$$
\frac{Q A}{P A}=\frac{Q C}{D A}, \quad \frac{Q B}{P B}=\frac{Q C}{D B}
$$

[^1]and therefore
\[

$$
\begin{equation*}
\frac{Q B \cdot P A}{Q A \cdot P B}=\frac{D A}{D B}=\frac{C B}{C A}=\text { const., } \tag{6}
\end{equation*}
$$

\]

(as stated in the same number of the Magazine). Hence (as there stated) the successively and directly derived points Q, R, S, \ldots must tend indefinitely to coincide with the fixed point B, and in like manner the inversely derived points R, Q, P, \ldots must tend indefinitely to coincide with the other fixed point A, as the limits of their positions, on account of the geometrical progressions of the quotients of distances from those two fixed points, wherever the first point P or S of the direct or inverse derivation may be: unless it happen to be exactly at either of those two fixed points A and B, in which case the derivation will produce no change of place. (It might therefore be not too fanciful to say that A and B are respectively positions of unstable and stable equilibrium for the direct mode of derivation, but of stable and unstable for the inverse mode.)
7. Let G and H be summits of the loci (M) and (N), so chosen that the lines $P G$ and $Q H$, crossing the fixed chord $A B$ in the points P^{\prime} and Q^{\prime}, are both internal or both external bisectors of the angles $A P B, A Q B$; and prolong $F C, F D$, or the external bisectors of $A C B, A D B$, to meet the same fixed chord prolonged in O^{\prime} and $O^{\prime \prime}$. Then the formula (6) will still hold good, even with attention to the signs of the segments, after changing P, Q, C, D, to $P^{\prime}, Q^{\prime}, O^{\prime}, O^{\prime \prime}$; we have therefore the two following equations between anharmonic ratios,

$$
\begin{equation*}
\left(A B P^{\prime} \infty\right)=\left(A B Q^{\prime} O^{\prime}\right), \quad\left(A B P^{\prime} O^{\prime \prime}\right)=\left(A B Q^{\prime} \infty\right) \tag{7}
\end{equation*}
$$

which give

$$
\begin{equation*}
\frac{Q^{\prime} O^{\prime}}{A O^{\prime}}=\frac{Q^{\prime} B}{P^{\prime} B}=\frac{O^{\prime \prime} A}{O^{\prime \prime} P^{\prime \prime}} \tag{8}
\end{equation*}
$$

and consequently, $\quad Q^{\prime} O^{\prime} . O^{\prime \prime} P^{\prime}=A O^{\prime} . O^{\prime \prime} A=I O^{\prime 2}-I A^{2}=$ const.,
where the constant may be variously transformed: for instance we may write,

$$
\begin{equation*}
Q^{\prime} O^{\prime} \cdot Q^{\prime \prime} P^{\prime}=2 F I \cdot L I \tag{10}
\end{equation*}
$$

8. The equations (7) show that we have the two involutions,

$$
\begin{equation*}
\left(A B, P^{\prime} O^{\prime}, Q^{\prime} \infty\right) \quad \text { and }\left(A B, P^{\prime} \infty, Q^{\prime} O^{\prime \prime}\right) \tag{11}
\end{equation*}
$$

if then from any point Z, assumed at pleasure on any one of the three circles, we draw three successive chords of that circle, $Z Z^{\prime}$ through $P^{\prime}, Z^{\prime} Z^{\prime \prime}$ through Q^{\prime}, and $Z^{\prime \prime} Z^{\prime \prime \prime}$ through O^{\prime}, or else $Z Z^{\prime}$ through $Q^{\prime}, Z^{\prime} Z^{\prime \prime}$ through P^{\prime}, and $Z^{\prime \prime} Z^{\prime \prime \prime}$ through $O^{\prime \prime}$, the fourth or closing chord $Z^{\prime \prime \prime} Z$ will in each case pass through infinity; or in other words, this closing chord will be parallel to the fixed chord $A B$. In particular, by placing Z, and therefore also $Z^{\prime \prime \prime}$ at F, which will oblige $Z^{\prime \prime}$ to be at C or at D, we see that the lines $F P^{\prime}, C Q^{\prime}$ (or $F Q^{\prime}, C R^{\prime}$, \&c.) must intersect each other (at an angle of 45°) in some point Z^{\prime} of the given circle (L); and that the same thing holds for the lines $F Q^{\prime}, D P^{\prime}$ (or $F R^{\prime}, D Q^{\prime}, \& c$.), as stated to the Academy at the Meeting of 28 February 1853 (see the Proceedings of that date).* And thus we might prove in a new way the indefinite tendency if the points $Q^{\prime}, R^{\prime}, \ldots$ on the fixed chord, and therefore also the corresponding tendency of the points Q, R, \ldots in the plane, to coincidence with the fixed point B (that point being still supposed to be real).
9. By placing Z alternately at G and at H, it may be shewn, in like manner, that the alternate lines $P Q^{\prime}, R S^{\prime}, T U^{\prime}, \ldots$ all pass through one fixed point, namely, the point where $G O^{\prime}$ intersects (M) again, after meeting it in the summit G; the other alternate lines $Q R^{\prime}, S T^{\prime}, \ldots$ all pass through another fixed point, namely, the second intersection of $H O^{\prime}$ with (N); again,

[^2]$R Q^{\prime}, T S^{\prime}, \ldots$ pass through the analogous intersection of $G O^{\prime \prime}$ with (M); and $Q P^{\prime}, S R^{\prime}, \ldots$ through that of $H O^{\prime \prime}$ with (N). The opposite summits $E, G^{\prime}, H^{\prime}$ might be employed in the same way to furnish other theorems, which would not, however, be essentially different from these.
10. (Second Case: $L I>L D$). When the given line $L I$ is greater than $L D$, or than the radius of the circle (L), that circle is no longer met by the line $O^{\prime \prime} I O^{\prime}$ in any real points, A, B; but it is obvious, from the known principles of modern geometry, that this latter line is still the common radical axis of three circles $(L)(M)(N)$, whereof the two latter have still their centres M and N harmonic conjugates with respect to the given circle (L), and are still the loci of the two systems of alternate points, P, R, T, \ldots and Q, S, U, \ldots namely, the assumed point and those derived from it by the rule stated in Art. 1, taken alternately: because that rule did not involve any reference to the points of intersection A and B. These circular loci will still have real summits G, H, which will still serve to determine real points, $P^{\prime}, Q^{\prime}, R^{\prime}, \ldots$ upon the radical axis, by the alternate lines $G P, H Q, G R, \ldots$; and the same relations of homography and involution will still

Fig. 2
hold good, conducting to the same theorems of real intersections of lines as before, although the points A and B on the circle (L) have now become imaginary. For example, the lines $F P^{\prime}$, $C Q^{\prime}$, or the lines $F Q^{\prime}, D P^{\prime}$, still cross at an angle of 45° in some point Z^{\prime} on that given circle (L) : but because the radical axis is now beyond that circle, there is now no tendency to any convergence of the points $Q^{\prime} R^{\prime} S^{\prime} \ldots$, nor of $R^{\prime} Q^{\prime} P^{\prime} \ldots$, nor consequently of the points $Q R S \ldots$, nor of $R Q P$..., to any fixed position.
11. There may however be, in this second case, when A and B are imaginary, a constant circulation in a period, among the derived points in the plane, or on the axis. For we have now, in the formula (9) (compare fig. 2),

$$
\begin{equation*}
-I A^{2}=I L^{2}-L A^{2}=I L^{2}-L X^{2}=I X^{2}=I W^{2} \tag{12}
\end{equation*}
$$

if $I X$ be a tangent (now real) from I to (L), and if W be one of the two fixed points in which the common orthogonals to the three circles (now really) intersect each other: thus (9) becomes, in the present case,

$$
\begin{equation*}
O^{\prime} Q^{\prime} \cdot O^{\prime} P^{\prime \prime}=Q^{\prime} O^{\prime} \cdot O^{\prime \prime} P^{\prime}=I O^{\prime 2}+I W^{2}=O^{\prime} W^{2} \tag{13}
\end{equation*}
$$

if $P^{\prime \prime}$ be so taken on the radical axis that I shall bisect $P^{\prime} P^{\prime \prime}$ hence $O^{\prime} W Q^{\prime}=\left(W P^{\prime \prime} Q^{\prime}=\right) I P^{\prime} W$; subtracting therefore $O^{\prime} W P^{\prime}$ from each, and observing that the triangles $W O^{\prime} I, E F X$ are equiangular, we obtain the formula,

$$
\begin{equation*}
P^{\prime} W Q^{\prime}=I O^{\prime} W=E F X=\text { const. } \tag{14}
\end{equation*}
$$

If then the constant angle thus subtended by $P^{\prime} Q^{\prime}$ at W be commensurable with a right angle,
or in other words if $E X$ be a side or a diagonal of a regular polygon with n sides inscribed in (L), n derivations of Q^{\prime} from P^{\prime} will answer to one or more complete revolutions of the line $W P^{\prime}$, and will conduct from P^{\prime} to P^{\prime} again, and therefore also from P to P, if the number n be even: in this case, then, there will be a period of n points $P Q R \ldots$, arranged half on one locus, and half upon the other. For example, if $L I=F E=2 L D$, the chord $E X$ will be the side of an inscribed hexagon; and wherever P may be assumed, we shall have a period of six points, $P Q R S T U$, three ($P R T$) on one locus, and three $(Q S U)$ on the other. But if n be odd (for instance, if $E X$ be the side of a regular pentagon), then the result of n derivations gives indeed the initial position P^{\prime} on the axis, but this position now answers in the plane not to the first assumed point P on (M), but to a certain other point on (N) : and the period therefore now consists of $2 n$ points in the plane, whereof n are on the circle (M), and the n others on the alternate circle (N). An outline of these results respecting periods of points was lately submitted to the Academy, in the communication of last February.
12. (Third Case: $L I=L D$). In the intermediate case, where the given line $L I$ is equal to $L D$, the radical axis becomes a common tangent at E to the three circles, the centres M, N being harmonic conjugates as before; and because all former theorems respecting intersections of lines hold good, the lines $F P^{\prime}, C Q^{\prime}$ still cross on (L); and therefore the points $Q^{\prime}, R^{\prime}, S^{\prime}, \ldots$ and in like manner $R^{\prime}, Q^{\prime}, P^{\prime}, \ldots$ and consequently also the points Q, R, S, \ldots and R, Q, P, \ldots (the lines $G P P^{\prime}, H Q Q^{\prime}$, \&c. being now obtained by lines drawn from the summits G and H remote from the common summit E), must all indefinitely tend to that fixed position E as a limit. As regards the law of this tendency, it may be expressed by either of the formulae

$$
\begin{equation*}
Q^{\prime} O^{\prime} \cdot O^{\prime \prime} P^{\prime}=E O^{\prime 2} ; \quad E P^{\prime} \cdot E Q^{\prime}=E O^{\prime} \cdot Q^{\prime} P^{\prime} \tag{15}
\end{equation*}
$$

or more clearly by the following,

$$
\begin{equation*}
\frac{1}{E Q^{\prime}}-\frac{1}{E P^{\prime}}=\frac{1}{E O^{\prime}}=\text { const. } \tag{16}
\end{equation*}
$$

And instead of treating (as has here been done) this third case, or the case of contact at E, of the line $O^{\prime} O^{\prime \prime}$ with the circle (L), as a limit of the first case, or of the case of intersection of that line with that circle in two real and distinct points A, B, we might have treated it directly, by a shorter but less general method.*
13. The readers of the excellent Traité de Géometrie de Position, by M. Chasles (Paris, 1852), with which the author of the present paper does not pretend to be more than partially acquainted, will not fail to recognise the double homographic division of the radical axis (whence such divisions on the circular loci can easily be obtained), with the double points A, B, and with $O^{\prime}, O^{\prime \prime}$ as homologues of infinity. That theory of homographic division may also be employed in the treatment of the case where A and B become imaginary, without any previous reference to the case where those two points are real. It was, however, almost entirely through the quaternion method, including, indeed (as lately stated to the Academy), some use of biquaternions, or combining the employment of the old imaginary of algebra with that of his peculiar symbols $i j k$, that Sir W.R.H. was led, not merely to the results, but even to the chief constructions of the present paper. In particular, he was led to perceive the theorem of circulation in Art. 11, and to make out the geometrical construction given in that article for exhibiting it, by endeavouring to interpret formulae which presented themselves to him, in investigating the integral of an equation in finite differences of quaternions, which integral was found to contain a periodical term.

[^3]
[^0]: * [See XXXV. These are the proofs announced in the last footnote, p. 425.]

[^1]: * [See XI, article 4; see also Lectures, article 665.]

[^2]: * [See XXXV.]

[^3]: * Some remarks on this case have appeared in the number of the Philosophical Magazine for the present month (April 1853). [See XI, article 6.]

