CHAPTER XXXVI.

MEAN VALUES.

1640. We next exhibit the application of the principles of the
Integral Calculus to the calculation of mean values. This sub-
Jject and that of Chancesto be considered in the following chapter
are wide, and the devices and artifices numerous. The general
principles and theorems are however but few, and the problems
arising depend for the most part directly upon the fundamental
definitions. A considerable number of illustrative examples
are appended to illustrate the more important modes of
procedure in the application of the Calculus, and also in the
evasion of the necessity in some cases for absolute integration.
Many of these are fully worked out; others are left for the
reader to complete the details of the integration when it is
not necessary to supply them; for it is in the formation of
the proper expressions to integrate and in the assignment
of the correct limits that difficulties arise rather than in the
subsequent mechanical process of evaluation.

1641. DEF. The quantity }%(ar}—uz-l—‘..—}—an) 18 defined as

the Mean Value of the n quantities a,, a,, ... a,, supposed all
of the same kind, n being a finite number.
This is the quantity known arithmetically as the “ arithmetic

mean’’ or average value. It may be written as —,’li 2(a), and
denoted by M (a).

1642. Combination of Means of Several Groups.
If there be several groups of quantities of the same kind,

ViZo (g, i, sos ), (Dy, bgs 0 00N (o) ke, o 6y), 5 O  Tespective
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746 CHAPTER XXXVIL

numbers p, g, 7, ete., and M(a), M(b), M(c), ... the respective
means of the groups, then the mean M of the whole set is
ﬂ{zﬁ(a)-i—Z(b)-{—E(c)—k o _pM(a)+qMb)+rH(c)+... ZpM(a)
P+o+r+... P+q+r+... p
which is the same formula as that for the ordinate of the

centroid of weights p, g, 7, ... placed at points whose ordinates
are M(«a), M(b), M(c), ete.

1643. Mean Values of Products two and two, etc.
Let there be a group of # quantities of the same kind.

Then (&)‘~‘=th1.2 23a,a, g Z_az n—-1 Za,a, )
n? n? n? T n in(n-1)
Hence {M(a)y? =7—ll M(a?) +n_;_l M(a,a,).
Similarly
(Za)’_ Za® g %2&24_62“1“2‘13:2 Za?3a 2 Za* (n-1)(n—2) Zayaqag
nd n’ n’ n? AR e n(n-1)(n-2)’
(@) =2 1) (o)~ 2 1)+ =002 by (a0

We may note that when » is indefinitely large, the mean of the products
of pairsis the square of the mean of all quantities ; and the mean of the
products three at a time is the cube of the mean of them all.

These rules determine the mean values of the products, two at a time
and three at a time respectively in terms of the means of the original
quantities, of their squares and of their cubes.

1644. Extension of the Conception of a Mean.
If the number of the quantities «,, «,, etc., be very large,

and their sum very large, the fraction %Ea tends to take the

form o /oo. In this case suppose the several quantities
a,, a,, ete, to be the equidistant ordinates of a continuous
curve y=¢(x) corresponding to abscissae

x=a, a+h,a+2h, ... a+(n—1)h=>, say.

Then the mean is
L8+ $lath)+p(at2) b+ platn—1I),

which may be written as > hg{a-+(r—1)h}/Zh, which
T

when = is indefinitely increased takes the form

jz(j;(fc) dz/(b— a).
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It is assumed here that the several quantities a,, a,, ... a,
are such that no two consecutive ones differ by a finite
difference when n is indefinitely great, but that the curve
Y==¢(z) is one in which there is a continuous change of
the ordinates between the limits considered. Otherwise the
integral expression would be meaningless.

1645. Geometrical Meaning of the ‘“ Mean Ordinate.”

It follows that the value of the mean ordinate, taken for
equidistant and indefinitely close ordinates, is represented by
the area bounded by the curve, the z-axis and the terminal
ordinates divided by the projection of the curve upon the z-axis,

That is the mean ordinate PN of a curve P,Q,, between the
initial and final ordinates N,P,, M,Q, is such that the area
P N ,M,Q,PP, is equal to that of the rectangle ¥N, MG, where
F@ is drawn through P parallel to the z-axis (Fig. 476). So
that as much of the area of this figure lies between PG
and the curve as lies between P/ and the curve.

Fig. 476.

1646. The Case when the Quantities are Functions of Several
Variables. Nature of the Distribution.

If the quantities a,, a,, ., ... be functions of several
variables, first say of two, z and y, let us consider «,, a,, ... to
be the z-ordinates of a surface z=¢ (2, y). Let the plane
@-y be imagined ruled by lines Jx apart parallel to the
y axis, and by lines Jy apart parallel to the a-axis. Let one
ordinate z, viz. ¢(, ), be erected at the corner z, y nearest
the origin of the elementary rectangle éz, ¢y, and let the same
be done at each of the corners nearest the origin of the
remaining net-work of elementary rectangles. Then we shall
understand by the “ mean value” of z the limit of the fraction
whose numerator is the sum of all these ordinates and whose

1“’;_."};"-_/‘:\[,' CiN.oOl
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denominator is their number, or, what is the same thing,
_”z dx dy jfdx dy, i.e. the volume bounded by the z-y plane,

the surface z=¢(x, y), and cylindrical surface bounding the
portion of the surface considered, whose generators are parallel
to the z-axis, divided by the projection of that portion upon
the x-y plane. It will be observed that the number of these

ordinates is measured by ﬂ.dac dy, that is the area of the
projection described.

And if there be three independent variables, so that
u=¢(, 9, z), we shall understand in the same way that by

the “mean value” of w is meant”""u da dy dz / J] dx dy dz,

and the number of cases is measured by J“Utlm dy dz; and

similarly if there be a greater number of independent variables.
And as before it will be noted that it is assumed that no two
contiguous quantities of the group considered differ by a finite
difference when their number is infinitely great. That is
to say, that unless some other distribution of the various
quantities a,, a,, a,, etc., is expressly notified, the distribution
in the case of two independent variables is that in which
there is one ordinate to each of the elementary areas oz dy,
which go to fill up the area on the z-y plane which may be
bounded by the prescribed limits of the summation ; and that
for three independent variables the region through which
the summation is to be effected is divided into equal volume
elements dz dy 6z, and that this summation is to be taken for
one value of w, viz. ¢(=, ¥,.2), for each element of volume
8 8y 6z.

1647. Other Systems of Variables.

Of course the elements of area and of volume expressed in
the Cartesian manner as éz 8y, or as §z 8y 5z respectively, may
be replaced at will by the corresponding expressions 1 30 dr
or r?sin 0 80 8¢ or, if work in polar coordinates be indicated
as more convenient for the problem under consideration, or
by the corresponding elements for any other system of
coordinates.
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And if there be more independent variables than three, so
that we fail to interpret the summation by geometry of two
or of three dimensions, we shall still understand the mean of
the function u=¢(x,, ,, ;, ... z,) to be

m Iudwl i da:,./” Ida;l FARe

and the number of cases to be measured by

II Idzl g s da

when the limits have been properly ascribed so as to effect
the summations in the numerator and denominator for all
values of the independent variables included in the compass
of the summation to which the “mean value” refers.

1648. Nature of Various Distributions.

It will be manifest that in the case of a distribution of an
infinite number of quantities such as the ordinates of a curve
or of a surface, and whose mean is required, and which have
so far been taken as equally distributed along the z-axis in
the one case or over the z-y plane in the other, if this equable
distribution ceases to hold good it will be necessary to form a
clear conception of the nature of the distribution which is to
be adopted. It will make this
matter obvious if we take a simple
example.

Consider the problem of finding
the mean value of all focal radii
vectores of an ellipse. Usually we
should understand this to mean
thatif 4, B, C, D, ... be indefinitely
close points on the circumference and S the focus from which
the radii vectores are drawn, then the mean is to be taken
for all the radii vectores such that the successive angles 4SB,
BSC, C8D, ete., are all equal infinitesimal angles ¢0. In which
case, r being the radius vector for an angle 6, the mean value

—[rdo /jde.

But it might be that the successive urcs AB, BC, CD, ... are
to be taken as equal, or that the successive areas are all equal,

A BT

Fig. 477.
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or that the successive points 4, B, €, D, ... are defined by an
equable distribution of the feet of their ordinates upon the
z-axis, or other conceivable distributions may be adopted.
The mean values in these cases are respectively

j rds/ Ids, I r.12df / Ia-z a8, jq- de / Idx,

and the several results are obviously not the same.

1649. “Density ” of a Distribution. General Remarks.

It will appear therefore that in each case the nature of the
distribution, or, as it may be called, the *“Density,” must be
carefully defined. This is of primary importance.

When the distribution is one in which the angles between
the successive radii vectores are equal infinitesimal angles, as
in the case cited, they may be described as equally distributed
about the origin from which they are drawn. This is the
usual case.

In the same way, in three dimensions, when a distribution
of radii vectores drawn from an origin to a surface is said to
be “equable,” we shall understand this to mean that a unit
sphere having been drawn with centre at the origin, and its
surface having been divided into equal elementary areas, one,
or 'the same number of radii vectores, passes through each of
these elementary areas. The mean value of r will then be

ﬂ-r.sinOdOdqﬁ/”sinedOd(p o Ir dw/jdw, sohike $h 1o othe

elementary solid angle subtended at the origin by each element
of the surface.

If the surface itself be divided into equal elementary areas
38, and the same number of radii vectores pass through each
such element, the distribution may be called an “equable

surface distribution,” and the mean value will be _[r ds / ds.

If radii vectores be drawn from the origin to points within
the region bounded by a given surface, it is usually under-
stood that they are drawn to equal elements of volume,
The mean is then

III?‘ r*sin 0dO d¢ dr/J‘”‘ 25in 06 dep dr.

www.rcin.org.pl
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1650. ILLUSTRATIVE EXAMPLES.

1. Find the mean distance of points on the circumference of the ellipse
from a focus, the density of the distribution being defined as one in which
successive pairs of points subtend equal angles at the focus.

Taking the equation as Ir—'=1+ecos ¢, we have, b being the semi-
minor axis,

rdf 2lf (1+ecosf)1do
M(r)=-——

2r

Wl i, s e BT B a):l"g;w
—;—m[t«m ( ]+etan T XE" b.

2. Find the mean inverse distance of points within an ellipse from the
focus, the distribution being an equable areal one.

”1 Yo i Udedr frda orb 2.
Here () ffrd&dr T Area  Area wab a’

a, b being the semi-axes.

fdo

3. Find the mean distance of a point within an ellipse from a focus.

[COLLEGES a, 1886 and 1879.]
f f r.rdgdr %
2 f Ado
3rab 0

Here Mi(r)= 311'(11)[ (1+ecos b + ecos 0)‘*

O T o K _
_m(-l—_e—z)%.[o (1 -ecosu)?du (Art. 196)

ok 1 ( 17r) _P 248 1
" 3mab (| _ gt “23)T3@ (T-ep “73

4. Find the mean dzsmnce of points within an ellipse from the centre.

. [COLLEGES a, 1886.]
Here, measuring 6 from the minor axis,

1 _sin?@  cos®f e f’; d _411.262[; do
AT T W M(r)-—s ab ¢ pe 3m Jo (a2cos?d +b2sin?)}

4b% f df 4b?

il (1—62511120)‘7 “3ma’ 1_32

f (1-ersin?@)tdg  (Ars. 301 (1))

3ra
= %r x (Perimeter of Ellipse) (Art. 567).

5. Find the mean of the distances from one of the foci of a prolate spheroid
to points within the surface. [WorsTeNHOLME, Educ. 7'imes.]
Taking Ir~'=1+ecos § as the generating ellipse,

f f f rrtsingdodpdr o 4, ik
Volume Vol 4 (1 +ecos 0)

M(r)= ——— df=etc. ={7:(3 +e?).

www.rcin.org.pl
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6. A particle describes an ellipse about a centre of force in the focus 8.

2
Show that its mean distance from S with regard to timeiaa(l +62) [R.P.]

If ¢ be the time, then r %—-—const =h, for equal sectorial areas are
described in equal times.

Hence M(T)=fr7t:t=}-:z:='LA::0=a(l+%2) (by Ex. 3).

7. Find the mean value of r—* with regard to time under the same circum-
stances.
j aae fao o

fdt "’ d0_2.Area

8. Show that the mean distance of points within a square from one of the
angular points is to a side of the square in the ratio {2 +log (N2+1)} to 3.

Take 04, OC, sides of the square O0ABC, as coordinate axes. We may
confine our attention to points within the triangle O4B without altering
the result. Let a be a side of the square. OP=r. Then (Fig. 478)

f f"“'rzdodr "

e
=

it 3 WL 5
M(r)= i §aj; sec’f df=7 (N3 +log (VE+1))
C J B
B i p’
/ d
S
0
0 a
P
o A & D A
. Fig. 478. Fig. 479

9. Find the mean distance of a point within a rectangle from the centre.
[Ox. II. P., 1885.]
Taking 2a, 2b, 2d as the sides and diagonal, and axes parallel to the
sides through the centre (Fig. 479),

M(’)='[f} :zoddr 3 Axea {fhm_l -aa sec30d0+f b’sec30 d(f}
rdfdr

_la*fd b d+b) lg{ a d+a}
n { o Hog”  Jteals 5tleT

65 \la a b b
d ao? d+b Iﬂ d+a
b i b b i N
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This is also obviously the result for the mean distance of a point
within a rectangle of sides @, b and diagonal d from one of the angular
points.

10. Find the mean distance of points on a spherical surface from a fixed
point O on the surface for-an equable surface distribution of radis vectores.

Here M (r)= |rdS / f dS, where d8 is an element of the surface, and
with the notation indicated in Fig. 480,

.
M(r)= L ﬁ ™ 94008 0..2a.d0 . asin 20 dp/4ra?=167a’12ma? = daf3.

11. Find the same mean for a distribution of radii vectores equably drawn
in all directions from O.

‘r do

; 2
Here M(r)= =Lf { 2a cos 6. sin 0 df dp =a.
2w Jo o
fdm
a<
y 7L A
0 260
o c N o
(o)
a
B (o}
Fig. 480. Fig. 481,

12. Triangles are drawn on a given base a, and with a given vertical angle
a. Find the average area. [SANJANA, Educ. Times.]

Let A be the vertex, BC the base=a, O the circumcentre, 04 =R,
making an angle 6 with a perpendicular to the base. Then R=a/2sina.

The perpendicular from 4 upon BC = R(cos §+cosa), and if the mean
be for an equable distribution of positions of 04, (Fig. 481),

M(AABC):}anﬁ"“(coso+cosa)d0/{o"_“do

LaR v a7 1
2 r—a[sm 0+0cosa:|o _Z(tan a+1r—a)'

13. (a) A person is left a triangular piece of ground whose perimeter only
48 known ; show that he may fairly calculate that the area 1s to that of a circle
whose radius is the known perimeter as 1: 105, sides of all possible lengths
being equally likely to occur. [MATH. TrIPOS.]
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(b) A straight line of length a is broken into three parts at random. If the
three parts can be formed into a triangle, find its mean area.
[ST. Jonx’s CoLL., 1881.]
(@) and (b) are the same problem.

Let OA be the line, P, @ the random points of division, P being the
nearer to 0, OP=x, 0Q=y, 0OA=a. Then

A=\/g(§—z)(g_y+m)(y-‘§'), and M(A)=[[Adedy/ [ [asdy.

o x P 7% @ a7 A
Fig. 482.

The limits of integration are to be such that

@) 2+ -2) £ (a-y); (i) -2)+(a-y) £ 2: (iii) (e-y)+r £ (y-2),

t.e y{g, -”4’%, and y}g+x. So the limits are, for z, ;J/—% to %;

for y,g to . Now putting §_‘” u, a—y=b,

fl \/(--xx '/+x)dv fJu(b u)du_-.___(a 92

Therefore writing y= 3 2. 25

ffAdmdy:% '\/Z;/f(z ) Nzdz= 05

Also [[azty= " @-pay=%
2

mat 1 % g 1y
: M(A)=ﬁ5=m—5 of the area of a circle whose radius is a.

1651. The Mean Inverse Distance considered as a Potential
Function.

In problems on the mean value of the inverse distance
between pairs of points, much labour of integration may
often be avoided if it be recognised that such problems are in
fact problems on the mutual potential of two gravitating
systems of material particles.

The potential at any point P of a system of gravitating
particles of masses m,, m,, m,, ete., at distances r,, r,, 7y, ete,,
from P is defined as Zm/r.

The Mutual Potential of two gravitating systems of masses
of two separate groups (m,, m’, m”,...) and (my, my’, my”, ...)
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is defined as Xm m,/r,, where r, represents the distance
between m, and m,, ete.

But if the particles be particles of the same group, the
mutual potential is $Zm, m,/r,,. [See Routh, ditractions, p. 29.]

1652. Theorems in Potential required for the Problems to be
considered.

In the case of a spherical shell of mass M, the potential at
an external point at a distance r from the centre is M/r. But
at an internal point it is M/a, where a is the radius.

In the case of a solid sphere, the potential at an external
point at a distance r from the centre is again M/r; at an in-

ternal point 357{3 (3a®—7?), M being in each case the mass and

p the uniform volume density.
The potential of a thin rod AB at any point P is

m log cot %PﬁB cot QPI)?\A,
m being the mass per unit length—=mass/length.
These integrals are all well known, and are useful in the
present class of problem. Many other cases will he found in
Routh’s Attractions.

1653. Suppose we are to find the mean of the inverse distance
between two points P and @, of which P lies on a spherical surface
of centre C and radius a, and @ lies in any other region R which
lies entirely without the shell.

Let dS be an element of the spherical surface, dR an ele-
ment of volume of the

region R. o
Then
1
-~ dSdR
M (l ) :M_ ;
P ” dS dR
Fig. 483.

Suppose the surface and volume densities to be unity, and
let PQ=p. Then

M (I_}—Q)-——-S%zj‘(potential of shell at Q)dR

IIS@

=5 &|5 CQ:}—{.potential of R at C.
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If any portion of R lies within the shell, let R; and R,
be the masses of the portions lying respectively within and
without the shell; @ and @ two points of the region R, the
one outside, the other inside the shell. Then

J‘J‘dS dR~.”‘dS dR, ”‘dS .dR,

=38 . potential of R, at C+S§. f:—‘

P

Fig. 484.

Hence M ( ) {pobentml of R, at C’+
(See a Theorem due to Gauss; Routh, Attractwns, Art. 70.)

If R lies entirely inside S, R,—=0, R,—R and M(%)}

1654. ExAMPLES.

1. Find the mean inverse distance between a point P which lies on a
spherical surface of radius a, and a point Q which lies on a circular disc of
radius b, whose plane passes through the cenire of the sphere, and the disc
lying (i) entirely without the spherical surface, (ii) entirely within.

z

P

et e

Fig. 485.

(i) Let O be the centre of the sphere, p the distance between a pair of
the points. Then we have

M(l}))=7_r1ﬁ- potential of disc at O.
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If c=the distance between the centres, this may be expressed as
Al {2' b(b—ccos 6)do
pr 2 ) Jm’ [MaTa. TrIp., 1884.]
4 y b
or as "—I;[El—k’l‘,], k=E.
(ii) If the disc lie entirely within the spherical shell, we have at once
M ( 1-) A
p) a

2. Find the mean inverse distance of two points P and Q, one within a
sphere of centre A and radius a, the other within a sphere of centre B and
radius b, the cenires being at a distance ¢ apart (¢ > a+b).

s

Fig. 486.
If V, V' be the respective volumes, PQ=p,
1 f dVdV f(potentlal of Vat Q)dV’ _Q av’
M(;)': VV’ ‘ 7V 4 o
a1 t sk d bl 2
Qv potential of V a.tA_V, &

1655. A Useful Artifice:

Let M, represent the mean value of any function of the
distance between two points, one fiwzed on the boundary of any
region, the other free to traverse the region. Let M, be the
mean of the same function when each point may traverse the
region. Then either of these quantities may be deduced from
the other.

Let 4 be the area, or ¥ the volume of the region, according
as it be of two or of three dimensions.

Let R stand for 4 or V as the case may be. Construct a
parallel curve or surface by taking a length dn (a constant)
upon each outward drawn normal, thus making an annulus
or shell round the original region. (Fig. 487.)

By this increase of the region R, M, is increased by the
cases in which one or other of the points lies in this shell, or
by both lying in the shell.
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The number of cases to be examined in finding M, is
measured by R%

The sum of the cases is measured by M,R2

The increase in this sum due to the increase of the normals

from n to n--dn is l—id;(Msz) dn.

Again, the number of cases added by taking one end of the
line on the shell and the other free to traverse the region it
encloses, is measured by R.Sdn, where S is the perimeter
(or the surface, as the case may be) of the region. The same
is true if the second end lies in the shell and the first is free
to traverse the bounded region, whilst if both ends lie on the
shell the number of added cases is measured by (S dn)2

Hence L (M,R)dn=2M,. B .S dn-t My(S dn);

and as the second term on the right is a second-order infini-
tesimal, we have in the limit when dn is indefinitely small,

(—ld%(M.le)=2M1RS, by which equation the value of either

M, or M, can be deduced when the other has been found.
This artifice is useful for circular areas or spherical regions,
and may be used in other cases.

R P

Fig. 487. Fig. 488.

1656. ILLUSTRATIVE EXAMPLES.

1. (i) Show that the mean distance of points within a circle from a fixed
point in the circumference, viz. M,, is 32a/9m, a being the radius.

(ii) Show that the mean distance between any two points within the circle,
viz. M, =128a/45w. [St. JorN’s CoLL., 1885.]

Let O be the fixed point on the circumference and Oz the diameter
through 0. 7, § the coordinates of any point P. (Fig. 488.)

[fr”d& d,~—2 f:(2a cos 0)3d0_

jfrdad.,- 3 f(za pasably

2
32
T

)

.2ai3—=
2

(i) M,=M(OP)=

VUl &)
©

=
‘2

/w.rcin.org.pl
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(ii) Again d{(ra®)!M,} =2 .ma®. 2wrada. :%z—-%‘e atda,

and M, vanishes with a.

5 1r“a‘M,=?5§1ra5 and M,=12251:.

2. (i) Find M,, the mean distance of a point on the surface of a sphere of
radius a from internal points.
(ii) Find M,, the mean distance between two points within a sphere of

radius a.
ffjr r2sin § df d¢ dr 3
jffr’sm 6dodep dr dnd

(ii) d((§1ra’)2M,}=2.§ﬂ'a3.41ra2da.6—a,
and M, vanishes with a ;
. (§ma®)iM,=§4n%" and M,=3fa.
3. Mean distance of points within a sphere of radius a and centre C from
a given external point O; OC=c.
Let 0QQ’ be a chord through an internal point P, whose coordinates are

7, § with reference to O as origin, and let ¢ be the azimuthal angle of the
plane OCP. Then

3 sin~la/c

. 3 2 :
M(r)=m,ﬁfﬂsm 0d0dpdr=y>. {L (0Q" - 0Q4 sin 0.

(i) M,=

.}.2n. (Qa)‘f:cos‘ Osin 8d0=6—5a ;s

Fig. 489.

Let QQ’=2z ; then
2=a?—c*sin?f, zdz=-—c?sinfcosfdf= -} (0Q+0Q")csin Hd8,
and the limits for z are from a to 0.

. M(r)= f 90422+ 2(c— at)} 22 d" o

2z“+(c’ a?) = ]—-c+——

4. Mean distance of points upon the surfcwe of the sphere from a point O
without the sphere.

The number of cases in which P can traverse the whole sphere is

2
measured by $mo® Therefore the sum of such cases is _?,-;ru":(:-;-:—i a?:l

www.rcin.org.pl
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The change effected in this by increasing @ to a+da is
da{pra‘(c+» —)da, 4ra’(c+% a—)da.
The number of these introduced cases is to the first order 4ra’da, the
new cases being those of the points on the shell. Hence the mean

2
required =c+’% a? ¥

5. Find the mean distance of all points P within a sphere of radius a and
centre C from aﬁa:edinlcmalpoint 0; OC=c.
Here M(OP)=_ f f 1 sing dg d dr=—>, m‘, f (4] sin 6 d6.

Let QOQ’ be the chord through P, 404’ a diameter and BOB’ the

perpendicular chord. Let A69= 6, A’AOQ’=0'. ‘We may replace [r*] sin 6
by 0@*sin §+0@*sin 0’ and integrate with regard to ¢ (=¢') from 0 to

17; ; for having integrated for ¢ from O to 2m, all elements will be thus
summed. Now 0Q?+0Q?=2(a?+ ¢?) —4¢?sin? §, and
0Q*+ 0@ ={4(a*+c*)*— 2(a — c?)?} — 16¢*(a? + c?) sin*® 6 + 16¢* sin 6.

Fig. 490.

Hence
4 2\_3 1t 1 ¢t
i 4 2,2 4 R 2( 3 4 2 4 A e AR
M(OP)= {(2a +12a%c® +2¢*) c (a®+c?)+16¢*. 30" +2 i 'Ba
When ¢= o this becomes 6a/5.

6. Deduce from the last result the mean dist bet two random points
within a sphere.
Taking C for pole and 7, 0,, ¢, as the coordinates of O, the sum of the

cases with a given point O for an extremity is

S b 1 nt
"' [ 2a 20a
Multiplying by #*sin 6, d¢, d¢,dr, and integrating through the sphere,
we have
3a a‘ 1 s0® il alas 36a

Mean value required = §1ra')’ 1ra .or.2. [4 e i gt 71=35

as otherwise in Ex. 2.
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7. Find the mean distance of a given point O within a sphere from points
on the surface.

The sum of the cases of distances of internal points from O being as in
the last example, m(a*+%c%?®—c*) is increased by m(4a®+4c’a)da by
increasing the radius to a+da. The number of added cases is to the first
order measured by 4mwa®da. Therefore the mean of distances of points
on the surface from the given internal point O is

1r(4a.’+4 c’a)da 41ra’da=a+1 £ :
3 3a

8. Find the mean distance of points between the surfaces of two conceniric
spheres of radii ay, a, from an external point P at a distance ¢ from the
centre O.

Fig. 491.

Taking @ any point of the shell distant # from the centre, the mean
3
%'z—; , and the number of cases between the spheres of
radii @, z+dx is 4wz?dx. The sum of the cases for this thin shell is
12%

therefore 47a? dz(c+§ —c—) ; .. for the shell of finite thickness,

ag 122
4 2( ——)dx
M(PQ)J‘" E o Pl g s

S _q.3°
f«: o bc ag®—a;
ay

9. Find the mean distance of points within a sphere of radius a and
centre O from points within an external concentric spherical shell of
internal and external radii a, and a,. (Fig. 492.)

Let P and @ be two such points, @ lying within the shell, 0@ =x. For
1 a?
57"

2
by gwa’, and their sum by g'ira‘ (x+% %) Now let Q traverse the shell.

value of PQ is ¢+

a given position of Q, M(PQ)=x+ The number of cases is measured

Let dV be an element of its volume. Then

2 2
f%‘lra:*(x +%g—)dV fm(x+li)41rx2d:c oty ity
M(PQ)= 2 L 52 _3at—at 3 .at-a
B z “da7—a T10% a7 =a
/ §1ra’d Vv ] 4drade A Lo
@

1

www.rcin.org.pl
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In the particular cases stated below, we have

3 1 a? ¢ 6a

(1) a,=a,, M=a1+5;l; (ii) a,=a9=a, M=—6— 3
i) o a3 (@ et ) g, £ bAg Tt
(iii) a=0, M_Z Py e (iv) a;=agand =0, M=a,;
3 (a+a,)(7a'+5a)) .
20 a’+aa,+ay’

3a,

(v) ay=a, M= H (vi) ay=a=0, M=T

10. Find the mean distance of a point P which lies between the surfaces of
a spherical shell of inner and outer radii a, and a, from a point Q, which
lies between the surfaces of a concentric spherical shell whose inner and ouler
radit are by and b, (by > b, >"a, > a,). (Fig. 493.)
Let O be the centre, 0@ =2. For a fixed position of @,
W{PQ)w $0 2L
S5z a®—a’
and the number of such cases is measured by #§m(a,®—a,®), and their
sum by $m(a? - a,3)|:x+ 51_:: Z::—_Z:::l = F(z), say. Hence when @ is
free to traverse the outer shell, we have

by g DAL g
Juwrome _[o(es ket
M(PQ)= = —~ L
f41rx’dx x $w(a®—a®) fb 22dz

3b bt 3 at—a5 b?-10,?
T402-b2 " 10 ag—a® b0
11. Mean distance of points Q within a sphere of radius a, from points P
on the surface of a second of radius b external to the former.
4 and B being the respective centres and P a given point on the
surface of the second sphere, the mean of distances from P of points
1a

2
55 where A P=r.

within the first =+

www.rcin.org.pl
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2
Hence the sum of the cases is measured by ijt--rra'(r+%i 117) Hence we

are to find for the second sphere f 3

Fig. 494.

Now [rdS=4xb*x mean distance of points on the second sphere

2
from A =41rb2(c+% b—)

2
and /d%g—potentm,l of a shell of unit density at the point 4= _"'ck $

2 2 2
4 b‘( 1 b) 4mb? a :
£ lue required = 5—c+1£+1“_,
. mean va q —y § ks o

12. Mean distance of two points @ and P, one on each of two spherical
~ surfaces of radii a and b, each outside the other.
4 and B being the centres, 7= A P, the mean of the distances on the

Fig. 495.
2
surface of the first sphere from P=r+:l—3 ‘—l;, and the sum of the cases is
2
measured by 41ra’(r+% (17) Hence, we have to find for the second sphere

f47ra’(r+:1§-a7’)d8 frdS a,fii—s

=————+— +_
f41ra,’dS P BRI (B

15 1a
¢ 3¢’

www.rcin.org.pl
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13. If each of the poinis in Case 12 be allowed to traverse the interior of its

own sphere,
fsra'(r+5 7)dV
f%ra‘dV

ik a( lb_') l,_rb‘}/é syl 10
{31rb c+5c +5a 7 31rb —c+5c+5—c‘

14. Mean distance between points P and Q, P lying anywhere within a
sphere of centre A and radius a, Q within a sphere of cenire B and radius b,
enclosed entirely by the first.

Let AB=¢, BP=r. First fix P. Then
(i) if Plie without the smaller sphere
2
M(PQ)= r-!% b;, and the number of

such cases is measured by §mb®;

M(IQ)= taken through the second sphere
g

(ii) if 2 lie within the smaller sphere

H(PQ)=3b+ 1~ 1% the number of
cases being, as before, measured by

$mwbs.
The sums of the cases are therefore

_,,,,(Hzg')

2 74
Fig. 496. and 7rb \ 3 2b 20b,)

These are to be summed for all positions of 1’. In the second expression,
P necessarily lies in the smaller sphere and in the first expression the
integral through the shell is the difference of the integrals taken through
the two spheres.

The first therefore yields —wb’(f dV+ = f’“ )v dV being an element
of volume,
4 da slie* 1.0t b
—rb’[ wa’( a+§%—§62,) 1r(3a’~c’):]——1rb‘[— 0s, 3—+% 21rb’:|.

The second yields

o2m (b4 2
LL 31rb’( +op~ 20b,)r sinfd0 dp dr=4mb". 2m .2 . 33.

Adding and dividing by §ra®x $w0® the mean value required is
3a ot et 3. .1 B '3 b

424720 % 104 10 @ 140 @
When ¢=0 and a=> this reduces to §fa, the result ®x. 2.
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15. Mean distance PQ, where P and Q lie, one within a sphere of centre A
and radius a, and the other within a sphere of centre B and radius b, the
spheres intersecting, where AB=c¢ (> a).

Let BP=r. TFix P. Then, (Fig. 497),

(i) if P lies without the b-sphere, the sum of the cases is measured by

—wb’(r + gl)

(ii) if P lies (at 2’) within the b-sphere, the sum of the cases is measured

2 4
by %wb’( b+; 2 261)3) where 7 is now BJ”.

2]

Fig. 497. Fig. 498.

2
We have now tosum f gvrb’(wf— g—i_)d V for the a-sphere,omitting the lens,

and f 31rb’( 2 b 20ba)deor the lens,

and after addition to divide by the measure of the whole number of
compound cases, viz. §wa®. 4wb3.

Now the integration of any function ¢(r) of the distance r of a point
P from an external point B, can be conducted through the region enclosed
by the lens as follows :

Let V, V’ be the vertices of the lens (Fig. 498). Then if # be distance
from V of the common plane section of the sphere of radius a and
centre 4 with the sphere of centre B and radius », we have
to=al. ?ir —c)’

2er 2c

r=r—r

and if r increases to r+dr, the volume of the lens increases by
a?—(r-c)?
pher ot dr,
this being the volume of the added layer.
Every point of this layer is at the same distance » from B. Hence the

integration of ¢(r) through the lens is ¢(r)1—r{a’—(r—-c)2}rdr with
g c

2rr
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limits ¢c—a to b; and for the rest of the a-sphere with limits from &
toc+a. And we have
fr"d V= 1—5[1"‘“ {(a?—c®) +2er — % dr
’ ———.n: PR 7'"+2 pntd di pntd } 0
" {(a ¢ )n_+2+26n—+3 e =1,, sy,
Hence

wp@= 2 An ] S+ 2 0] +a (] ~smln] )

c+a b
The integrals [I_l] and I:]"] are interesting from another point
b c—a
of view, and reduce as follows :

c+a
[1_1] =§%(c+a—b)2(2a+b—c), and is the potential at B of the
; meniscus FCG taken as of uniform unit
volume density.

[Io:lb =1—12r(‘(a+b—-c)2[(a+b+c)”—4(a2—ab+b2)]. and is the volume
A - of the double-convex lens.

1657. Mean Square of Distance between Two Points.

Let P and P’ be random points in the respective regions
R and R/, which may be one-, two- or three-dimensional. Let
@, G’ be the respective
centroids of these regions
for a uniform mass-dis-
tribution, and the line,
surface or volume den-
sity, as the case may be,
be taken as unity. Let
H and H' be the moments of inertia with regard to the respec-
tive centroids, viz. ZmG'P? and Zm'GP’?.  Then taking R, R’ as
the lengths, areas or volumes of the regions, as the case may be,

M(p*)=G6"+H/R+H'IR.
For  M(p") =”PP'2dR ar|| firar,
and  [PPUR=R.PGHH;
(Lagrange’s Theorem, Routh, 4. St., I. 436.)
f PP’ZdR’dR='[(R’. PG*+H)dR—=R'(R.G6"+ H)+ H.R;

Fig. 499.

also ”deR’zR.R; v M(p)=GG"+H/R+H/R.
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The values of H and H’ are known for many elementary
cases.
Cor. I.  Centroids coincident, GG'=0, M(p*>)=H/R+H'|R'.
Cor. II. (i) Regions identical, M(p*)=2H/R.
(ii) If the region be a plane lamina,
H/R=sq. of radius of gyration=Fk?; .. M(p?)=2k%

1658. ExAMPLES.
1. For two ellipses, semi-axes (a, b) and (a’, '), lying in the same plane,
¢ the distance between the centres, M (p?) = (a?+b%+ a2+ b?)[4+c%
2. If R and R’ be the same square of side a, M(p®)=a?/3.
3. If R and &' be the same sphere of radius a, within which each point
may move, M(p?)=6a?/5.
4. If R and R’ be the same sphere of radius a, on the surface of which
each point may move, M(p?) =2a?
5. If P moves on the surface of a sphere, and P’ on a diametral plane,
M(p%)=3a22.
6. If P moves on the surface of a sphere, and P on a great circle,
M(p?)=2a2.
7. If P and P’ move one on each of two straight lines of lengths 2a, 20,
whose centres are a distance ¢ apart, M(p?)=c?+(a?+b%)/3.
If the lines be identical, M(p%) =2a%(3,

with the same result if not identical, but with the same centre and of the
same length.

1659. If one of the two points be fixed, say /”, and P traverses a
region R, then taking P’ as origin 0. Then

M(pr)=[orar / dR=0G?+ H|R.

1660. EXAMPLES.
1. If O be the centre of a square of side 2¢ which £ may traverse,
M(p?)=2a%3.

2. If O be a point at distance ¢ from the centre of a circle of radius @ in
any position which P may traverse, #(p?)=c?+ a?/2.

3. If O be the centre of an ellipsoid of semi-axes a, b, ¢, throughout
which the free point may travel, M(p?) =(a®+ b?+ c?)/5.

. If O be the extremity of the a-axis, M(p?)=a?+ (a%+ b2+ c?)/5.
4. If P lies on the circumference of a semicircle and 7 on the diameter,

of length 2a 2 A 2
' M(p’)=4—:; +1ra(uz - ‘%)/ra+ %: 4a?/3.

WWW.rcin.orq.
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Otherwise :—with the notation of Fig. 500,

M( 2)—

" “2rale G
f dgdz
o
P
G
(/]
B A
(e]
p (4
G
G’
X
A (o} PP N B Q
Fig. 500. Fig. 501.

5. If P lies on the circumference of a circle, and on one side of a given
diameter A5 and 2’ on the opposite semi-circumference, GG’ =4a/m ;

M 2)_16—“+2( —4-1%’)=2—:,3(1r2+4).

Otherwise :—If O be tha centre, A0P= 0, 40Q=4, (Fig. 501),
M(pz)=£r Lw 4azsin’§—;?d0d¢/j: L’rdﬁd ___2Taa’ﬁ' j;' {1 —cos(0+¢))dodd
=ete. = 2u?(r?+4) /7"

1661. Mean n' Power of Distance between two points P and Q.
_EXAMPLzs.

1. Let 4B be a given straight line of length a; P and @ two random
points upon 4B, P being the one more distant from 4 ; AP=x, AQ=y.

aigry- [t gpamsy [ [ dojm {1 ECHET 0] [

=n+lﬁ x"*‘dx/fo zdz=2a"(n+1)(n+2).

2. If P lies on the circumference of a circle, and @ be at a fixed peint
0 of the circumference, C the centre, (Fig. 502),

2n+lan

T 9 3
M(Ol’")=2j; OP". 2a df/circumf. == (2a)"/ cos" 0 df= 14
where K,=(n_———l)——(ﬂ)—'———(n odd) or (ﬁ—-}l——-

2(n—29)... g (neven).

www.rcin.org.pl
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3. If P lie within the circle, and ¢ be at 0, (Fig. 503),

”
T (2 [} n+3 n
”(OP")=2‘; Lam r".rd0dr/area=u—-K2,

(n+2)r

3

where K,:f cos"+20 df =etc.
o
P
[/
(o) (o] s

Fig. 502. Fig. 503.

4. If P and @ both lie within a circle of radius a, M (PQ") may be
inferred from the last result. Let M be the result required. The
number of cases is measured by ma?x wa? and their sum is measured by
Mr?a®. If the radius be increased to a+da, the increase in the sum
=Ed& (Mn?a*)da. This increase is brought about by the addition of the
cases in which P or @ or both lie on the annulus, and is
1% K,+svade. srade. 2"““"
@ +2) 2+ 2ma Ta

the first factor 2 being inserted because either P or Q may lie on the

annulus, and the second term arises for the case in which both lie on the

annulus, but is a second-order infinitesimal.

Hence, M vanishing with @, no constant of integration is required, and

d on-45gn-+3 Qn+sgn K
d—;(Mﬂ'aa‘) =TREE Ky . M= CES Y _"_’

[The result was given by the Rev. T. C. Simmons, Educ. Times, 7943,

p- 120, vol. xliii., a different proof being adopted.]

2.2mrada.ma?

K,

5. If P lies on the surface of a sphere of radius @ and @ is at a fixed
point O of the surface, then, (n > 0),

M(OP™)= ) f (2a cos 6)"2m (2a sin @ cos 0) 2a df= 2(2a)"/(n+2)

6. If P and Q are both free to move on the surface of the sphere and
n>1,  MPQY=[ / ras as| / [ 8d8= ete.~2(2a)"/(n-+2)
[This result might be inferred from Ex. 5.]

7. 1f P lies within the sphere and @ is at a fixed point O on the surface,
M (OP™)=12(2a)"/(n+3) (n+4).

WWW.IrCIN.org.f
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8. If P lies within the sphere and @ be at the centre C,
M(OP")=3a"/(n+3). [St. Joun’s CoLL., 1883.]
9. If both P and @ lie within the sphere, proceed as in Ex. 4.
Then M (PQ")=2"+3. 3%"/(n+3)(n+4) (n+6).
10. If one point lie within the sphere and the other lie at a fixed point
O without the sphere, let 0QQ be a chord through P, C the centre,

C0Q=06, a the radius, CO=c, OP=r,
M(0P")= f f f ™. rtsin 6 df e drfvol. = > a3 n+ 25 [ (0@n+s - 0@n+9)sin 6.6,

and 0Q, 0Q’ are the roots of p?—2cp cos 6+ ¢ —a?=0.
For the evaluation of this integral it is convenient to take QQ’ as the
variable when 7 is odd and @ as the variable when # is even. There are
two algebraical identities useful in such cases. Let r;+7r,=8, r,—r;=d,
ri¥y=Dp.
Then, by putting into Partial Fractions (22 — sz +p)~?, expanding both
sides in inverse powers of #, and equating coefficients of 1/2™+,
ey (m=3)(m—4)
Y.

—gm—1__ o m—3
g (m—2)s™=3p+

sm—5 pl g

Fig. 504. Fig. 505.

If m be odd, the indices of s are all even. Substituting for s? its value
d?+4p and expanding each term, the series all terminate, and we obtain

,.lm_r,"'=d’"+nul"”—’p+m(;’f;3)‘lm—‘p’+m(ml—.42)(;n_5)d""p"‘+.... wae(A)
If m be even,

rlm—fn'”:sm—n_ (m—2)sm—4p 4
ds

(m— 3) (m —4) gm—spi_

m-2 m—
—(@+4p) T~ (- (@4 4p) T T p+ @+4p) * p*—...;
whence, expanding as before, the series all termmate and, m even,
rm —rim=od {am=s 4 (m - 2) dm—sp e S } ...... (B)
(i) Suppose, for instance, n=3, m=6. Let QQ'=
3 2 4
M(0P3)=4ﬂ_-—a§ ; %rf(rf—r,') sin 6 d6

=4—;sf 52 (a4 +4pa*+3p?)sin § d§  (from B).

J

(m— 3) (m 4)

WwWw.rcin.org.pl
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Also
8=2ccos ), a?=4(a®-c%sin%f), p=c®—a?, wdx=—4c?sinfcosfdl;
whence s.sin 0 df = —x dxz/2¢,
and - M(OP3)= .ot 3c[ (2% +4pat 4-3p2a?) dx = c3+6azc+

(ii) Suppose n=4, m=17,
M(OP‘)—--—:E—— 21'-[(1'1 —1r,7) sin 6 d6

3 sm—‘
~Tam, (@R 4P 4 Tp) sing db.

sin-1%
Let I,.='/; ‘atsin @ df. Put P=u"cos 0, xdr= —4c?sin 6 cos 6 d,

dP (2&)' 4r
i3 sl r—2 -
9= otc. = —(r+1)a'sin 6 —dpra™tsin§; - L= -l

Using this reduction formula, we may show that

(2a)

I+ 7pIs+ 149+ TP’ ="~ +— (2(1)51’*'—(2“) »?,

and finally M(OP*%) =ct+2ac?+ 3at.
11. Find the mean value of 2** for all points on a spherical surface with

centre at the origin and radius a, the disiribution being for equal surface

elements.
7I

2n+l
M(a®*+1) is evidently zero. For the values of 2*"+! for which z is
negative, cancel the corresponding ones for which « is positive.

M(z"“)*—f (acos 0)** . 2rasinf.adf=

12. Find the mean value of (lx+my+ nz)*® taken over the same spherical
surface.
Changing the axes so that lx+my+nz=0 becomes the new y-z plane,
lx+ 4+ =XVIE+ +,and
M (14 my+nz)®) = (1 +-m? 4+ n2)? a29/(2p + 1),

13. Find M (2°Ty%:2") over the same spherical surface.

Let p+q+r=k.
2k)!
Then  coarr(agirgany | =0 3

= coef. IPmatna* in (I8 4-md 4+ n¥)k . [ Xdg

=coef. 1*Pm2n3" in (12 4m? 4 n2)k, 4ra®+2/(2k+1)
k! dmwadte
Splgir! 2k+1 i
B (2p)!(20)!(2)!  a¥e+atn)
(2k)! plglr! 2p+29+2r+1°

3 M( xwyzqzsr) -

WWW.ICin.o "g.pl
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14. Find M (Px*Py*%2") taken over the surface of an ellipsoid of superficial
area A, semi-axes a, b, ¢, where P 1is the central perpendicular on a tangent
plane, the distribution being for equal elements of area.

z

M (Px*Py2a:%r) = ‘14 f Pay20:2rd8. Then writing g:%, % = = 1% .

1 1 abe
where do- is the corresponding surface element on the sphere £2+ 7+ (= R?,
we have as the mean value required
1 a*h*%* abc _ k! (2p)!(29)!(2r)! 4w arhputicarir
4 Rty R ngw”"?'d‘" @k  plglrl  9k+1 4 g
where p+q+7=Fk. (See Routh, Rig. Dyn., pp. 7 and 8.)

ol

>

1662. Mean Areas and Volumes.

ExAMPLES.

1. Find the mean value of the areas of all triangles which can be found by
taking at random three poinis on the circumference of a circle of radius R.

Let O be the centre, ABC a specimen of the triangles; AaB =0, 360 =¢.

Fig. 506,

We may fix A. ¢ varies from 0 to 2w — 6, and 6 from O to 2. Then

2w (2w—0
R,[ / {sin @ +sin ¢ —sin (§+ )} 40 dp
M(AABC)= L g
ﬁ, fo d6dgp

2. Find the mean of the areas of all acute-angled triangles inscribable as
in Ez. 1.

Here §<m, ¢ <m, 2r—0—¢p <m. The limits are therefore ¢=0 to ,
¢=m—0 to m, and the mean =3R?/r.

3. Find the mean area of all right-angled iriangles inscribed as before.

Take A as the right angle. Then ¢=7 and the mean =2R?*/r, and
there are the same number of cases with the same sums if B or C be the
right angle. Hence the mean =2R?/r.

4. Find the mean area of all obtuse-angled triangles inscribed as above.

Let 4 be the obtuse angle. Here <, ¢>m, 2r— 60— <w. Then
the limits for @ are 0 and , and for ¢, = and 27 — ¢, and the mean = R?/r.

=etc. =3R?/2m.
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5. Find the mean area of all triangles formed by joining three random
points on a sphere of radius a. [MatH. TrIP., 1883.]
Let O be the centre. Consider first all the circular sections normal to
a given direction O4. Let P be any point on this circle, PN a perpen-
A
dicular on OA. AOP=Yx. Then the mean area of all triangles inscribed
in this circle =3a?sin?x/2m, and the number of such triangles is measured
by 272 (Ex. 1). Therefore the mean for all tnangles perpendicular to the
line O4 for equal increments of x is f Es—aﬁld X/m=3a?%4r, and the

mean is obviously the same for all directions of OA since the number of cases
and the sum of the cases is the same for each direction of OA. (Fig.507.)
A distribution of different nature, e.g. for equal increments of #, would

1 {4 o
give a different result, viz. %a ‘,n o dx=a?/r.
’
5 ' p
!ﬁ“‘
A A
Fig. 507. Fig. 508.

6. Find the mean value of the volume of a tetrahedron whose angular points are
four random points on a sphere of radius a. (Fig.508.) [Mata. Trrp., 1883.]

Without affecting the problem, we may take a set of bases fixed in
direction, say normal to a given radius OA. 'Let one of the bases be on
the circular section through the ordinate PN. Then, as the vertex of the
tetrahedron travels in a circular section parallel to the base and through
a second ordinate P'N’, the volume remains constant. Therefore the
mean volume of the tetrahedron, with vertices on the plane through P'N’
and bases on the pla.ne through PN

y oNP? A il
——NN 3" Let AOP=Y,, AOP’'=y,.

The measure NN’ of the perpendicular height of the tetrahedron changes
sign as N’ passes through N. To avoid negative signs for the volumes of
tetrahedra with vertices on opposite sides of their respective bases, we
separate the integration into two parts. The expression for the mean
volume required is then

NP2 %1 3NP2
f}ml 2 a(cosx, €08 Xg) dx; dXa+ {ng- oy a(cos Xg— o8 x;) dx; dxq

ff dx,dx,
0.Jo

which, after integration, gives 16a%/973.
The distribution here taken is for equal increments of x, and x,.
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7. If P, @, R be random points on the three sides BC, CA, AB of a
triangle, find the mean values of the triangles AQR, BRP, CPQ, PQR.
[R. CHARTRES, Educ. Times.]
Let @, #3; ¥y, ¥y 2, % be the respective
parts into which the sides are divided at P,
@, R; A the area of the triangle ABC,

M(aQR)=['["41 Ady,az, /f:fdyzdzl=%.

Similarly o
B % P z, c e A
Fig. 509. . M(BRP)=M(CPQ) 7
A

'a (b fe a [b (e
il Y& 5% %, Deta e,
M(PQR)= L L L (1 s ab)Adx,dyldzl/ [ L [ o,y sy =ete. =5

1663. Miscellaneous Mean Values.

EXAMPLES.
1. The value of a diamond being proportional to the square of its weight,

prove that, if a diamond be broken into three pieces, the mean value of the
three pieces together is half the value of the whole diamond. [M. 'I'rte., 1875.]

Let z, y, 2 be the weights of the portions, W that of the whole. Then
we have to find the mean value of 22+ y?+2% wherex+y+2z=W. Refer-

F-3
R
A
w
A
G) W p &
w
A
Q Fig. 510.

&
ring to Cartesian coordinates, x+y+z=W is the equation of a plane. If
do be an element of area of the intercepted triangle, the mean value is
f (@ +y +2%) do / f do =(mom. of in. with respect to the origin)/area
=4 (the sum of the moments of in. about the axes)/area.
Let 34 be the area of the triangle. Then, concentrating 4 at each
mid-point (Routh, Rig. Dyn., Art. 35),

Mean value= 3[A<,;—V)2+A(%)Z+A {(g)ﬂ(g)zﬂ /3A=% W,

www.rcin.org.pl



MEAN VALUES. 715

2. It is required to find the mean value of the inverse distances of points
on a circle of radius a, from poinis on a fixed diameter AB.

Let P be a point on the are, @ a point on the diameter, O the centre.

POB= G POAmD v 0, PABwD,; .. Plhmtias: POt 00w
Then 6=2¢,, =2, (Fig. 511.)

KEEIREE A/ Lot

Now fﬂ - is the potential at P of a material line AB of unit line

density =log cot 1 ot P2 g (Art. 1652).

o M( ) o {/ log cot £! ] d0+f logcotd" dG}

— L ogeBrag,+ [FlogoorLas )} =2 [Fogeot ¥
—E{.{o logcot—2—d¢,+ s log cot ) dd),}—ﬂ_a A log cot 2dx

=d¢'y/ma. (Art. 1074.)

o’

Fig. 511. Fig. 512,

3. O is a fixed point on the circumference of the base of a hemisphere
with centre C. P and Q are random poin‘s on the surface ; find the meah value
of the angle between the planes OCP, 0CQ. (Fig.512.) [Carus CoLL., 1877.]

Let AOA’O’ be the base of the hemisphere, and B its vertex, C the
centre, CA, CB, CO being taken as the rectangular coordinate axes. Let
¢, and ¢, be the azimuthal angles of the two planes OCP, 0CQ, P being
taken as the point on the plane with the greater azimuthal angle. Then
if the distribution of the points P, @ be one for equal elements of area,
the mean required is

f L i fo ’ L # (b, = o) sin 0, sin 0, d6, 46, dep, deps
[ [ s 6usin .6, 6, a4, dg

=ete.=m/3.
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4, Prove that if 2c¢ be the distance between the foci of an ellipse of semi-
axes a and b, the mean value of r,~2ry~2 f {}(r;+1,)* — 2}, with respect to the
i 1 [0 f(M)dA", ¢ i 1
area, is equal to @ NETN) 7y, Ty being the focal radii of any point
within the ellipse. (Fig. 513.) [ 1890.]
22 28
AP R
A A—p
rl=(c+af+y? rl=(c-2P+y? nlP-rP=de,
P+ 1=2VEFX, 1 —r=2
cx=N(E+N)(@—p), cy=vAp, }Fr+nl-E=A Atp=nr,
oz, y) _1mm

ing < % _1 as confocals through the poi
Taking m+ e as confocals through the point,

O, w4 day’
: da d 4 d d
Mean requnred:ff 1,l,r’y2f()\)/ffdx dy=—2 ,.'—lz,.'yzf(/\),
the integration being taken through the first quadrant,
Syttt giide
mablo Jo 4 Ap \/T/;. »\/(ca+A)(c”—-[l.)
LN S
mablo JANGELX o (Ap)Npner—p
Let p=c—; (1-cos 6), dp.=§sin 6dé.
} fc’ dp. =f" ag__ _ T
* QrWpVESE B ) pans VARES)

_ a1 [®f)ax
Hence the mean required = i [o XEFA)

Fig. 513.

5. Through P, any point within an ellipse, a chord QPQ’ is drawn parallel
to a given semi-diameter p. Show that the mean value of $(QP.PQ’) for
all points within the ellipse is

S ’:‘¢(p2 cos? @) sin 6 cos 6 d6. 3, 1885.]

Draw a similar and similarly situated ellipse through 2. (Fig. 514.)
Then @P. Pg’ retains the same value for all points on this ellipse, viz.
OB*— 0B"=p*cos®@, where p= 0B and sin @ is the ratio O8’: 0B.
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If 4 and A’ be the areas of the larger and smaller ellipses,
A'=Asin?@ and dA’=24 sin §cos 0 déb.

[s@P.Peyas o
B i e w1 % cos?6) sin 6 cos 6 do.
[dA L ¢ (p? cos?B) sin O cos

6. Ellipses are drawn with the same major axis 2a and any eccen-
tricities; show that the mean length of their perimeters is

2a{1+f 8mt9al(9}=2a{1+2(1—31—2+512—7—1,+...)}.

[ST. JonN’s, 1886.]

. M{p(QP. PQ)}=

Taking all eccentricities as equally likely, the mean perimeter is

1 : .
4aﬁ L 's/l—ezsmz\/rd‘lrde/J; de. (Art. 567.)
Now
‘/: AT =¢¥sin?y de=sin \[rfl Vcosec?yy —e*de

—% sin [e Vcosec?r — e? + cosec?y sin—te sin \lr]

=% (cos ¥+ cosec ).

. Mean Perimeter

=2af§(cosw+\#cosec1[r)d|[/=2a {1+f§ si\n#;bd'ﬁ}

_2a{1+2(1, —gtg )} by Art. 1074,

=a x566386....

7. Show that the average values of the lengths of the least, mean and
greatest sides of all possible triangles which can be formed with lines whose
lengths lie between a and 2a are in the ratio 5:6: 7. [MaTH. TRIP.]

If the sides be taken a+ 2, a+y, a+2, the ratio of their means is
a z v a 2 £} a z t4
L dz/; ay[" do(o+a): [0 dzﬁ dy./; dz(y+a):ﬁ dzjﬁ dyfo d(e+a).

8. Find the mean value of xyz for points within the positive octant of the
ellipsoid a—22?+ b~2y?+c 228 =1. [Ox. II., 1890.]
Use Dirichlet’s integral, Art. 962. M (xyz)=abe/8.

9. If a point be taken at random within a tetrahedron, then, of all
parallelepipeds which can be described having the line joining the point
to one of the angular points as diagonal and its edges parallel to the
edges of the tetrahedron which meet at that point, the average volume is
one twentieth that of the tetrahedron.
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10. Show that for positive values of =, 7, z, with condition
a i3 +b"%2 + %=1, and » being > 1,
the mean value of (2yz)"* for an equable distribution of area on the z-y

plane is (abc)f—l{l‘(é)}’l‘(r‘;—l)/ ”F(ar; 1)’

which for »=2 reduces to 4abe/15.

11. Find the mean value of (xyz)'~!, »>0, where z, 7, z are areal
coordinates for points within the triangle of reference.

‘[fxf-—lyf—l( 1 o _y)f—l dx d'y
ffdx dy
for positive values of 2, g, z (see Art. 975) = 2{T'(»)}*/T"(3).

We require

12. Show that if , g, 2, » are the tetrahedral coordinates of a point
within the reference tetrahedron, M{(zyzu)™-1}, (r > 0), =6{I'(»)}*/T'(4r).

13. Show that if » > 0 and 2, @y, ... 2, be all positive and subject to
the condition @, +2,+ ... +2,=1, then

M{(z,2, ... 2,) "} =D L)}/ (nr).

14. Show that if ¢y, ty,...t, be all positive, the mean value of
zu—lzgye—1.. z,m—1 for positive values of =, ,,... 7, subject to the
condition f‘,r,.: 1is T'(»)T'(¢1) Tey) ... 1‘(&,,)/1‘(21.,).

1 1

15. Show that the meamn value of Adyz+ Bzx+ Cxy for positive values of
#, 9, z subject to the condition #+y+2z=11s % (4 + B+ ).

16. Show that the mean value 2%+ y*+2* for positive values of #, ¥, 2
subject to the condition #+y+2z=11is }.

17. Show that the mean value of (4, B, C, D, E, F)(#, y, 2)* for positive
values of @, 7, z subject to the areal condition x+y+2z=11is

$d+B+C+D+E+F).

18. Let there be n points wpon the x-axis, and let positive ordinates of
inereasing magnitude be erected at these points, their sum being l.  Find the
mean length of the r* ordinate. [LapLACE ; ToDHUNTER, Hist., p. 545.]

Taking as ordinates ¥y, 71+ ¥ Y1+ Y2 +¥ay ... Y1+ ...+¥n, then

2y + =1yt (n—2)ys+ ... + ya=1.

Putting nyy=2,, (n—1)ys=as, ... ya=2,, we have z;+ 23+ ... + 2, =1.

// f( +7T_~1+ o +1>dz',dx, de,‘_,,
fffdzl dzy ... A2,

: : lf1 1 1
which gives 71{n+n v g 2+ yEas r+l}

We then require
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19. The density at any point of a triangular lamina varies as the
product of the perpendiculars on the sides. Show that the mean density
is 9/20 of the density at the centre of inertia of the triangle.

1664. Certain Inequalities.

If a, b, ¢, ... be any positive quantities, n in number, and
m, 7, a, (3, ... positive integers and a+B+-...=m and m >r,
we have

2 2 A
0 2> (2, @) 202 2
(i) 22020 20 2 (Smith, dly., Art. 348.)

That is, the mean of the squares > the square of the mean;
the mean of the m'™ powers > the product of the means of
the 7" and (m—r)™® powers; and so on.

1665. 1f a, b, ¢, ... be replaced by ¢(a,), p(a,+1), p(ag+2R), ...,
the values of a positive continuous single-valued function of «
for equal infinitesimal increments of the variable, we have the
mean value of the square of the function > the square of the
mean value of the function between the same limits, with other
theorems of a similar nature. That is,

[(ors | [ sea|
= LT
S e’

q g 7 : q
jdav ]dx jda;
» ? ?

1666. General Mean in Terms of Means restricted in Various
Ways.

Let there be two regions Q, and Q, mutually exclusive.
Let two random points P and @ be taken in the combined
region, and let ¢ be some function of their positions, say for
instance their distance apart, its square or its n'™ power.
Several cases may occur: (i) Both may lie in Q,; (ii) both
may lie in Qy; (iii) and (iv) either may lie in {2, and the other
in ,.

; ete.
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Let M, ,, M, ,, M, , be the mean values of ¢ respectively
in case (i), case (ii), cases (iii) and (iv), and let M be the mean
value of ¢ when the positions of P and @ are unrestricted.
The number of cases occurring are measured by the magnitudes
of the regions, viz. Q2 if both lie in Q,, Q2 if both lie in Q,,
Q,Q, if P lies in Q, and @ in Q,, and Q,Q, if @ lies in (), and
P in Q,, and (Q,+Q,)? if they lie in either region, unspecified.

Hence Q,2M, ,, Q.2 M, ,, 2Q,Q,M, , and (,+Q,)2M are the
sums of the several cases occurring. But the first three must
make up the whole sum of the possible values of ¢, i.e.

QM 1+ 2000 M, o+ QM
(Q,+Q,)
1667. Ex. If the two regions be mutually exclusive spheres of radii
a and b and centres distance ¢ apart, then for the mean distance 29,

36a 36b a?+b?
R Mz.z=ﬁ, Myp=c+ Bn

Hence the mean distance between P and @ when each may lie within
either sphere or in different spheres is

4 236 4 a=+bﬁ) 4 236 ( )

[( 1ra”) §a+2 §1ra’ —1rb"( Bo +(§ rb’) b]/ 1ra’+ wb?
’ _36 a’+¥’ +2 a®b® 2 a*b¥a?+0%) 1
38 (a®+b%)2 “(aa+ba)sc 5 (aa+bs)a g *

M=

M1.1=

In the case where the spheres are equal and in contact, ¢=2a=2b and
M=21}ia,

1668. In the same way, if there be three or more mutually
exclusive regions (),, ,, (,, say, and ¢ be a function of the
positions of three points P, @, R which lie in one or other of
these regions, then (a) all may lie in any one of the regions,
(b) two may lie in one region, and one in either of the other
regions, or (¢) one may lie in each region.

Let M, ,, , be the mean value of ¢ when all lie in Q,,
M, ;,, when all lie in Q,, M, , , when two lie in {, and one
in (,, and so on; and let M be the mean irrespective of
where they lie. The respective numbers of cases are measured
by Q3 Q. 3Q,%Q,, etc., and (Q,+Q,+,)% and the sums of
these cases are respectively measured by

Q32My 0,00 DMy, 5 o, 3QXNM, | ,, ete., and (Q,+Q,+Q,)* M,
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and the last, being the sum of all possible values of ¢,is equal to
the sum of all the several cases previously enumerated. Hence
M=2913M3| 0, 0+3201202M2. 1,0 +69192QSM1- 1,1
(@ + 0+ Q) '
and so on if there be more than three mutually exclusive
regions.

1669. Regions not mutually exclusive,

To go back to the case of two regions, suppose next that the
regions (), and (2, have a common region 2. The whole region
bounded is then Q,+Q,—Q.

(Mutually exclusive regions)

()

(Not mutually exclusive)

Fig. 515.

Let Mg ,q,_q be the mean value of ¢, when the random
points P, @ lie anywhere in the whole region; Mg _q the
mean when both lie in Q,—Q; Mg, _go the mean when both
lie in 2,—Q; M the mean when one lies in , and one in ,.

The respective numbers of cases are (Q,+Q,—Q)? (2, —Q)*
(Q,— Q)% and 2Q,Q,—Q2; for in allowing P and @ each to
range over (), and (Q, respectively, or ), and (, respectively,
the region 2 is counted twice over.

The sum of the values of ¢ when one lies in 2, and one in Q,

is (2Q,Q,— Q*)M.

The sum when both lie in Q,—Q is (Q,— QMg _q.

The sum when both lie in Q,—Q is (Q—Q)Mq, _q,
and the three make up the total sum (Q,+Q,—QyMg o _q;
5 Moo _n=(Ql—Q)2Mn,_n+(92——Q)2Mn,_n+(29192—ﬂ2)M_
e (€ + 2 — Q)
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1670. Similarly more complex cases may be examined. Also the
present formulae admit of considerable reduction for special cases,
e.g. when the regions are equal or when one region is enclosed completely
by the other.

1671. The Geometric Mean. Clerk Maxwell. An Integral
useful in Electromagnetic Problems.

If log R 45 be the mean value of the logarithm of the distance
between points P and @, one in each of the areas 4 and B
lying in the same plane, then obviously

log R_4B=”‘log PQ.dAdB / ”dA dB,

the integrations being conducted for all elements of area in 4,
and for all elements of area in B.

The integration ”-Ulogrolm dy da’ dy’, over two such areas

occurs in the determination of the electromagnetic action
between two parallel straight currents flowing in conductors
of given sections. (Clerk Maxwell, E. and M., ii., p. 294).

Cleatly 4. B.log R4z =Hlog PQ.dA dB.

If C be a third area in the same plane, in which P or @
could lie, (4 4 B) Clog R4 )¢ represents on some scale the sum
of the logarithms of the distances of points in C, from points
in the composite area A+ B, whilst 4C log R, represents on
the same scale the sum of those cases of the aforesaid group
which refer to lines joining points in 4 with points in C'; and
similarly with BC'log Rp,. Hence

(A+B)Clog R4y c=A4Clog R4+ BClog Rye.
And this rule may be extended. Thus, if there be a fourth
area D in the same plane,
(A +B+ C)D log R(A+B+0)D:(A +_B)D IOg R(A+3)D+CD lOg RCD
=ADlog R+ BDlog Rgp+CDlog Rep s
and so on.

Thus, if R be found for pairs of parts of a composite figure
the rule will give R for the whole figure.

Also 4, B, C, ... are not necessarily different figures.

Maxwell states the results for a number of cases. He calls
the line B thus determined the Geometric mean of all the
distances between such pairs of points.
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1672. Cases of Maxwell’s Geometric Mean.

I. To find R for a point €, and a finite straight line AB. (Fig. 516.)

Let CO be drawn at right angles to the direction of 4B.

P a point on 4B, OA=a=x,, 0B=b=2,, 0C=p, OP=x, CP=r,
AB=l=b-a. CA=ry, CB=r,.

(1 e ) % 1)
Then llogR:/ logdx'+p’dx=[xlogx/x’+p’—x+ptan“%] ;
. I(log R+1)=0Blog CB~ 04 log CA + 00 circ. meas. of A0B,

i.e. (23— 2y)(log R+1)=2zlogry— 2z logry+p . r':r.,.
In the case when C'lies on 4B produced, p=0, and
log R+ 1=(x;log xy— 21 l0g @,)/(%3 — ;).

C
D o C
2 5 ,
:
(0] A P B A~ p a-x B
Fig. 516. Fig. 517.

1673. II. Let ABCD be a reciangle, AB=a, AD=b. Let P and Q be
points respectively upon AB and CD. PO the perpendicular upon CD.
AP=xz. "(Fig. 517.)

For a given point 2 let R, refer to the value of R for the fixed point P,
a(log R, +1)= 0D log PD+0Clog PC+b CED

=xlog\/x2+b2+(a—x)log\/(a—x)2+bz+b(tan‘1§+tan“1 a;x)‘

Integrating with regard to # from 0 to a,

a?(log R+1)

i x+b log NFAT B~ x+b2:' [(a ~z)*+b? Yoi VB AN e (a—2)? +b2:|

o

+b [x tan—1% 3~ 0log \/.E’ﬁ”]o -b [(a —2) tan—! % —blogN(a—x)t+ bzl,

e a?(log R+3)=(a?—b?) log D+ blog b+ 2ab tan—! %,
where D is the diagonal.

1674. IIL. If P lies upon AB and Q@ upon AD, and R, as before refers
to the result for a fized point' P,

b(log Ry+1)=blogn/a?+ b +a tan"lé ; and integrating from 0 to a,

S b o
ab(log R+1)=b xlogdﬁ+b2-z+bmn—lx 2w e |
o

; . 2 a? a0 b a0

; ab(logR+%)—ablogD+—2—tan —+-2—tun B
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1675. IV. If Q lies on the circumference of a circle of radius a, and centre
0, and P be any point in its plane distant ¢ from the centre,

Fig. 518.

21ralog1£=2/" log Na?—2accos 0+c2. adb
o

=2waloga, (c<a); or 2raloge, (¢> a).

Therefore R=the greater of the two a or ¢; and the mean of logr

is accordingly
loga, (c<a), or loge, (c>a)

1676. V. If P travels on the circumference of a second circle of radius b
entirely without the former, the distance of the centres being d, and if log R
atungl Sor the mean value of log PQ,

Fig. 519.

2wb. 2ralog R=2mwa. 2{" log PO.bdy

Jo
iy 2L" log N/6T—Sbd cos F + & bd@!

=2ma.2rblogd; .. R=d.

Similarly if one circle be entirely within the other.
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1677. VL. If Q@ lies upon a circular annulus, centre O, external
and internal radii a, and ay, and P be at a point distant ¢ from O, and

log R=M(log PQ), QO=r, QOP=6,
(a2 - a,?) log R=2j; i ’;’r log Ac?—2¢rcos 0 +72. rdf dr

ay 'ay
=2fa1 wloge.rdr, (¢>7); or =2L wlogr.rdr, (c<r),

=wloge. (¢,2—a,?) if c>ay,

a1 2_g.2
or =1r[rzlogr—%2:] =1r(a1’logal—a2’loga2—a‘ a”)ifc<a2,
ze. W an llogli=llogie | (N S (a)
2 &34
ifleacy,l logR:w—l. ............... (B)

a?—ay? 2

If @;>c> a,, and P itself lies upon the annulus,

1
1r(a{’—af)logR=/¢21rlogc.rd1'+f 2w logr.rdr;
ay c

aloga,—ctloge 1 a?-¢

........... (y)

a?— ay? 2 a,2—a,}

b T Sl e 0 O
whence og R o3 gc

Since R=c¢ when P is without the annulus, the mean value of log £Q,
where £ lies upon any region entirely without the annulus is the mean
value of log 0. And if P lies upon any region entirely within the
annulus, the expression for £, in that case not containing ¢, is independent
of the shape or position of the region.

We may deduce the result (y) from (a) and (8) by Art. 1671, Let 4
and B be the regions of the annulus respectively outside and inside a
concentric circle through @. Then if ¢ be an elementary small area
in which P lies,

(A +B) 108 R(A+B)0=A lOg RAc+B10g Rac H
a,?loga,—c?loge 1

ai—& 2} +m(c—as?)loge,

voar(a? - ag?) log Riyyme=m(a’®—c?) {

giving the same result as before.
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1678. VIL If P be not at a fixed poini within the annulus, but may
travel anywhere within i,

{m(a2—a,?)}?log R=f/fflog Vr2—2r 7, cos (0, — 6y) + 752 . v, A6, dryrydydry,

where 7y, 6, and 7, 0, are the polar coordinates of 7 and .

The limits for 6, are 6, to 6,+ 2 ; for @,, O to w, and double the result ;
for 7, from a, to 7, and r, to @, ; for r;, from a, to a;.

The first integration gives
2(mwlog ry)ryradr drydfy or  2(wlog ry)ryrydr drydl,,
according as 7, or r, is the greater.
The second merely multiplies the result by 2.
The third gives

47? f 4 ryrylog rydrydry + 4m? f o 77y log rydrydr,
ag "

=2m2[a,2log a, .7y — ag?ry log ry — ¥(a,2ry — r,3)]dry.
The final integration gives, after di viding by m? (a2 - as?)?
a, 3a,?—
( a’z)n 4(a e 2)’
For the mean of the bganthms for pairs of points within any circular
area, put a,=0; then log R=loga, -}, that is R=a,e‘i or R is a little
more than 3a/4.
Other results of similar character are stated by Maxwell with a

reference to T'rans. R.S., Edinb., 1871-2.

1679. Other cases of mean values will be considered in the next
chapter, which are more intimately connectéd with the general Theory of
Probability.

log R=loga, — lo ga'+ a result stated by Maxwell.

PROBLEMS.
1. If the sides of a rectangle may have any values between a and
b, prove that the mean area = (a + b)2/4. [R. P.]

2. Find the average area of a random sector whose vertex is taken
at a given point on a given circle.

3. ABCD is a square. Show that the average distance of 4 from
points on BC for an equable distribution of radii vectores about 4 is
44B 448, AC+ 4B

iy, D ¢
it is A_C’_*_AB1 gAC’+AB.
200 AB
4. A rod of length a is broken into two parts at random. Show

that the mean value of the sum of the squares of the parts = 2a%/3.
[Ox. IL., 1886.)

; but for an equable distribution of points on BC
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5. A rod of length a is broken into two parts at random. Show
that the mean value of the rectangle contained by the parts is a?/6.

6. The sum of two positive numbers is given =/N. Show that the
mean value of the product of the p* power of the one and the ¢*
power of the other is p!q! N?+7/(p+q+1)!, p and ¢ being positive
integers.

7. Find the mean value of the (i) squares, (ii) cubes of all radii
vectores of a cardioide for an equable angular distribution of radii
vectores about the pole.

8. Given the base and the radius of the circumcircle of a triangle,
determine its mean area, stating clearly what assumptions you make
as to equal probability. [ST. Jonx’s, 1884.]

9. Show that the average of the squares of the distances of all
points within a given circle from a point on the circumference is
three times that of the squares of all points within the circle from
the centre. [CoLLEGES, 1878.]

10. Find the mean value of the squares of the distances of all
points within a rectangle (i) from the centre of the rectangle, (ii)
from any point in the plane of the rectangle, (iii) from any point not
in the plane of the rectangle.

11. Find the mean value of the focal radii vectores of a cardioide
(i) for an equable angular distribution of radii, (ii) for an equable
arcual distribution.

12. If a solid be formed by the revolution of a cardioide about its
axis, find the mean value of the focal distances of points on the
surface of the solid (i) for an equable surface distribution, (ii) for an
equable solid angle distribution.

13. Find the mean value of the squares of the distances between
any two points within a given (i) triangle, (ii) square, (iii) sphere,
(iv) cube.

14. (i) Find the mean of the inverse distances of points within an
ellipse from a focus for an equable areal distribution.

(ii) Find the mean of the inverse distances of points within a
prolate spheroid from a focus for an equable volume distribution.

15. Show that the mean distance of points within a sphere of
radius @ from points of the surface of a shell of double the radius of
the sphere is 21a/10, and that the mean distance of points on the
surface of the sphere from points on the shell is 13a/6.
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16. Show that the mean distance of all points within a sphere of
radius @ from a point midway between the centre and the surface
is 279a/320.

17. Show that the mean distance of a point on the external
surface of a spherical shell of thickness 7' from points in the material

1 (R-TP@R-T)

5.6 P
zidtﬁll: shell is 5R+5 RGE-3RT+ 1% where R is the external

18. Show that the mean distance between points P and @, of
which P lies within a sphere of radius B and @ lies between this
sphere and a concentric sphere of double the radius, is 3°R/140.

19. There are two concentric spherical shells, the bounding
surfaces of which are 1 inch, 2 inches, 3 inches, and 4 inches. Show
that the average distance of points in the material of the first from
points in the material of the second is 3§22 inches.

20. Two equal spherical surfaces are in contact. Show that the
mean distance of points on the one surface from points on the other
=17/3 of the radius of either.

Show further that if the points may lie anywhere within their
respective spheres, their mean distance is 11/5 of the radius of either ;
but that if one of the points lies within one of the spheres and the
other point on the surface of the other sphere, their mean distance
is 34/15 of the radius. i

21. If M, be the mean of the ™ power of the distance between
two points on the area bounded by a circle of diameter unity, show

that M, o=M,(n+2)(n+3)/(n+4)(n+6).

22. 1If M, be the mean of the n* power of the distance between
two points on the surface of a sphere of unit diameter, show that

My =M, (n+2)/(n+ 3).
23. If M, be the mean of the n'* power of the distance between
two points within a sphere of diameter unity, show that
M, =M, (n+3)(n+6)/(n+5)(n+1T)
24. A point O is taken outside a sphere with centre C and radius
a. CO=2a. Show that the mean of the cubes of the distances of 0

from points within the sphere = 7314?70, and that the mean of the
fourth powers =171a4/7.

25. Show that the mean value of 2*y** over the surface of a sphere
of radius a is a'?/5005.
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26. Show that the mean value of #P-1y2-127! for positive values
of 2, 9, 2 subject to the condition @22+ 0b22+¢c%2=1 for an
equable distribution of areas on the z-y plane, is

s (r(5 fr (22372

where p, g, r are all greater than unity.

27. On a straight line of unit length two random points are taken.
Show that the mean of the square of the distance between them is
1/6 of a unit of area.

28. Circles are inscribed in the triangles formed by joining points
on an ellipse of semi-axes @, b and eccentricity ¢ to the foci. Show
that the mean value of the areas of the circles for equal increments
of a focal vectorial angle is

ma?(1 - e)?(a/b - 1). [MaTH. Trre., 1892.]

29. Show that the mean value of the product of the three per-
pendiculars from any point within a triangle upon the sides is
P1D2P3/60, where p,, p,, p; are the perpendiculars from the angular
points upon the opposite sides.

30. Show that the mean value of the product of the four per-
_ pendiculars from any point within a tetrahedron upon the faces is

D1 PoPsP,/560, where p, py, ps, p, are the perpendiculars from the
several quoins upon the opposite faces.

31. Five points, 4, B, C, D, E, are taken upon a straight line 4 E,
to which perpendiculars are drawn through these points of increasing
magnitude. The sum of these five perpendiculars is 10 inches.
Show that the mean length of the middle perpendicular is 47/30 of
an inch.

32. Show that the mean distance of all points within a given
regular polygon of side 2a from the centre is g 33 l og —— R e , where

R and r are the radii of the circumseribed and inscribed clrcles.

33. Show that the rectangle contained between the average value
of the radius of curvature at points equally distributed along a curve
and the corresponding arc is double the area contained between the

curve, the evolute and the normals at the extremities of the arc.
[5, 1883.]

W/ *“\/\'A.' r
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34. Prove that the mean value of the radius of curvature at points
equally distributed along the cardioide r=a (1 + cos 6) is a/3, while
the density distribution of the corresponding points along the pedal
with respect to the pole varies at any point as the curvature at the
corresponding point of the cardioide. [3, 1883.]

35. Prove that the square of the mean value of any function of a
variable between any limits of the variable is less than the mean
value of the square of that function between the same limits of the
variable. [ST. JonN’s, 1883.]

36. Find the mean value of the squares of the distances from a
focus of all points within an ellipse whose eccentricity is v/3/2.
[9, 1881.]
37. The circumference of the auxiliary circle of an ellipse, whose
axes are 4CA'=2a, BCB' =20, is divided at @, @, ... into a large
number of equal arcs. At P,, the point on the ellipse whose
eccentric angle is 4CQ,, a circle is described so as to touch the
ellipse at P, and to have its centre on the major axis. Show that
the mean area of all such circles is 72(a2 + 2)/242. [a, 1881.]

38. At any point P of a catenary whose parameter is ¢, the ordinate
PN and the normal P@ are drawn to meet the directrix at V and @
respectively. Prove that the mean values of the area of the triangle
NPG for points proceeding by equal increments of (i) abscissa, (ii)
ordinate, (iii) are, up to a point whose coordinates are (z, y), are
respectively

i) (- e)bz; (i) ¢ (esinh % i) / 64(y-c); (ifi) (4 - c*)/8es.

39. Find the mean of the inverse distances of two random points,
one on the surface of a sphere, the other on a circular area exterior
to the sphere and whose plane is at right angles to the line of
centres.

40. Prove that the mean of the inverse distance between points
on the surface of a sphere and points on a straight rod of length I/,
external to the sphere, which is bisected at right angles by a per-
T +a
N
where o is the angle at the centre of the sphere subtended by the rod.

pendicular upon it from the centre of the sphere, is %bg tan

41. Prove that the mean inverse distance between points on the
surface of a sphere of radius ¢ and points on a concentric ring of
radius b is -1 if b>a or a7 if b<a.

www.rcin.org.pl
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42. Prove that the mean value of z for all points within the
positive octant of the surface (ac/a)g + (y/b)‘}+ (z/c)§= 11is 21a/128.

43. On a given finite arc n points are drawn dividing it into equal
small lengths, and n other points are taken, parallels to the normals
at which divide the angle between the extreme normals into equal
small angles. Prove that when n is indefinitely increased the mean
of the radii of curvature at the former n points is greater than the
mean of the radii of curvature at the latter n points, the curvature
being supposed finite at every point of the arc. [St. Jomn’s, 1889.]

44. If log R be the mean value of the logarithm of the distance
between two points P and ¢ which lie on a line 4B of length a,

show that B=ae %, [CLERK MAXWELL, Bl and Mag., 11., p. 296.]

www.rcin.org.pl
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