
CHAPTER XXXVI.

MEAN VALUES.1640. We next exhibit the application of the principles of the Integral Calculus to the calculation of mean values. This sub­ject and that of Chances to be considered in the following chapter are wide, and the devices and artifices numerous. The general principles and theorems are however but few, and the problems arising depend for the most part directly upon the fundamental definitions. A considerable number of illustrative examples are appended to illustrate the more important modes of procedure in the application of the Calculus, and also in the evasion of the necessity in some cases for absolute integration. Many of these are fully worked out; others are left for the reader to complete the details of the integration when it is not necessary to supply them ; for it is in the formation of the proper expressions to integrate and in the assignment of the correct limits that difficulties arise rather than in the subsequent mechanical process of evaluation.1641. Def. The quantity is defined as

the Mean Value of the n quantities a1, a2, ...an, supposed all 
of the same kind, n being a finite number.This is the quantity known arithmetically as the “ arithmetic mean” or average value. It may be written as 1/n∑(α), and denoted by M(a).

1642. Combination of Means of Several Groups.If there be several groups of quantities of the same kind, viz. (α1, α2, ... ap), (b1, b2, ... bq), (c1, c2, ... cr), ... of respective 
745
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746 CHAPTER XXXVI.numbers p, q, r, etc., and M(a), M(b), M(c), ... the respective means of the groups, then the mean M of the whole set is
which is the same formula as that for the ordinate of the centroid of weights p, q, r, ... placed at points whose ordinates are M(α), M(b), M(c), etc.

1643. Mean Values of Products two and two, etc.Let there be a group of n quantities of the same kind.ThenHenceSimilarly
i.e.We may note that when n is indefinitely large, the mean of the products of pairs is the square of the mean of all quantities ; and the mean of the products three at a time is the cube of the mean of them all.These rules determine the mean values of the products, two at a time and three at a time respectively in terms of the means of the original quantities, of their squares and of their cubes.

1644. Extension of the Conception of a Mean.If the number of the quantities α1, α2, etc., be very large, and their sum very large, the fraction tends to take the form ∞ ∕∞ . In this case suppose the several quantities α1, α2, etc., to be the equidistant ordinates of a continuous curve y = ϕ(x) corresponding to abscissae say.Then the mean is
which may be written as whichwhen n is indefinitely increased takes the form
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MEAN VALUES. 747It is assumed here that the several quantities α1, α2, ... an are such that no two consecutive ones differ by a finite difference when n is indefinitely great, but that the curve 
y=ϕ(x) is one in which there is a continuous change of the ordinates between the limits considered. Otherwise the integral expression would be meaningless.1645. Geometrical Meaning of the “ Mean Ordinate.”It follows that the value of the mean ordinate, taken for equidistant and indefinitely close ordinates, is represented by the area bounded by the curve, the x-axis and the terminal ordinates divided by the projection of the curve upon the x-axis.That is the mean ordinate PN of a curve P1Q1, between the initial and final ordinates N1P1, M1Q1 is such that the area 
P1N1M1Q1PP1 is equal to that of the rectangle FN1M1G, where 
FG is drawn through P parallel to the x-axis (Fig. 476). So that as much of the area of this figure lies between PG and the curve as lies between PF and the curve.

1646. The Case when the Quantities are Functions of Several Variables. Nature of the Distribution.If the quantities a1, a2, a3, ... be functions of several variables, first say of two, x and y, let us consider α1, α2, ... to be the z-ordinates of a surface z = ϕ(x, y). Let the plane 
x-y be imagined ruled by lines δx apart parallel to the 
y axis, and by lines δy apart parallel to the x-axis. Let one ordinate z, viz. ϕ(x, y), be erected at the corner x, y nearest the origin of the elementary rectangle δx, δy, and let the same be done at each of the corners nearest the origin of the remaining net-work of elementary rectangles. Then we shall understand by the “ mean value ” of z the limit of the fraction whose numerator is the sum of all these ordinates and whose
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748 CHAPTER XXXVI.denominator is their number, or, what is the same thing, ∬zdxdy ∬ dx dy, i.e. the volume bounded by the x-y plane, the surface z=ϕ(x, y), and cylindrical surface bounding the portion of the surface considered, whose generators are parallel to the z-axis, divided by the projection of that portion upon the x-y plane. It will be observed that the number of theseordinates is measured by that is the area of theprojection described.And if there be three independent variables, so that 
u=ϕ(x, y, z), we shall understand in the same way that bythe “ mean value ” of u is meantand the number of cases is measured by andsimilarly if there be a greater number of independent variables. And as before it will be noted that it is assumed that no two contiguous quantities of the group considered differ by a finite difference when their number is infinitely great. That is to say, that unless some other distribution of the various quantities a1, a2, a3, etc., is expressly notified, the distribution in the case of two independent variables is that in which there is one ordinate to each of the elementary areas δxδy, which go to fill up the area on the x-y plane which may be bounded by the prescribed limits of the summation; and that for three independent variables the region through which the summation is to be effected is divided into equal volume elements δxδy δz, and that this summation is to be taken for one value of u, viz. ϕ(χ, y, z), for each element of volume 

δx δy δz.

1647. Other Systems of Variables.Of course the elements of area and of volume expressed in the Cartesian manner as δxδy,or as δxδy δz respectively, may be replaced at will by the corresponding expressions r 8θ 8r or r2 sin θ δθ δϕ δr, if work in polar coordinates be indicated as more convenient for the problem under consideration, or by the corresponding elements for any other system of coordinates.
www.rcin.org.pl



MEAN VALUES. 749And if there be more independent variables than three, so that we fail to interpret the summation by geometry of two or of three dimensions, we shall still understand the mean of the function u≡ϕ(x1, x2, x3, ... xn) to be
and the number of cases to be measured by
when the limits have been properly ascribed so as to effect the summations in the numerator and denominator for all values of the independent variables included in the compass of the summation to which the “ mean value ” refers.

1648. Nature of Various Distributions.It will be manifest that in the case of a distribution of an infinite number of quantities such as the ordinates of a curve or of a surface, and whose mean is required, and which have so far been taken as equally distributed along the x-axis in the one case or over the x-y plane in the other, if this equable distribution ceases to hold good it will be necessary to form a clear conception of the nature of the distribution which is tobe adopted. It will make this matter obvious if we take a simple example.Consider the problem of finding the mean value of all focal radii vectores of an ellipse. Usually we should understand this to mean that if A, B, C, D,... be indefinitely Fig. 477.close points on the circumference and S the focus from which the radii vectores are drawn, then the mean is to be taken for all the radii vectores such that the successive angles ASB, 
BSC, CSD, etc., are all equal infinitesimal angles δθ. In which case, r being the radius vector for an angle θ, the mean value

But it might be that the successive arcs AB, BC, CD, ... are to be taken as equal, or that the successive areas are all equal,
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750 CHAPTER XXXVI.or that the successive points A, B, C, D, ... are defined by an equable distribution of the feet of their ordinates upon the x-axis, or other conceivable distributions may be adopted. The mean values in these cases are respectively 
and the several results are obviously not the same.

1649. “Density” of a Distribution. General Remarks.It will appear therefore that in each case the nature of the distribution, or, as it may be called, the “ Density,” must be carefully defined. This is of primary importance.When the distribution is one in which the angles between the successive radii vectores are equal infinitesimal angles, as in the case cited, they may be described as equally distributed about the origin from which they are drawn. This is the usual case.In the same way, in three dimensions, when a distribution of radii vectores drawn from an origin to a surface is said to be “ equable,” we shall understand this to mean that a unit sphere having been drawn with centre at the origin, and its surface having been divided into equal elementary areas, one, or the same number of radii vectores, passes through each of these elementary areas. The mean value of r will then be or where δω is theelementary solid angle subtended at the origin by each element of the surface.If the surface itself be divided into equal elementary areas 
δS, and the same number of radii vectores pass through each such element, the distribution may be called an “ equable surface distribution,” and the mean value will beIf radii vectores be drawn from the origin to points within the region bounded by a given surface, it is usually under­stood that they are drawn to equal elements of volume, The mean is then
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MEAN VALUES. 7511650. Illustrative Examples.1. Find the mean distance of points on the circumference of the ellipse 
from a focus, the density of the distribution being defined as one in which 
successive pairs of points subtend equal angles at the focus.Taking the equation as lr-1 = 1 + e cos θ, we have, b being the semi- minor axis,

2. Find the mean inverse distance of points within an ellipse from the 
focus, the distribution being an equable areal one.

Here 
a, b being the semi-axes.3. Find the mean distance of a point within an ellipse from a focus. [Colleges a, 1886 and 1879. ]

Here
(Art. 196)

4. Find the mean distance of points within an ellipse from the centre.[Colleges α, 1886. ] Here, measuring θ from the minor axis,and
(Perimeter of Ellipse) (Art. 567).5. Find the mean of the distances from one of the foci of a prolate spheroid 

to points within the surface. [WolstEnholme, Educ. Times.]Taking lr-1 = 1 +ecos θ as the generating ellipse,
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752 CHAPTER XXXVL6. A particle describee an ellipse about a centre of force in the focus S.

Show that its mean distance from S with regard to time is [R.P.]If t be the time, then for equal sectorial areas aredescribed in equal times.
Hence (by Ex. 3).
7. Find the mean value of r-2 with regard to time under the same circum­

stances.

8. Show that the mean distance of points within a square from one of the 
angular points is to a side of the square in the ratio {√2 + log (√2 +1)} to 3.Take OA, OC, sides of the square OABC, as coordinate axes. We may confine our attention to points within the triangle OAB without altering the result. Let a be a side of the square. OP=r. Then (Fig. 478)

Fig. 478. Fig. 479.9. Find the mean distance of a point within a rectangle from the centre.[Ox. II. P., 1885.] Taking 2a, 2b, 2d as the sides and diagonal, and axes parallel to the sides through the centre (Fig. 479),
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MEAN VALUES. 753Thia is also obviously the result for the mean distance of a point within a rectangle of sides α, b and diagonal d from one of the angular points.10. Find the mean distance of points on a spherical surface from a fixed 
point O on the surface for an equable surface distribution of radii vectores.Here where dS is an element of the surface, andwith the notation indicated in Fig. 480,

11. Find the same mean for a distribution of radii vectores equably drawn 
in all directions from 0.

Here

Fig. 480. Fig. 481.12. Triangles are drawn on a given base a, and with a given vertical angle α. Find the average area. [SanjAna, Educ. Times.]Let A be the vertex, BC the base = a, 0 the circumcentre, 0A=R, making an angle 0 with a perpendicular to the base. Then R=α∕2sin α.The perpendicular from A upon BC=R(cos 0 + cos a), and if the mean be for an equable distribution of positions of OA, (Fig. 481),

13. (a) A person is left a triangular piece of ground whose perimeter only 
is known ; show that he may fairly calculate that the area is to that of a circle 
whose radius is the known perimeter as 1 : 105, sides of all possible lengths 
being equally likely to occur. [Math. Tripos.]
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754 CHAPTER XXXVI.

(b) A straight line of length a is broken into three parts at random. If the 
three parts can be formed into a triangle, find its mean area.[St. John’s Coll., 1881.](a) and (b) are the same problem.Let OA be the line, P, Q the random points of division, P being the nearer to O, OP=x, OQ=y, OA = a. Thenand

Fig. 482.The limits of integration are to be such that(i) (ii) (iii)i.e. and So the limits are, for tofor to Now putting
Therefore writing
Also

of the area of a circle whose radius is a.

1651. The Mean Inverse Distance considered as a Potential 
Function.Tn problems on the mean value of the inverse distance between pairs of points, much labour of integration may often be avoided if it be recognised that such problems are in fact problems on the mutual potential of two gravitating systems of material particles.The potential at any point P of a system of gravitating particles of masses m1, m2, m3, etc., at distances r1, r2, r3, etc., from P is defined as ∑m∣r.The Mutual Potential of two gravitating systems of masses of two separate groups (m1, m1', m1''....) and (m2, m'2, m2",...)
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MEAN VALUES. 755is defined as ∑m1m2∕r12, where r12 represents the distance between m1 and m2, etc.But if the particles be particles of the same group, the mutual potential is 1/2∑m1m2∕r12. [See Routh, Attractions, p. 29.]
1652. Theorems in Potential required for the Problems to be 

considered.In the case of a spherical shell of mass M, the potential at an external point at a distance r from the centre is M∕r. But at an internal point it is M∣a, where a is the radius.In the case of a solid sphere, the potential at an external point at a distance r from the centre is again M/r; at an in­ternal point M being in each case the mass and
ρ the uniform volume density.The potential of a thin rod AB at any point P is
m being the mass per unit length=mass∕length.These integrals are all well known, and are useful in the present class of problem. Many other cases will be found in Routh’s Attractions.1653. Suppose we are to find the mean of the inverse distance 
between two points P and Q, of which P lies on a spherical surface 
of centre C and radius a, and Q lies in any other region R which 
lies entirely without the shell.Let dS be an element of the spherical surface, dR an ele­ment of volume of the region R.Then

Fig. 483.Suppose the surface and volume densities to be unity, and let PQ=p. Then (potential of shell at Q) dRpotential of R at C.
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756 CHAPTER XXXVI.If any portion of R lies within the shell, let Ri and Ro be the masses of the portions lying respectively within and without the shell; Q and Q' two points of the region R, the one outside, the other inside the shell. Then
, potential of Ro at

Fig. 484.Hence  potential of at(See a Theorem due to Gauss; Routh, Attractions, Art. 70.)If R lies entirely inside S, Ro=0, Ri=R and M1654. Examples.1. Find the mean inverse distance between a point P which lies on a 
spherical surface of radius a, and a point Q which lies on a circular disc of 
radius b, whose plane passes through the centre of the sphere, and the disc 
lying (i) entirely without the spherical surface, (ii) entirely within.

Fig. 485.(i) Let 0 be the centre of the sphere, p the distance between a pair of the points. Then we have potential of disc at 0.
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MEAN VALUES. 757If c≡the distance between the centres, this may be expressed as[Math. TRip., 1884. ]or as(ii) If the disc lie entirely within the spherical shell, we have at once
2. Find the mean inverse distance of two points P and Q, one within a 

sphere of centre A and radius a, the other within a sphere of centre B and 
radius b, the centres being at a distance c apart (c > a + b).

Fig. 486.If V, V' be the respective volumes, PQ=p,'potential of V at Q 
 potential of V' at A

1G55. A Useful Artifice:Let M1 represent the mean value of any function of the distance between two points, one fixed on the boundary of any region, the other free to traverse the region. Let M2 be the mean of the same function when each point may traverse the 
region. Then either of these quantities may be deduced from the other.Let A be the area, or V the volume of the region, according as it be of two or of three dimensions.Let R stand for A or V as the case may be. Construct a parallel curve or surface by taking a length dn (a constant) upon each outward drawn normal, thus making an annulus or shell round the original region. (Fig. 487.)By this increase of the region R, M2 is increased by the cases in which one or other of the points lies in this shell, or by both lying in the shell.
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758 CHAPTER XXXV1.The number of cases to be examined in finding M2 is measured by R2.The sum of the cases is measured by M2R2.The increase in this sum due to the increase of the normalsfrom n to n+dn isAgain, the number of cases added by taking one end of the line on the shell and the other free to traverse the region it encloses, is measured by R. S dn, where S is the perimeter (or the surface, as the case may be) of the region. The same is true if the second end lies in the shell and the first is free to traverse the bounded region, whilst if both ends lie on the shell the number of added cases is measured by (S dn)2.Henceand as the second term on the right is a second-order infini­tesimal, we have in the limit when dn is indefinitely small,by which equation the value of either
M1 or M2 can be deduced when the other has been found. This artifice is useful for circular areas or spherical regions,and may be used in other cases.

Fig. 487. Fig. 488.1656. Illustrative Examples.1. (i) Show that the mean distance of points within a circle from a fixed 
point in the circumference, viz. M1, is 32α∕9π, a being the radius.(ii) Show that the mean distance between any two points within the circle, 
viz. M2, =12Sa∕45π. [St. John’s Coll., 1885. ]Let 0 be the fixed point on the circumference and Ox the diameter through 0. r, θ the coordinates of any point P. (Fig. 488.)

(i)
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MEAN VALUES. 759

(ii) Againand M2 vanishes with a. and2. (i) Find M 1, the. mean distance of a point on the surface of a sphere of 
radius a from internal points.(ii) Find M2, the mean distance between two points within a sphere of 
radius a.

(i)
(ii)and M2 vanishes with a ; and3. Mean distance of points within a sphere of radius a and centre C from 

a given external point 0 ; OC=c.Let OQQ’ be a chord through an internal point P, whose coordinates are r, β with reference to O as origin, and let ϕ be the azimuthal angle of the plane OOP. Then

Fig. 489.Let QQ' = 2z ; then
and the limits for z are from a to 0.

4. Mean distance of points upon the surface of the sphere from a point 0 
without the sphere.The number of cases in which P can traverse the whole sphere ismeasured by Therefore the sum of such cases is
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760 CHAPTER XXXVI.The change effected in thia by increasing a to a+da ia
The number of these introduced cases is to the first order 4πα2dα, the new cases being those of the points on the shell. Hence the mean required =c+1/3 a2/c.

5. Find the mean distance of all points P within a sphere of radius a and 
centre C from a fixed internal point 0 ; OC=c.HereLet QOQ' be the chord through P, AO A' a diameter and BOB' the perpendicular chord. Let AOQ=θ, A'OQ'=θ'. We may replace [r4] sin θ by OQ4 sin θ + OQ'4 sin θ' and integrate with regard to 0 ( = θ') from 0 to; for having integrated for ϕ from 0 to 2π, all elements will be thussummed. Now and

Fig. 490.Hence
When c=α this becomes 6α∕5.6. Deduce from the last result the mean distance between two random points 

within a sphere.Taking C for pole and r1, θ1, φ1 as the coordinates of 0, the sum of the cases with a given point 0 for an extremity is
Multiplying by r12sinθ1dθ1dϕ1dr1 and integrating through the sphere, we haveMean value requiredas otherwise in Ex. 2.
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MEAN VALUES. 7617. Find the mean distance of a given point 0 within a sphere from points 
on the surface.The sum of the casea of distances of internal points from 0 being as in the last example, π(a4 + 2/3ξc2a2-1/15c4) is increased by π(4α3+ 4/3c2a)da by increasing the radius to a+da. The number of added cases is to the first 
order measured by 4πα1 da. Therefore the mean of distances of points on the surface from the given internal point 0 is

8. Find the mean distance of points between the surfaces of two concentric 
spheres of radii a1, a2 from an external point P at a distance c from the 
centre 0.

Fig. 491.Taking Q any point of the shell distant x from the centre, the meanvalue of PQ is c + 1/3 x2/c , and the number of cases between the spheres of radii x, x+dx is 4πx2dx. The sum of the cases for this thin shell isc + 1/3x2/c) ; ∴ for the shell of finite thickness,

9. Find the mean distance of points within a sphere of radius a and 
centre O from points within an external concentric spherical shell of 
internal and external radii a1 and α2.(Fig. 492.)Let P and Q be two such points, Q lying within the shell, OQ=x. Fora given position of Q, M The number of cases is measuredby and their sum by Now let Q traverse the shell.Let dV be an element of its volume. Then
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762 CHAPTER XXXVI.In the particular cases stated below, we have
(i) (ii)(iii) (iv)

(v) (vi)

Fig. 492. Fig. 493.10. Find the mean distance of a point P which lies between the surfaces of 
a spherical shell of inner and outer radii a1 and a2 from a point Q, which 
lies between the surfaces of a concentric spherical shell whose inner and outer 
radii are b1 and b2 (b2 >b1> a2> α1). (Fig. 493.)Let 0 be the centre, OQ=x. For a fixed position of Q,

and the number of such cases is measured by and theirsum by say. Hence when Q isfree to traverse the outer shell, we have

11. Mean distance of points Q within a sphere of radius a, from points P 
on the surface of a second of radius b external to the former.

A and B being the respective centres and P a given point on the surface of the second sphere, the mean of distances from P of points within the first = r + 1/5 α, where AP=r.
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MEAN VALUES. 763
Hence the sum of the cases is measured by Hence we

are to find for the second sphere

Fig. 494.Now  mean distance of points on the second spherefromand potential of a shell of unit density at the point
mean value required12. Mean distance of two points Q and P, one on each of two spherical 

surfaces of radii a and b, each outside the other.
A and B being the centres, r=AP, the mean of the distances on the

Fig. 495.surface of the first sphere from and the sum of the cases ismeasured by Hence, we have to find for the second sphere
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764 CHAPTER XXXVI.13. If each of the points in Case 12 be allowed to traverse the interior of its 
own sphere,

 taken through the second sphere

14. Mean distance between points P and Q, P lying anywhere within a 
sphere of centre A and radius a, Q within a sphere of centre B and radius b, 
enclosed entirely by the first.Let AB=c,BP=r. First fix P. Then(i) if P lie without the smaller sphereand the number ofsuch cases is measured by(ii) if P lie within the smaller spherethe number ofcases being, as before, measured by 4/3πb3.The sums of the cases are therefore

Fig. 496. andThese are to be summed for all positions of P. In the second expression, P necessarily lies in the smaller sphere and in the first expression the integral through the shell is the difference of the integrals taken through the two spheres.The first therefore yields being an elementof volume,
The second yields
Adding and dividing by 4/3πα3∙×4/3πb3, the mean value required is
When c=0 and a = b this reduces to 36/35α, the result Ex. 2.
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MEAN VALUES. 76515. Mean distance PQ, where P and Q lie, one within a sphere of centre A 
and radius a, and the other within a sphere of centre B and radius b, the 
spheres intersecting, where AB=c (> a).Let BP=r. Fix P. Then, (Fig. 497),(i) if Plies without the δ-sphere, the sum of the cases is measured by

(ii) if P lies (at P') within the δ-sphere, the sum of the cases is measuredwhere r is now BP'.by

Fig. 497. Fig. 498.

We have now to sum for the α-sphere, omitting the lens,
and for the lens,and after addition to divide by the measure of the whole number of compound cases, viz. 4/3πα3. 4/3πb3.Now the integration of any function ϕ(r) of the distance r of a point P' from an external point B, can be conducted through the region enclosed by the lens as follows :Let V, V' be the vertices of the lens (Fig. 498). Then if x be distance from V of the common plane section of the sphere of radius a and centre A with the sphere of centre B and radius r, we have
and if r increases to r + dr, the volume of the lens increases by
this being the volume of the added layer.Every point of this layer is at the same distance r from B. Hence the integration of ϕ(r) through the lens is ∫ϕ(r)π/c {a2-(r-c)2}r dr with
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766 CHAPTER XXXVI.limits c — a to b ; and for the rest of the a-sphere with limits from b to c + a. And we have
, say.Hence

The integrals are interesting from another pointof view, and reduce as follows : and is the potential at B of themeniscus FCG taken as of uniform unit volume density. and is the volumeof the double-convex lens.1657. Mean Square of Distance between Two Points.Let P and P' be random points in the respective regions 
R and R', which may be one-, two- or three-dimensional. Let

G, G' be the respective centroids of these regions for a uniform mass-dis­tribution, and the line, surface or volume den­sity, as the case may be, be taken as unity. LetFig. 499.

H and H' be the moments of inertia with regard to the respec­tive centroids, viz. ΣmGP2 and Σm'GP'2. Then taking R, R' as the lengths, areas or volumes of the regions, as the case may be,
Forand (Lagrange’s Theorem, Routh, A. St., I.. 436.)

also
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MEAN VALUES. 767The values of H and H' are known for many elementary cases.Cor. I. Centroids coincident, GG'=O, M(p2)=H∣R+H'∕R'. Cor. II. (i) Regions identical, M(p2)=2H∣R.

2. If 0 be a point at distance c from the centre of a circle of radius a in any position which P may traverse, M(ρ2)=c2 + α2∕2.3. If 0 be the centre of an ellipsoid of semi-axes α, b, c, throughout which the free point may travel, M(p2) = (α2 + b2 + c2)∕5.If 0 be the extremity of the α-axis, M(p2) = α2 + (α2 + b2 +c2)∕5.4. If P lies on the circumference of a semicircle and P' on the diameter,of length 2α, 

(ii) If the region be a plane lamina, 
H∕R=sq. of radius of gyration=k2; ∴ M (p2)=2k2.1658. Examples.1. For two ellipses, semi-axes (α, b) and (α', b'), lying in the same plane, c the distance between the centres, M(p2) = (α2 + b2 + α'2 + b'2)∕4+c2.2. If R and R' be the same square of side α, M(p2) = α2∕3.3. If R and R' be the same sphere of radius a, within which each point may move, M(p2) = 6α2∕5.4. If R and R' be the same sphere of radius α, on the surface of which each point may move, M(p2) = 2α2.5. If P moves on the surface of a sphere, and P' on a diametral plane,

6. If P moves on the surface of a sphere, and P, on a great circle,
7. If P and P' move one on each of two straight lines of lengths 2α, 2b, whose centres are a distance c apart, M(p2) = c2 + (α2 + b2)∕3.If the lines be identical, M(p2) = 2α2∕3,with the same result if not identical, but with the same centre and of the same length.1659. If one of the two points be fixed, say P', and P traverses a region R, then taking P' as origin 0. Then
1660. Examples.1. If 0 be the centre of a square of side 2α which P may traverse,

www.rcin.org.pl



768 CHAPTER XXXVI.Otherwise :—with the notation of Fig. 500,

Fig. 500. Fig. 501.5. If P lies on the circumference of a circle, and on one side of a given diameter AB and P' on the opposite semi-circumference, GG'=4a∣π ;

Otherwise :—If O be the centre, AOP=Θ, AOQ=ϕ, (Fig. 501),

1661. Mean nth Power of Distance between two points P and Q.Examples.1. Let AB be a given straight line of length a; P and Q two random points upon AB, P being the one more distant from A ; AP= x, AQ=y.

2. If P lies on the circumference of a circle, and Q be at a fixed pcint 
O of the circumference, C the centre, (Fig. 502),
where (n odd) or (n even).
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MEAN VALUES. 7693. If P lie within the circle, and Q be at 0, (Fig. 503),
where

Fig. 502. Fig. 503.4. If P and Q both lie within a circle of radius a, M(PQn) may be inferred from the last result. Let M be the result required. The number of cases is measured by πa2 × πα2 and their sum is measured by 
Mπ2a4. If the radius be increased to a + da, the increase in the sum 
=d/da(Mπ2a4)da. This increase is brought about by the addition of the cases in which P or Q or both lie on the annulus, and is
the first factor 2 being inserted because either P or Q may lie on the annulus, and the second term arises for the case in which both lie on the annulus, but is a second-order infinitesimal.Hence, M vanishing with α, no constant of integration is required, and
[The result was given by the Rev. T. C. Simmons, Educ. Times, 7943, p. 120, vol. xliii., a different proof being adopted.]5. If P lies on the surface of a sphere of radius a and Q is at a fixed point O of the surface, then, (n > 0),

6. If P and Q are both free to move on the surface of the sphere and
[This result might be inferred from Ex. 5.]7. If P lies within the sphere and Q is at a fixed point O on the surface,
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770 CHAPTER XXXVI.8. If P lies within the sphere and Q be at the centre C,[St. John’s Coll., 1883.]9. If both P and Q lie within the sphere, proceed as in Ex. 4.Then M(PQn) = 2n+3.32αn∕(n + 3)(n + 4) (n + 6).10. If one point lie within the sphere and the other lie at a fixed point 
O without the sphere, let OQQ' be a chord through P, C the centre, 
COQ = Θ, a the radius, CO=c, OP=r,

and OQ, OQ' are the roots of p2-2cpcos θ+c2- α2=0.For the evaluation of this integral it is convenient to take QQ' as the variable when n is odd and θ as the variable when n is even. There are two algebraical identities useful in such cases. Let r1+r2 = s, r1-r2=d, r1r2=p.Then, by putting into Partial Fractions (x2-sx+p)-1, expanding both sides in inverse powers of x, and equating coefficients of 1∕xm+1,

Fig. 504. Fig. 505.If m be odd, the indices of s are all even. Substituting for s2 its value d2 + 4p and expanding each term, the series all terminate, and we obtain
(A)If m be even,

whence, expanding as before, the series all terminate and, m even,
(B)(i) Suppose, for instance, n = 3, m = 6. Let QQ'= x,

(from B).
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MEAN VALUES. 771Also 
whence and(ii) Suppose n = 4, m = 7,

Let Putetc.Using this reduction formula, we may show that 
and finally11. Find the mean value of x2n for all points on a spherical surface with 
centre at the origin and radius a, the distribution being for equal surface 
elements.

M(x2n+1) is evidently zero. For the values of x2n+1 for which x is negative, cancel the corresponding ones for which x is positive.12. Find the mean value of (lx + my + nz)2p taken over the same spherical 
surface.Changing the axes so that lx+my+nz=0 becomes the new y-z plane, 
lx++ = X√l2 ++, and

13. Find M (x2py2qz2r) over the same spherical surface. Let p + q+ r=k.Then
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772 CHAPTER XXXVI.14. Find M (Px2py2qz2r) taken over the surface of an ellipsoid of superficial 
area A, semi-axes a, b, c, where P is the central perpendicular on a tangent 
plane, the distribution being for equal elements of area.Then writing
where dσ is the corresponding surface element on the sphere ξ2+η2 + ζ2=R2, we have as the mean value required 

2. Find the mean of the areas of all acute-angled triangles inscribable as 
in Ex. 1.Here θ <π, ϕ < π, 2π- θ-ϕ <π. The limits are therefore θ=O to π, 
φ=π- θ to π, and the mean = 3R2∕π.3. Find the mean area of all right-angled triangles inscribed as before.Take A as the right angle. Then ϕ = π and the mean = 2R2∣π, and there are the same number of cases with the same sums if B or C be the right angle. Hence the mean = 2R2∣π.4. Find the mean area of all obtuse-angled triangles inscribed as above.Let A be the obtuse angle. Here θ < π, ϕ > π, 2π - θ - ϕ < π. Then the limits for θ are 0 and π, and for ϕ, π and 2π - θ, and the mean = R2/π.

where p+q+r = k. (See Routh, Rig. Dyn., pp. 7 and 8.)1662. Mean Areas and Volumes.Examples.1. Find the mean value of the areas of all triangles which can be found by 
taking at random three points on the circumference of a circle of radius R.Let Obe the centre, ABC a specimen of the triangles; AOB = θ,BOC=ϕ.

Fig. 506.We may fix A. φ varies from 0 to 2π- θ, and θ from 0 to 2π. Then
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MEAN VALUES. 7735. Find the mean area of all triangles formed by joining three random 
points on a sphere of radius a. [Math. Trip., 1883.]Let 0 be the centre. Consider first all the circular sections normal to a given direction OA. Let P be any point on this circle, PN a perpen- Adicular on OA. AOP= χ. Then the mean area of all triangles inscribed in this circle = 3α2sin2χ∕2π, and the number of such triangles is measured by 2π2 (Ex. 1). Therefore the mean for all triangles perpendicular to theline OA for equal increments of χ is and themean is obviously the same for all directions of OA, since the number of cases and the sum of the cases is the same for each direction of OA. (Fig. 507.)A distribution of different nature, e.g. for equal increments of x, wouldgive a different result, viz.

Fie. 507. Fig. 508.6. Find the mean value of the volume of a tetrahedron whose angular points are 
four random points on a sphere of radius a. (Fig. 508.) [Math. Trip. , 1883. ]Without affecting the problem, we may take a set of bases fixed in direction, say normal to a given radius OA. Let one of the bases be on the circular section through the ordinate PN. Then, as the vertex of the tetrahedron travels in a circular section parallel to the base and through a second ordinate P'N', the volume remains constant. Therefore the mean volume of the tetrahedron, with vertices on the plane through P'N' and bases on the plane through PN

The measure NN’ of the perpendicular height of the tetrahedron changes sign as N' passes through N. To avoid negative signs for the volumes of tetrahedra with vertices on opposite sides of their respective bases, we separate the integration into two parts. The expression for the mean volume required is then
which, after integration, gives 16α3∕9π3.The distribution here taken is for equal increments of χ1 and χ2.
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774 CHAPTER XXXVI.7. If P, Q, R be random points on the three sides BG, CA, AB of a 
triangle, find the mean values of the triangles AQR, BRP, CPQ, PQR.

[R. Chartres, Educ. Times.]Let x1, x2; y1, y2; z1, z2 be the respective parts into which the sides are divided at P, 
Q, R ; Δ the area of the triangle ABC,

Similarly

1663. Miscellaneous Mean Values.Examples.1. The value of a diamond being proportional to the square of its weight, 
prove that, if a diamond be broken into three pieces, the mean value of the 
three pieces together is half the value of the whole diamond. [M. Trip., 1875.]Let x, y, z be the weights of the portions, W that of the whole. Then we have to find the mean value of x2+y2 + z2, where x+y+z= W. Refer-

Fig. 510.ring to Cartesian coordinates, x + y+z=W is the equation of a plane. If 
dσ be an element of area of the intercepted triangle, the mean value is(mom. of in. with respect to the origin)∕area(the sum of the moments of in. about the axes)∕area.Let 3.4 be the area of the triangle. Then, concentrating A at each mid-point (Routh, Rig. Dyn., Art. 35),Mean value
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MEAN VALUES. 7752. It is required to find the mean value of the inverse distances of points 
on a circle of radius a, from points on a fixed diameter AB.Let P be a point on the arc, Q a point on the diameter, 0 the centre.

Then (Fig. 511.)
Now is the potential at P of a material line AB of unit linedensity (Art. 1652).

(Art. 1074.)

Fig. 511. Fig. 512.3. 0 is a fixed point on the circumference of the base of a hemisphere 
with centre C. P and Q are randompoints on the surface ; find the meah value 
of the angle between the planes OCP, OCQ. (Fig. 512.) [CaiUs Coll., 1877.]Let A0A'0' be the base of the hemisphere, and B its vertex, C the centre, CA, CB, CO being taken as the rectangular coordinate axes. Let ϕ1 and ϕ2 be the azimuthal angles of the two planes OCP, 0CQ, P being taken as the point on the plane with the greater azimuthal angle. Then if the distribution of the points P, Q be one for equal elements of area, the mean required is

 etc. = π∕3.
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776 CHAPTER XXXVI.4. Prove that if 2c be the distance between the foci of an ellipse of semi­
axes a and b, the mean value of r1-2r2-2 f {1/4(r1 + r2)2 - c2}, with respect to the

area, is equal to being the focal radii of any point

within the ellipse. (Fig. 513.) [γ, 1890. ]Taking as confocals through the point,

Mean requiredthe integration being taken through the first quadrant,

Let
Hence the mean required

Fig. 513. Fig. 514.5. Through P, any point within an ellipse, a chord QPQ' is drawn parallel 
to a given semi-diameter p. Show that the mean value of ϕ(QP. PQ') for 
all points within the ellipse is

[δ. 1885.]Draw a similar and similarly situated ellipse through P. (Fig. 514.) Then QP. PQ' retains the same value for all points on this ellipse, viz.
OB2 - OB'2=p2 cos2 θ, where ρ= OB and sin θ is the ratio OB': OB.
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MEAN VALUES. 777If A and A' be the areas of the larger and smaller ellipses, A' = Asin20 and dA' = 2A sin θcos θdθ.

6. Ellipses are drawn with the same major axis 2α and any eccen­
tricities ; show that the mean length of their perimeters is

[St. John’s, 1886.]Taking all eccentricities as equally likely, the mean perimeter is(Art. 567.)Now

Mean Perimeter
by Art. 1074,

7. Show that the average values of the lengths of the least, mean and 
greatest sides of all possible triangles which can be formed with lines whose 
lengths lie between a and 2a are in the ratio 5:6:7. [Math. Trip.]If the sides be taken a+x, a+y, a+z, the ratio of their means is

8. Find the mean value of xyz for points within the positive octant of the
ellipsoid a-2x2 + b-2y2+c-2z2 = 1. [Ox. II., 1890.]Use Dirichlet’s integral, Art. 962. M(xyz)=abc∣8π.9. If a point be taken at random within a tetrahedron, then, of all parallelepipeds which can be described having the line joining the point to one of the angular points as diagonal and its edges parallel to the edges of the tetrahedron which meet at that point, the average volume is one twentieth that of the tetrahedron.
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778 CHAPTER XXXVI.10. Show that for positive values of x, y, z, with conditionand r being > 1,the mean value of (xyz)r-1 for an equable distribution of area on the x-y plane is 
which for r = 2 reduces to 4αbc∕15π.11. Find the mean value of (xyz)r-1, r > 0, where x, y, z are areal coordinates for points within the triangle of reference.

We require 
for positive values of x, y, z (see Art. 975) = 2{Γ(r)}s∕Γ(3r).12. Show that if x, y, z, u are the tetrahedral coordinates of a point within the reference tetrahedron, M{(xyzu)r-1}, (r > 0), = 6{Γ(r)}4∕Γ(4r).13. Show that if r > 0 and x1, x2, ... xn be all positive and subject to the condition x1+x2+ ...+xn=1, then

14. Show that if ι1, ι2,... ιn be all positive, the mean value of x1ι1-1x2ι2-1... xnιn-1 for positive values of x1, x2,...xn subject to the condition15. Show that the mean value of Ayz + Bzx+ Cxy for positive values of 
x, y, z subject to the condition x+y+z=1 is 1/12 (A+ B +C).16. Show that the mean value x4+y4 + z4 for positive values of x, y, z subject to the condition x+y + z=1 is 1/5.17. Show that the mean value of (A, B, C, D, E, F){x, y, z)2 for positive values of x, y, z subject to the areal condition x+y+z = 1 is

18. Let there be n points upon the x-axis, and let positive ordinates of 
increasing magnitude be erected at these points, their sum being l. Find the 
mean length of the rth ordinate. [Laplace; Todhunter, Hist., p. 545. ]Taking as ordinates y1,y1+y2, y1+y2+y3, ∙∙∙  y1+ ∙∙∙ +yn, thenny1 + (n-l)y2 + (n-2)y3+ ... +yn = l.Putting ny1=x1 (n - 1)y2=x2, ...yn = xn, we have x1  + x2+ ...+xn=l. 

We then require 
which gives
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MEAN VALUES. 77919. The density at any point of a triangular lamina varies as the product of the perpendiculars on the sides. Show that the mean density is 9/20 of the density at the centre of inertia of the triangle.
1664. Certain Inequalities.If a, b, c, ... be any positive quantities, n in number, and 

m, r, a, β,... positive integers and a + β +... =m and m >r, we have (i) (ii)(iii) (Smith, Alg., Art. 348.)That is, the mean of the squares > the square of the mean; the mean of the mth powers > the product of the means of the rth and (m—r)th powers; and so on.1665. If a, b, c,... be replaced by ϕ(α0), ϕ(α0+h), ϕ(a0+2h),..., the values of a positive continuous single-valued function of x for equal infinitesimal increments of the variable, we have the mean value of the square of the function > the square of the mean value of the function between the same limits, with other theorems of a similar nature. That is,  

etc.
1666. General Mean in Terms of Means restricted in Various 

Ways.Let there be two regions Ω1 and Ω2 mutually exclusive. Let two random points P and Q be taken in the combined region, and let ϕbe some function of their positions, say for instance their distance apart, its square or its nth power. Several cases may occur: (i) Both may lie in Ω1;(ii) both may lie in Ω2; (iii) and (iv) either may lie in Ω1 and the other in Ω2.
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780 CHAPTER XXXVI.Let M1,1,M2,2,M1,2be the mean values of φ respectively in case (i), case (ii), cases (iii) and (iv), and let M be the mean value of φ when the positions of P and Q are unrestricted. The number of cases occurring are measured by the magnitudes of the regions, viz. Ω12 if both lie in Ω1, Ω22 if both lie in Ω2, Ω1Ω2 if P lies in Ω1 and Q in Ω2, and Ω1Ω2 if Q lies in Ω1 and 
P in Ω2, and (Ω1+Ω2)2 if they lie in either region, unspecified.Hence Ω12Ml,l, Ω22M2,2 2Ω1Ω2M1,2 and (Ω1+Ω2)2M are the sums of the several cases occurring. But the first three must make up the whole sum of the possible values of φ, i.e.

1667. Ex. If the two regions be mutually exclusive spheres of radii 
a and b and centres distance c apart, then for the mean distance PQ,

Hence the mean distance between P and Q when each may lie within either sphere or in different spheres is

In the case where the spheres are equal and in contact, c = 2a = 2b and
1668. In the same way, if there be three or more mutually exclusive regions Ω1, Ω2, Ω3, say, and φ be a function of the positions of three points P, Q, R which lie in one or other of these regions, then (α)all may lie in any one of the regions, (b) two may lie in one region, and one in either of the other regions, or (c) one may lie in each region.Let M3,0,0 be the mean value of ϕwhen all lie in Ω1, 

M0,3,0 when all lie in Ω2, M2,1,0 when two lie in Ω1 and one in Ω2, and so on; and let M be the mean irrespective of where they lie. The respective numbers of cases are measured by Ω13, Ω23, 3Ω12Ω2, etc., and (Ω1+Ω2+Ω3)3, and the sums of these cases are respectively measured byetc., and
www.rcin.org.pl



MEAN VALUES. 781and the last, being the sum of all possible values of φ, is equal to the sum of all the several cases previously enumerated. Hence
and so on if there be more than three mutually exclusive regions.

1669. Regions not mutually exclusive.To go back to the case of two regions, suppose next that the regions Ω1 and Ω2 have a common region Ω. The whole region bounded is then Ω1+Ω2-Ω.

(Mutually exclusive regions)

(Not mutually exclusive)

Fig. 615.Let MΩ1+ω2-ω be the mean value of ϕ, when the random points P, Q lie anywhere in the whole region; MΩ1-ω the mean when both lie in Ω1-Ω; the mean when both  +lie in Ω2-Ω; M the mean when one lies in Ω1 and one in Ω2∙The respective numbers of cases are (Ω1+Ω2-Ω)2, (Ω1-Ω)2, (Ω2-Ω)2 and 2Ω1Ω2-Ω2; for in allowing P and Q each to range over Ω1 and Ω2 respectively, or Ω2 and Ω1 respectively, the region Ω is counted twice over.The sum of the values of φ when one lies in Ω1 and one in Ω2isThe sum when both lie in isThe sum when both lie in isand the three make up the total sum
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782 CHAPTER XXXVI.1670. Similarly more complex cases may be examined. Also the present formulae admit of considerable reduction for special cases, 
e.g. when the regions are equal or when one region is enclosed completely by the other.

1671. The Geometric Mean. Clerk Maxwell. An Integral 
useful in Electromagnetic Problems.If log Rab be the mean value of the logarithm of the distance between points P and Q, one in each of the areas A and B lying in the same plane, then obviously
the integrations being conducted for all elements of area in A, and for all elements of area in B.The integration over two such areasoccurs in the determination of the electromagnetic action between two parallel straight currents flowing in conductors of given sections. (Clerk Maxwell, E. and M., ii., p. 294).ClearlyIf C be a third area in the same plane, in which P or Q could lie, (A +B)Clog R(a+b)c represents on some scale the sum of the logarithms of the distances of points in C, from points in the composite area A+B,whilst A Clog R ac represents on the same scale the sum of those cases of the aforesaid group which refer to lines joining points in A with points in C; and similarly with BClog Rbc.Hence
And this rule may be extended. Thus, if there be a fourth area D in the same plane,
and so on.Thus, if R be found for pairs of parts of a composite figure the rule will give R for the whole figure.Also A, B, C, ... are not necessarily different figures.Maxwell states the results for a number of cases. He calls the line R thus determined the Geometric mean of all the distances between such pairs of points.
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MAXWELL’S GEOMETRIC MEAN. 783

1672. Cases of Maxwell’s Geometric Mean.I. To find R for a point C, and a finite straight line AB. (Fig. 516.)Let CO be drawn at right angles to the direction of AB.
P a point on AB, 0A =a = x1, OB=b=x2, OC=p, OP=x, CP=r, 

AB=l=b-a. CA=r1, CB=r2.Then circ. meas. ofi.e.In the case when Clies on AB produced, p = 0, and  

Fig. 516. Fig. 517.1673. II. Let ABCD be a rectangle, AB=a, AD=b. Let P and Q be 
points respectively upon AB and CD. P0 the perpendicular upon CD. 
AP=x. (Fig. 517.)For a given point P let R1 refer to the value of R for the fixed point P,  

Integrating with regard to x from 0 to a,

i.e.where D is the diagonal.
1674. III. If P lies upon AB and Q upon AD, and R1as before refers 

to the result for a fixed point P,  1 and integrating from 0 to a,

www.rcin.org.pl



784 CHAPTER XXXVI.1675. IV. If Q lies on the circumference of a circle of radius a, and centre 
0, and P be any point in its plane distant c from the centre,

Fig. 518.

Therefore R = the greater of the two a or c ; and the mean of log r is accordingly
1676. V. If P travels on the circumference of a second circle of radius b 

entirely without the former, the distance of the centres being d, and if log R 
stand for the mean value of log PQ,

Fig. 519.

Similarly if one circle be entirely within the other.
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MAXWELL’S GEOMETRIC MEAN. 7851677. VI. If Q lies upon a circular annulus, centre 0, external 
and internal radii a1 and a2, and P be at a point distant c from 0, and

or if
i e. if (αif (β)

Fig. 520.If a1>c>a2, and P itself lies upon the annulus,  
whence (γ)Since R=c when P is without the annulus, the mean value of log PQ, where P lies upon any region entirely without the annulus is the mean value of logP0. And if P lies upon any region entirely within the annulus, the expression for R,in that case not containing c, is independent of the shape or position of the region.We may deduce the result (γ) from (α and (β)by Art. 167L Let A and B be the regions of the annulus respectively outside and inside a concentric circle through Q. Then if C be an elementary small area in which P lies,
giving the same result as before.
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786 CHAPTER XXXVI.1678. VII. If P be not at a fixed point within the annulus, but may 
travel anywhere within it, 
where r1, θ1 and r2, θ2 are the polar coordinates of P and Q.The limits for θ1 are θ2 to θ2 + 2π ; for θ2, 0 to π, and double the result; for r2 from a2 to r1 and r1 to a1 ; for r1, from a2 to α1.The first integration gives 
according as r1 or r2 is the greater.The second merely multiplies the result by 2π.The third gives

The final integration gives, after dividing by, a result stated by Maxwell.
For the mean of the logarithms for pairs of points within any circular 

area, put α2 = Oj then log R=log a1 -1/4 ,that is R = a1e-1/4 or Ris a little more than 3α∕4.  ,tOther results of similar character are stated by Maxwell with a reference to Trans. R.S., Edinb., 1871-2.1679. Other cases of mean values will be considered in the next chapter, which are more intimately connected with the general Theory of Probability.
PROBLEMS.

1. If the sides of a rectangle may have any values between a and
b, prove that the mean area = (α + b)2∕4. [r. P.]

2. Find the average area of a random sector whose vertex is taken 
at a given point on a given circle.

3. ABCD is a square. Show that the average distance of A from 
points on BC for an equable distribution of radii vectores about A is

but for an equable distribution of points on BC

it is

4. A rod of length a is broken into two parts at random. Show 
that the mean value of the sum of the squares of the parts = 2α2∕3.[Ox. II., 1886.]
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MEAN VALUES. 7875. A rod of length a is broken into two parts at random. Show that the mean value of the rectangle contained by the parts is α2∕6.6. The sum of two positive numbers is given = N. Show that the mean value of the product of the pth power of the one and the qth power of the other is p!q!Np+q /(p + q + 1)!, p and q being positive integers.  /(7. Find the mean value of the (i) squares, (ii) cubes of all radii vectores of a cardioide for an equable angular distribution of radii vectores about the pole.8. Given the base and the radius of the circumcircle of a triangle,determine its mean area, stating clearly what assumptions you make as to equal probability. [St. John’s, 1884.]9. Show that the average of the squares of the distances of allpoints within a given circle from a point on the circumference is three times that of the squares of all points within the circle from the centre. [Colleges, 1878.]10. Find the mean value of the squares of the distances of all points within a rectangle (i) from the centre of the rectangle, (ii) from any point in the plane of the rectangle, (iii) from any point not in the plane of the rectangle.11. Find the mean value of the focal radii vectores of a cardioide (i) for an equable angular distribution of radii, (ii) for an equable arcual distribution.12. If a solid be formed by the revolution of a cardioide about its axis, find the mean value of the focal distances of points on the surface of the solid (i) for an equable surface distribution, (ii) for an equable solid angle distribution.13. Find the mean value of the squares of the distances between any two points within a given (i) triangle, (ii) square, (iii) sphere, (iv) cube.14. (i) Find the mean of the inverse distances of points within an ellipse from a focus for an equable areal distribution.(ii) Find the mean of the inverse distances of points within a prolate spheroid from a focus for an equable volume distribution.15. Show that the mean distance of points within a sphere of radius a from points of the surface of a shell of double the radius of the sphere is 21α∕10, and that the mean distance of points on the surface of the sphere from points on the shell is 13α∕6.
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788 CHAPTER XXXVI.16. Show that the mean distance of all points within a sphere of radius a from a point midway between the centre and the surface is 279α∕320.17. Show that the mean distance of a point on the external surface of a spherical shell of thickness T from points in the material of the shell is 6/5R+1/5, where R is the external    thradius.18. Show that the mean distance between points P and Q, of which P lies within a sphere of radius R and Q lies between this sphere and a concentric sphere of double the radius, is 35R∕140.  19. There are two concentric spherical shells, the bounding surfaces of which are 1 inch, 2 inches, 3 inches, and 4 inches. Show that the average distance of points in the material of the first from points in the material of the second is 3591/740 inches.20. Two equal spherical surfaces are in contact. Show that the mean distance of points on the one surface from points on the other = 7/3 of the radius of either.Show further that if the points may lie anywhere within their respective spheres, their mean distance is 11/5 of the radius of either; but that if one of the points lies within one of the spheres and the other point on the surface of the other sphere, their mean distance is 34/15 of the radius.21. If Mn be the mean of the nth power of the distance betweentwo points on the area bounded by a circle of diameter unity, show that Mn+2 = Mn(n+ 2) (n + 3)∕(n + 4) (n + 6).22. If Mn be the mean of the nth power of the distance between two points on the surface of a sphere of unit diameter, show thatM n+1= Mn(n + 2)∕(n + 3).     23. If Mn be the mean of the nth power of the distance between two points within a sphere of diameter unity, show thatMn+1 = Mn(n + 3) (n + 6)/(n+ 5)(n + 7)24. A point 0 is taken outside a sphere with centre C and radius 
a. CO =2a. Show that the mean of the cubes of the distances of 0 from points within the sphere = 731α3∕70, and that the mean of the fourth powers = 171α4∕7.25. Show that the mean value of x4y4z4 over the surface of a sphere of radius a is α12∕5005.
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MEAN VALUES. 789
26. Show that the mean value of for positive values

of x,y, z, subject to the condition α-2-x2 + b-2y2 + c-2z2= 1 for an 
equable distribution of areas on the x-y plane, is

where p, q, r are all greater than unity.

27. On a straight line of unit length two random points are taken. 
Show that the mean of the square of the distance between them is 
1/6 of a unit of area.

28. Circles are inscribed in the triangles formed by joining points 
on an ellipse of semi-axes a, b and eccentricity e to the foci. Show 
that the mean value of the areas of the circles for equal increments 
of a focal vectorial angle is [Math. Trip., 1892.]

29. Show that the mean value of the product of the three per­
pendiculars from any point within a triangle upon the sides is 
p1,p2,p3∕60, where p1, p2, p3 are the perpendiculars from the angular 
points upon the opposite sides.

30. Show that the mean value of the product of the four per­
pendiculars from any point within a tetrahedron upon the faces is 
 p1p2p3p4//560, where p1, p2, p3, p4are the perpendiculars from the 
several quoins upon the opposite faces.  

31. Five points, A, B, C, D, E, are taken upon a straight line AE, 
to which perpendiculars are drawn through these points of increasing 
magnitude. The sum of these five perpendiculars is 10 inches. 
Show that the mean length of the middle perpendicular is 47/30 of 
an inch.

32. Show that the mean distance of all points within a given

regular polygon of side 2α from the centre is , where

R and r are the radii of the circumscribed and inscribed circles.

33. Show that the rectangle contained between the average value 
of the radius of curvature at points equally distributed along a curve 
and the corresponding arc is double the area contained between the 
curve, the evolute and the normals at the extremities of the arc.

[δ, 1883.]
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790 CHAPTER XXXVI.34. Prove that the mean value of the radius of curvature at pointsequally distributed along the cardioide r = α(l + cos θ) is aπ∣3,while the density distribution of the corresponding points along the pedal with respect to the pole varies at any point as the curvature at the corresponding point of the cardioide. [δ, 1883. ]35. Prove that the square of the mean value of any function of avariable between any limits of the variable is less than the mean value of the square of that function between the same limits of the variable. [St. John’s, 1883.]36. Find the mean value of the squares of the distances from a focus of all points within an ellipse whose eccentricity is √3∕2. [δ, 1881.]37. The circumference of the auxiliary circle of an ellipse, whoseaxes are ACA' = 2a, BCB' = 2b, is divided at Q1, Q2, ... into a large number of equal arcs. At P1, the point on the ellipse whose eccentric angle is ACQ1, a circle is described so as to touch the ellipse at P1 and to have its centre on the major axis. Show that the mean area of all such circles is πb2(a2 + b2')∣2a2. [α, 1881.]38. At any point P of a catenary whose parameter is c, the ordinate 
PN and the normal PG are drawn to meet the directrix at N and G respectively. Prove that the mean values of the area of the triangle 
NPG for points proceeding by equal increments of (i) abscissa, (ii) ordinate, (iii) arc, up to a point whose coordinates are (x, y), are respectively(i) (y3 - c3)∕6x; (ii) c2(csinh 4x/c  -4x)/ 64 (y - c); (iii) (y4 - c4)∕8cs.     

39. Find the mean of the inverse distances of two random points, one on the surface of a sphere, the other on a circular area exterior to the sphere and whose plane is at right angles to the line of centres.40. Prove that the mean of the inverse distance between points on the surface of a sphere and points on a straight rod of length l, external to the sphere, which is bisected at right angles by a per-  pendicular upon it from the centre of the sphere, is2/l log tan π+α/4,where α is the angle at the centre of the sphere subtended by the rod.41. Prove that the mean inverse distance between points on the surface of a sphere of radius a and points on a concentric ring of radius b is b-1 if b>a or a-1 if b<a.
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MEAN VALUES. 79142. Prove that the mean value of x for all points within the positive octant of the surface (x∕α)2/3+ (y∕b)2/3 + (z∣c)2/3 = 1 is 21α∕128.43. On a given finite arc n points are drawn dividing it into equal small lengths, and n other points are taken, parallels to the normals at which divide the angle between the extreme normals into equal small angles. Prove that when n is indefinitely increased the mean of the radii of curvature at the former n points is greater than the mean of the radii of curvature at the latter n points, the curvature being supposed finite at every point of the arc. [St. John’s, 1889.]44. If log R be the mean value of the logarithm of the distancebetween two points P and Q which lie on a line AB of length a, show that R=ae -3/2[Clerk Maxwell, El. and Mag., II., p. 296. ]  
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