
CHAPTER XXXVII.CHANCE.1680. Def. If an event can happen in a ways and fail in 
b ways, and all these ways are equally likely to occur, the probability of the happening is α∕(α+b) and of the failure to happen is b∕(α+b).These measures are essentially numerical positive proper fractions. Certainty is denoted by unity. A mean value is essentially a quantity of the same kind as those of which the mean is taken. So long as a and b are finite, the theory of probability does not call for any mode of treatment other than the processes of ordinary arithmetic and algebra. If, however, a problem incurs the existence of an infinite number of ways in which an event could happen and an infinite number of ways in which it could fail to happen, all these being equally likely, the calculation of a, b and a +b may call for the processes of the Integral Calculus, or at least the fundamental conceptions of the Calculus, to effect the necessary summations, though sometimes in such cases the actual labour of integration may be avoided by geometrical or other considerations.1681. Take, for instance, the case of a material particle thrown down upon a region of area A, and which is equally 
likely to fall at any point of the area; and let us explain this phrase. Imagine the area A to be divided up into an infinite number of infinitesimally small elements of equal area, and suppose that an infinite number of trials is made. We shall also suppose that, after these trials, the particle has fallen as many times upon any one element as upon any other. Then if a be any region of finite area enclosed completely within
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CHANCE. 793the contour of A, a and A contain numbers of the infinitesimal elements of area proportional to and measured by their own areas. Hence the numbers of particles which have fallen respectively upon a and upon A are measured by the respective areas of a and A, and the chance that a particle which falls upon Aalso falls upon a is , and that it does not so fall isThe chance that of two hazard throws of a particle upon Aboth fall upon a is That the first does and the seconddoes not, the chance is That the first does notand the second does is and that neither does isand the sum of these is unity. And so on ifthere be more than two throws.It will appear that in such cases, unless the areas be known or obtainable by some elementary means, either the Integral Calculus or some equivalent graphical method will be necessary for their evaluation. Taking any pair of rectangular axes in the plane of the region A, the chance that the throw upon 
A results in the particle falling upon a may be expressed astaken over a taken over A1682. We note that the chance that a particle should fall upon the perimeter of the contour of a is infinitesimal in comparison with the chance that it should fall upon the area of a.1683. We indicate by a few examples how the Integral Calculus is to be applied in some cases, and how the actual integration may be evaded in others.

1. OA = 2a is the axis of a cardioide. C is the mid-point of OA. What 
is the chance that a random point P taken within the cardioide is further from
C than C is from 0 ?

Drawing a circle with centre C and 
radius CO, P must lie without the circle 
but within the cardioide. The area of 
the cardioide

Therefore the chance required is Fig. 521.
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794 CHAPTER XXXVII.

2. Given that p, q are any positive quantities of which neither is > 4; what 
is the probability that when real values are assigned to them at random, the 
roots of the quadratic x2-px + q = 0 shall be real?

If real, p2< 4q. Construct the parabola Y2=4X. The point (4, 4) lies 
upon it. We may then interpret the condition geometrically. A random 
point H is selected upon a square ONPQ, whose side is 4. The above 
parabola is drawn with axes ON, OQ. The values of p and q are denoted 
by the abscissa and ordinate of H. When H lies without the parabola 
p2>4q. Therefore the chance that p2⊀4q is measured by the ratio of 
the area OPQ to that of the square ; that is, 1 /3. (Fig. 522.)

3. A rod, three feet long, is broken at random into three parts. What is 
the chance that we may be able to form a triangle with them ?

(1) If x, y, z be the parts, x+y+z=l, the unit being a yard. We are 
to have y + z>x, z+x>y, x+y>z. Interpreting x, y, z as areal co

ordinates, then y + z=x, etc., 
are the joins of the mid
points of the sides of the tri
angle of reference. In order 
that all the inequalities may 
be satisfied, the representa
tive point x, y, z must lie 
within the triangle formed 
by them (unshaded, Fig. 
523), which is one quarter of 
the whole triangle. Hence 
the chance is 1/4.

(ii) We might also regard 
x, y, z as the rectangular 
coordinates of a representa
tive point. Taking 1 foot as 
unit, x+y+z=3 ; and this

is the equation of a plane making intercepts 3, 3, 3 upon the coordinate 
axes. If A, B, C be the intercepted triangle; P,Q, R the mid-points of 
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CHANCE. 795
its sides, y + z=x, etc., are the respective planes OQR, etc., and of all the 
unrestricted positions upon the triangle which the representative point 
x, y, z may occupy those for which y + z>x, etc., lie within the triangle 
PQR. Therefore, as before, the chance =1/4.

(iii) Again, without evasion of integration, we may proceed thus :

Fig. 525.
Let OA ( = α) be the rod, P and Q the random fractures, P being that 

which is nearer to 0 ; OP=x, OQ=y ; y> x.
Then, since

and

we have Hence the chance required is

(iv) Or still again, with the above inequalities, construct a square 
OABC of side a, OA, OC being the x and y axes. Let P, Q, R, S (Fig. 526) 
be the mid-points of the sides, T that of the square. The representative 
point must be in some position on the triangle OBC as y>x, and both are 

positive and neither of them >a. The conditions 

restrict it further to the triangle TRS, which is obviously 1/4 of OBC. 
Hence the chance required is

It will be noted that the integration process is merely the evaluation 
by that method of the areas of the triangles TRS, OBC.

Fig. 526. Fig. 527.
4. An ellipse has its centre at a random point C of a semicircle ACB, 

and tιυo vertices at A, B the extremities of the diameter. AB = c. Find (i) 
the mean area for different positions of C; (ii) the chance that its area shall 
be less than that of the circle. (Fig. 527.)

(i) Let 0 be the centre of the circle;
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796 CHAPTER XXXVII.

Then Area of ellipse

and Mean area

(ii) When area of ellipse = area of circle, r1r2 =1/4c2, and 0 = 30°.
Hence, from θ=30o to θ= 150o, we have area of ellipse > area of circle.
Therefore the chance that the area of the ellipse is less than that of the 

circle = 2x 30/180=1/3.

5. If a quantity of homogeneous fluid contained in a vessel be thoroughly 
shaken up and allowed to come to rest again, prove that the chance that no 
particle of the fluid now occupies its original position is 1∕e.

[Whitworth’s Problem.]
Let there be n particles a, β, γ,... occupying specific positions :

N the number of ways of arranging them in those positions = ∏ (n), 
say, =n!,

N(A) the number of ways of arranging them with α in its original 
place,

N(α) the number of ways of arranging them with α out of its 
original place,

N(aB) the number of ways of arranging them with β in and α out 
of their original places, and so on.

Thus
Hence

writing n - 1 for n,
subtracting,

and so on.
Thus N(abc... k) to n + 1 terms

Hence the chance that all the particles are misplaced

[See the Problem of “n letters and n directed envelopes,” Smith, 
Algebra, p. 293.]

In this case, although the number of cases is infinite, the problem does 
not call for the assistance of the Integral Calculus.
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CHANCE. 797
6. Find the chance that a random triangle inscribed in a circle is (i) acute 

angled, (ii) obtuse angled.
(i) Let ABC (Fig. 528) be the triangle; 0 the centre of the circle. 

Let the angles AOB, AOC, measured in opposite directions from 0A, be 
called θ and ϕ.

Then A=(2π-θ-ϕ)∣2, B=ϕ∕2, C=θ∣2, and if ABC be acute angled, 
θ < π, ϕ < π, θ+ϕ > π.

The chance for an acute-angled case is therefore

(ii) The probability that A is obtuse is

The probability that one of the three A, B or C is obtuse = 3/4.
The probability that the triangle is right angled is of course 

infinitesimal.

Fig. 528. Fig. 529.
(iii) Let us examine this problem in an elementary way. Three points 

being taken at random on the circumference of a circle, what is the chance 
that they lie on the. same semicircle ?

Let the arcs BC, CA, AB be x,y, z; and take the circumference as 
unity. Then x+y+z=l. The triangle will be obtuse angled in any of 
the three cases y+z < x, z+x < y, x+y < z.

Interpreting x, y, z as areal coordinates of a point referred to a reference 
triangle A'B'C', we may proceed as in 3 (i), and if P, Q, R be the mid
points of the sides, the chance required will be the same as the chance 
that an arbitrary point of the triangle A'B'C' shall fall upon one of the 
three equal triangles A'QR, B'RP, C'PQ (shaded in Fig. 529), i.e. 3/4, and 
the chance the triangle ABC is acute angled is 1/4.

(iv) A curious fallacy lies in the following argument. One pair of points, 
say A, B, must lie on a semicircle terminated at A. The chance that C 
lies on this semicircle is 1/2 ; therefore the chance that all three lie on the 
same semicircle is 1/2!
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798 CHAPTER XXXVII.

This is incorrect: where lies the fallacy ? (Rev. T. C. Simmons, Educ. 
Times'). Let the student obtain the correct result by this line of 
argument.

7. Two points P, Q are taken at random within a circle whose centre is C. 
Prove that the odds are 3 to 1 against the triangle CPQ being acute angled.

[St. John’s Coll., 1883.]
Let a be the radius ; P, (r, ϕ), the position of one of the points.
Let a diameter ACB and a chord DPE be drawn perpendicularly to 

CP. Then (Fig. 530)
(i) The chance that PCQ is obtuse is

(ii) The chance that CPQ is obtuse is the compound chance that P 
should lie on the particular element rdϕdr, and that if so, Q lies on the

smaller segment cut off by the chord, There

fore the whole chance that wherever P lies, CPQ is obtuse is, with the 
notation indicated in the figure,

where etc.

A
(iii) Similarly the chance that CQP is obtuse =1/8. And these are 

mutually exclusive events. Therefore the chance that one of the three 
is obtuse is 1/2 + 1/8+1/8 = 3/4. Therefore the chance that the triangle is acute 
angled is 1/4, and the odds against this are 3 to 1.

Fig. 530. Fig. 531.1684. We have seen that when a region Ω entirely encloses a second region ω, the chances that a random point taken within Ω should or should not lie within ω are respectively ω/Ω and 1-ω/Ω. If n random points be taken within Ω, the chance that r specified points lie within ω, but the rest do not, is (ω/Ω)r (1-ω/Ω)n-r ; and if  the several points be denoted
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CHANCE. 799as A, B, C,..., the chance that some unspecified r of them lie within ω, whilst the rest do not, is nCr times as great, that isAnd the chance that at least r unspecified

points of the whole number lie within ω is
Now suppose that the region ω itself is variable with the different trials, and let the regions which it represents in the several trials be denoted by ω1, ω2, ω3,... ωm, and let there be a very large number m of such trials, and that any of these ω's may be equally likely to be selected for any particular trial of the taking of a random point P within the region Ω. The chance that at any particular trial any specified one value of ω, say ωp, is selected is 1/m, and therefore that r specified mpoints of the whole group should fall within ωp, and the rest not within it, we have the compound chance
Hence in all the m trials the chance that r specified points lie within the particular ω selected for each trial, and that the rest do not, is the mean value ofAnd if the r points be not specific points of the group

A, B, C,... which are to fall within the selected ω's, the resultwill be the mean value of That is, thetwo results are oraccording as the random points falling within the particular ω’s are to be specified or unspecified members of the group of random points A, B, C,....It is convenient to picture the two cases as those of n sand grains thrown at random upon the region Ω, the grains being coloured differently in the first case, uncoloured and indistinguishable in the second.
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800 CHAPTER XXXVII.

1685. Taking, for instance, the case of a rod AB of length a ; this is 
the region Ω. Take two points at random upon it. This marks a 
random region ω, viz. PQ, within Ω. Now take n other random points 
on AB, say differently coloured sand grains thrown at hazard upon the 
line. The chance that a specified group of r of these lies between P 
and Q, and the rest do not, = M {PQτ(a- PQ)n-r}∣an ; and if the group be 
unspecified, the chance will be =nCrM{PQr(a - PQ)n-r}∕an.

Let P be the random point which is the nearer to A ; AP=x, AQ=y.

Then

putting

Therefore the chance required for r specified points, and r only, to

lie between P and Q is and if the r points be

unspecified

1686. This result is obtainable directly. For the total number of 
points to be chosen on A B is n +2. The number of permutations of these 
is (n+2)! Let us fix positions for two of these, X and Y, on the array, 
say the lth and mth. Then there are n! permutations of the remaining 
points. Hence the chance that two particular points X and Y shall be

the lth, and mth of the array , for these two may stand in either

order, either as first and second and third and
and i.e. in n- r+1 ways, events equally

likely to occur, and therefore the total chance that these two points shall

find r unspecified other points between them is

1687. For instance, if there be eight indistinguishable points taken at 
hazard on AB after P, Q have been selected at random, the chance that 
three unspecified ones should lie between P and Q and five on the rest of

the line AB is and the chance for three specified ones to lie

between P and Q and the others on the rest of the line is

1688. Random Points.It is necessary to examine carefully what is meant when it is stated that points are taken at random within a given region.
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RANDOM POINTS. 801(i) When a point P is said to be taken at random upon a line AB of length a, it is understood that AB is divided into an infinite number of equal elements, and that each element has the same chance of finding itself the recipient of the point
Fig. 532.

P. Thus, measuring a length x along AB from A, the chance of the random point P falling between x and x+dx is dx∣a.If a random selection of several points P, Q, R be made upon the line, the chances they will severally fall between the respective distances x and x+dx, y and y+dy, z and z+dz from A are dx∣a, dy∣a and dz∣a, and the compound chance that allthree chances should concur is denotingincrements of equal length.But if, after a choice of P and Q has been made at random, 
R is then selected at random between P and Q, the respective chances are dx∣a, dy∕a, dz∣(y-x); for now the possible region for the selection of a position for R has been restricted. The compound chance that all three things should happen is

If a rod be broken simultaneously at two points at random, the chance that one fracture lies at a distance between x and x+dx from A, and that the other lies between the distances
y and y+dy from A, is But if the rod be first brokenat P and then the portion AP be again broken at Q, the chance that these fractures should respectively lie at distances from A between x and x+dx and between y and y+dy is

(ii) When a point P is said to be taken at random on a given area A or within a volume V, then, if R be the whole region in question, and if R be divided up into an infinite number of equal infinitesimally small regions δR, δR', δR",..., it is understood that each element has the same chance of finding itself the recipient of the point P, and the chance
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802 CHAPTER XXXVII.that specified points P, P', P",... should occupy the respectiveelements is1689. To return to the case of a distribution of possible positions on a line AB (=α). If, after a random selection of one point P on AB, a selection of Q be made at hazard upon
Fig. 533.

AP, it is evident that, since the number of possible positions for Q on AP is smaller than the number of possible positions for P in the whole line AB, the chance of any one element of 
AP distant between y and y+dy from A being the recipient of Q is greater than that of the element between x and x+dx being the recipient of P. The circumstance of the random choice of Q being made subsequently to the random choice of 
P, upon a limited range, has increased the chance of the dy element, but all equal elements between A and P have the same chance, the compound chance being, as before stated,

1690. We have, then, for the total chance that AQ shall not be less than a certain length c (<α),
1691. Thus for a rod four feet long and AQ to exceed one foot, the chance =(3-log4)∕4= 4034....1692. It will be observed from Art. 1690 that for the compound event the chance of the element between x and x+dx being the recipient of the random point P, and also being such that the subsequent random choice of Q will give a result forwhich is no longer but and therefore thedensity of the possible positions of P on the line is not thesame at various positions, but varies as i.e. in a hyper-
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DENSITY. 803bolic manner. This “ density ” of distribution may be represented graphically as in Fig. 534, and shows that the condensation of points P in an element dx, which can bring about a value AQ greater than c, increases from zero at x=c, and continues its increase as P approaches B, tending in a hyperbolic manner to an asymptote parallel to the x-axis.Taking as the equation of this graph, ηdx is ameasure of the number of cases in which P lies in the element 
dx. That is, this number is proportional to the ordinate of the graph. And the total number of cases is measured on the same scale by the area between the x-axis, the curve and the ordinate at x=a. This area up to any definite ordinate is

Fig. 534.If we take an ordinate which bisects the whole area, viz.we have andthis ordinate divides the whole line AB into two portions such that there are as many favourable cases for the event desired in defect of AP(=x0) as there are in excess. On these grounds the value x=x0 is said to give the most probable case to secure the event.
In the case a = 4 feet, c = 1 foot, x0 - 1 - log .r0 = 1/2 (3 - log 4)=0.8068.
... x0-logx0= 1.8068, and by trial, or graphically, x0= 2.8563 nearly.
That is, in order that the portion AQ should exceed one-fourth of the 

rod, the most likely position for the first fracture to have been made is 
a little less than three-fourths of the length of the rod from A.We shall call such a graph, indicating the density or condensation of points P in an element which are such that the
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804 CHAPTER XXXVII.event may be brought to pass, the “ Condensation ” or “ Density ” graph. We shall return to it later. It is also sometimes called the “Curve of Frequency.” (See Williamson, Int. Calc., p. 369, ed. 8.)In all previous cases the density or condensation has been uniform. It will now appear that many cases will arise when this is not so.The mean value of the ordinates of the graph from x=c to 
x=a is given by
for which the abscissa is

In the numerical case cited, viz. a = 4, c=l, x = 3∕loge4 = 2.164....

1693. Illustrative Examples.
1. From a rod of given length a piece is cut off. From the remainder 

another piece is cut off. Show that the chance that the second piece is less 
than the first is loge 2.

Let OA (=α) be the rod ; P and Q the fractures ; 0P=x, OQ=y. Then 
y >x, y-∙x <x, y < α.

Fig. 535.
So that if x < α∕2, y < 2x ; but if x > α∕2, y cannot range as far as 2x, 

and the inequality y < 2x is necessarily satisfied and replaced by y < a, i.e. 
when x ranges from 0 to 1/2 α, y ranges from x to 2x ; 
when x ranges from 1/2 a to α, y ranges from x to a.

The chance of R lying between x and x+dx is dx∣a, and the chance 
of Q lying between y and y + dy is dy/(a-x).

Thus the chance required etc. = loge2.

2. (i) Find the average distance between two points P and Q, where P is 
taken at random on a line AB of length a and Q is taken at random on AP.

[Math. Trip., 1883.]
Let AP=x, AQ=y, x < y.

Fig. 536.
Then etc.
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CHANCE. 805
(ii) Find the average distance between the two points P and Q when 

P and Q are taken at random on AB. [Math. Trip., 1883.
Here Q may be on either side of P, and x—y changes sign as Q passes P

M(positive value of QP) etc.

3. Two lines are taken at random, each of length < a. Prove that the 
chance that, together with a line of length 1/2a, they can form the three sides of 
a triangle is 5/8. [St. John’s, 1883. ]

(i) If x, y, 1/2a be the sides, we have

Take x, y as Cartesian coordinates of a point. Construct a square 
OABC of side a, with 0A, 0C as coordinate axes. Let P, Q, R, S be the 
mid-points of the sides (Fig. 537). Then, of all points within the square, 
any point within the shaded area PSBRQ will satisfy the conditions of 
the problem. Hence the chance required is 5/8.

(ii) Or we may proceed directly thus : The chance that x lies between 
x and x + dx, and that y lies between y and y + dy, is dxdy∣a2.

If ranges from to if ranges from to a.

Therefore the chance required etc.

It will be noted that this is the exact process of integrating dxdy∣a2 
over the shaded area.

Fig. 537. Fig. 538.
4. Three lines are chosen at random, each of length < a. Prove that the 

chance that they can form a triangle is 1/2.
If x, y, z be the lengths, we must have x < a, etc. ; y + z > x, etc.
Consider x, y, z the rectangular coordinates of a point. Of all points 

within a cube of edge α, three of whose edges coincide with the axes of
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coordinates, those which give the result sought must be included between 
the three planes y + z=x, z+x=y, x+y = z, i.e. half the whole cube. 
Hence the chance is 1/2.

5. A red of length a is broken at random into two parts, and one of the 
two parts is taken at random and again broken at random. Show that for 
the two parts thus obtained the chance that neither is less than 1/3a is 1/9.

[Ox. II. P., 1886.]
Let OQ be the part first broken off (Fig. 539), P the second fracture ; 

OP=x, PQ=y, QA = z, x+y+z=a. Unless x+y>2a∣3 there is no chance 
that x and y shall be each > α∕3. Therefore the larger portion must be

Fig. 539.
selected. Regard x, y, z as the rectangular coordinates of a point. This 
must lie on a plane A'B'C' making equal intercepts a on the coordinate 
axes. The planes x = a∕3, y=a/3, z = 0 isolate on the triangle A'B'C', a 
triangle PQR whose area is 1/9 that of the triangle A'B'C'. In order that 
the specified condition must be satisfied, the representative point x, y, z 
must lie within the triangle PQR. The chance is therefore 1/9.

6. If three points P, Q, R be taken at random on a straight line OA ( = a),

what is the chance that, if shall be

Let Then RA =a-x-y-z, and we are to have

whilst x, y, z are positive and their
sum < a.

Take an orthogonal transformation in which
and

where X, Y, Z are new variables. Then

i.e.
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CHANCE. 807
The whole range of the values of X, Y, Z is comprised within a 

spheroid of semi-axes a∣2√n, a∣2√n, a∣4√, which lies entirely within the 
tetrahedron x = 0, y = 0, z=0, x+y + z=a, provided n be large enough. 
The centre of the spheroid is at the point given by.x=y=z=a-x—y — z, 
i.e. (a∣4, a∕4, a∣4). The minor axis lies along x=y =z. The perpendicular 
from the centre on the plane x+y + z=a, is α/4√3, and the minor semi-axis 
being a∣4√n, we must have n>3 in order that the spheroid shall not cut 
the face x+y+z=a. The same limitation will secure that the spheroid 
shall not cut any of the other faces of the tetrahedron, and must therefore 
be completely contained by the tetrahedron. With this limitation we 
therefore have

Chance required Vol. Spheroid
Vol. Tetrahedron

7. If n random points P, Q, R be taken upon a line OA, what is the 

chance that the sum of the squares of the (n +1) parts shall not exceed - the 
square of the whole line ?

Fig. 540.
Let x1, x2, x3, ··xn,a-x1-x2-...-xn, be the lengths of the successive 

parts. We are to have x12+x22+ ...+(a-x1-...-xn)2 > a2∕n.
Take an orthogonal transformation in which x1 + x2 + ...+xn=√nXn,

and let X1, X2, ... Xn be the new variables. Then and the
condition becomes

i.e.
or
where

With the new variables the signs of X1, X2, ... may be either positive 
or negative.

The chance required is N∣D, where

for all values of X1, X2, ... Xn-1, Xn', for which
see note in the next article

and for positive values of x1, x2, ... xn, for which

By Dirichlet’s theorem the last

factor 2" occurring because at each integration the result is to be doubled 
to take into account the negative signs of the respective variables ;
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and

the chance required

1694. Note.
Consider the equations

Multiplying the second by 2α/n and subtracting, 

and therefore when one of the x’s is zero, say xn+1, 

and if p > n, this would be negative, and therefore impossible to be 
satisfied by any real values of x1, x2, ... xn. If p = n, the unique real 
solution would be x1 = x2= ... = xn = a∣n, where xn+1 = 0 ; and similarly if 
any of the other x’s were zero. We may suppose xn+1 as an abbreviation 
for a-xl-x2- ...-xn, and x1, x2, ... xn as generalised coordinates.

(i) If n = 2, x12 + x22 + x32 = a2∣2, where x3 = a-x1-x2, is a conic, and can 
only meet the lines x1 = O, x2 = 0, x3 = 0 at
x1 = 0, x2 = α∕2, x3 = α/2 ; x1=α/2, x2 = 0, x3 = α/2 ; x1 = α/2, x2 = a∣2, x3 = 0 ; 
i.e. it is the ellipse which touches the lines x1 = 0, x2 = 0, x3 = 0, at the 
mid-points of the sides of the triangle formed. The centre is at 

and the ellipse is the maximum ellipse inscribable in the triangle. In 
homogeneous coordinates x1, x2, x3 we may write it as

or

(ii) If n = 3, x12 + x22 + x32 + x42 = a2∣3, where x4≡a - x1-x2-x3, is a 
spheroid inscribed in the tetrahedron x1 = 0, x2 = 0, x3 = 0, x4=0, touching 
the faces at their several centroids.

In homogeneous coordinates x1, x2, x3, x4,

The centre is at x1 = x2=x3 = x4 = α∕4, and the spheroid lies entirely 
within the tetrahedron.

(iii) In the general case, 

may be arranged as
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Hence if n > 1, x1 cannot be negative unless x2 + x3 +... + xn+1 be 

negative, which is impossible, since x1 + (x2+..+xn+1) = α, which is 
positive. And the same follows for each of the variables. That is, 
using language in analogy with the geometrical interpretations of (i) 
and (ii), the «-dimensional “spheroid” x12+x22 +...+x2n+1 = α2∕n, in which 
xn+1 = a-x1-...-xn, lies entirely within the «-dimensional “region” 
defined by x1 = 0, x2 = 0, ...xn+1 = 0, and touches each of the “faces,” viz.,

say, x1 = 0 at i.e. at its “centroid,” and has its “centre” at

i.e. the “ centroid” of the region, and may be written

It will be seen, therefore, that in the integration of the preceding article 
it is proper to take the limits for X1, X2,... for all values of the variables 
for which X12+... + X'n2 > a2∕n(n+1); for negative values of these vari
ables cannot imply any but positive values of the original variables 
x1, x2, ·· xn+1.

1695. General Illustrations.
1. If a rod be divided into p pieces at random, prove that the chance that 

none of the pieces shall be less than 1∣mthof the whole, where m > p, is 
(1 -p∣m)p-1. [Math. Trip., 1875.]

Fig. 541.
Let x be the distance of the nth point of division from one end, and let 

the length of the rod be taken as unity. Then, as each piece is to be 
> l∕m, we must have

x > n∣m and 1 -x > (p-n)∣m, i.e. 1-(p-n)∣m> x> n∣m. 
Hence each point of division, Pn, has a favourable range from x=n∣m to 
x=1 -p∕m + n∣m, and the length of this range is (1-p∣m) of the whole.

And since there are p — 1 points of division, the required chance is 
(1 -p∣m)p-1.

2. To examine the same problem by means of the Integral Calculus.

Fig. 542.
If X1, X2,... be the several points of division of the rod OA ( = α) at 

respective distances x1, x2, etc., from 0, we have xr>ra∣m and <xr+1 -a∣m 
from r=l to r = p — 1, and xp = a = 1. And the required chance is N∣D,
where

and D is the same when m = ∞ .
Hence performing the integrations, N∕D=(1 -p∣m)p-1, as before.
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810 CHAPTER XXXVII.

3. A rod XY ( = a) is broken at hazard into three portions. If these three 
parts can form the sides of a triangle, what is the chance it is acute angled ?

Fig. 543.
In Art. 1683, Ex. 3 (iv), it has been seen that the chance the parts form 

a triangle is 1/4.
Let P, Q be the fractures, XP = x, XQ=y, y> x. As in the article cited, 

we must have

To be acute angled, we must also have 

i.e.
All values of x and y from x=0 to x=y, and y = 0 to y = a, are equally 

likely. Refer to rectangular axes Ox, Oy, as before, with the same 
description of figure.

The region bounded by the hyperbolae y(y-x-α)+α2∕2 = 0, etc., in
cludes the only positions in which the representative point (x, y) can lie to 
ensure that the triangle formed by the portions of the rod shall be acute

Fig. 544.
angled. These hyperbolae, which we designate as L, Μ, N respectively, 
pass through R and Η, H and I, I and R, and touch each other at these 
points. The three segments bounded by L, Μ, N and their respective 
chords are

for

for

for
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CHANCE. 811
Therefore the area of the curvilineal triangle RHI

Therefore the chance that the three segments of the rod form an acute
angled triangle

The chance that any specific angle is obtuse

The chance that the triangle is obtuse angled = 3/4(3-4 log 2).
The chance that the triangle is right angled is of course infinitesimally 

small.
4. P, Q, R are random points, one on each of three equal lines X1Y1, 

X2Y2, X3Y3 ( = a). What is the chance that the portions X1P, X2Q, X3R 
may form an acute-angled triangle ?

Fig. 545.
In Art. 1693, 4, the chance the parts form a triangle has been seen to 

be 1/2. If x, y, z be respectively X1P, X2Q, and X2R, we have the additional 
conditions y2 + z2 > x2, z2 + x2 > y2, x2+y2 > z2. Referring to rectangular 
axes, as before, the surfaces of the right cones y2 + z2 = x2, etc., separate 
the favourable positions of the representative point from the unfavourable 
ones. These cones touch in pairs along their common generators, which 
lie in the coordinate planes. The volume of the part of the cube in
cluded between them

Hence the chance required
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5. Two points P and Q are taken at hazard upon a line AB (= a), P being 
the nearer to A. What is the chance that the sum of the products of the 
segments two and two together exceeds one fourth of the square of the line ?

Let AP=x, AQ=y,y > x. Then x ranges from 0 to y and y from 0 to a.

The limiting case is

Referring to rectangular coordinates Ox, 0y, the representative point x, y 
may lie anywhere within the half OBC of a square OABC of side a, 
whose sides 0A, OB are along the axes Ox, 0y; and the favourable cases 

are indicated by points lying within the ellipse

Fig. 546.
which touches the sides of the triangle OBC at their mid-points, and is 
the maximum inscribed ellipse.

By projection its area is to that of the triangle OBC in the ratio of 
that of a circle inscribed in an equilateral triangle to that of the 
equilateral, i.e. π/3√3. The chance required is therefore π/3√3.

6. A rod of length a is broken at random into three parts. What is the 
chance that the square on the mean segment shall be less than the rectangle 
contained by the other two ?

Let x, y, z be the lengths of the segments. Suppose y the mean 
segment. Then

or

Refer to rectangular axes Ox, 0y, 0z. Let 0A = OB=OC-a (Fig. 547). 
Then x+y+z=a is the plane ABC. Let D, E, F, be the mid-points of 
the sides, G the point (α∕3, α/3, α∕3). The equations of the planes COF 
and A 0D are respectively y=x and y = z.

The inequalities y < x and y < z for points on the plane ABC limit the 
region to the triangle AGF.
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CHANCE. 813
The cone y2 = zx has OA and OC for generators, the coordinate planes 

x = 0 and z = 0 being tangential, and it passes through G, cutting the 
plane ABC in an arc APGQC. For points of the triangle A GB on the 
concave side of the arc we have y2 < zx. This further limits the range

Fig. 547.
of the representative point x, y, z to the segment APGA. Therefore, for 
the case x > y > z, y2 < zx, the chance required = Area APGA/Area ABC.

Now, since 2xz = (α - y)2 -x2- z2, we have along the intersection of
the cone and the plane ABC, x2+y2 + z2+2ay = a2; so that it is possible to 
pass a sphere through the arc APQC, which is therefore circular, as may 
be seen geometrically, the centre being at the point K where A K drawn 
parallel to FG meets BE produced. The radius of this circle = α√2∕3; 

and Area

Hence for this case the chance is

There are six such cases, viz.

with with with

Therefore the total chance
If a specific segment of the line, say the middle one, is to satisfy the 

same conditions, we then have the two cases x > y > z, x < y < z, with 
y2 < zx, and the chance is 227 (2π√3 - 9), i.e. one-third of the total chance 
considered above.
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7. A rectangular parallelepiped is constructed with a given diagonal, and 
edges of any possible lengths are equally likely. What is the chance that a 
triangle could be constructed with its sides equal to those edges of the 
parallelepiped which meet in a point ?

Let x, y, z be the edges, a the diagonal. Then x2+y2+z2=a2 ; y + z> x, 
z + x >y, x+y > z. Referring the problem to a set of rectangular axes, 
the planes y+z = x, etc., form a spherical triangle PQR on a sphere of 
radius a. The points P, Q, R are the mid-points of the sides of the 
quadrantal triangle ABC formed on the sphere x2+y2 + z2 = a2 by the 
coordinate planes. The sides of the triangle PQR are each π∕3, and

cos P = cos Q = cos R - 1/3. The spherical excess = 3 cos-1 1/3 - π. The area of 
the triangle PQR = α2(3 cos-1 1/3 — π). The area of the triangle ABC — 1/2πα2. 
The “favourable” region for x, y, z consists of the three spherical 
triangles, AQR, BRP, CPQ, the sum of whose areas

Hence the required chance

8. A rod AB ( = a) is broken at hazard at two points P, Q. What is the 

chance that PQ shall be such that

Let AP=x, PQ = z, QB=y, x+y+z = a, and we are to have nz2 ⊀ x2+y2. 
Refer, as before, to rectangular axes Ox, Oy, Oz. Then, of all points in
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CHANCE. 815
the plane x+y+z=α (Fig. 549), those which lie within the right 
circular cone x2+y2 = nz2 are “favourable.” The projection A"B" of the 
line of intersection A'B' upon the z-plane is x2+y2 = n(a-x-y)2, i.e.

Fig. 549.
a conic with focus at 0, directrix x+y=a, eccentricity √2n. Turning 
the axes round so that ON, the perpendicular upon x+y = a, is the new 
x-axis, the conic becomes X2+ Y2= n(a-X√2)2, i.e. in polars

The area of the portion of this conic between the radii OA", OB" (Fig. 549), 
in the case when n < 1/2, is

And the chance required

Area Area

If n = 1/2, the conic A"'B" is a parabola, viz.

In this case, Area

and the chance required
If n>1/2, the conic A"B” is hyperbolic, and the chance required is
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9. The equation ax2+2hxy+by2=1 is written down at random with real 
coefficients. Find the chance that it represents a hyperbola.

[Ox. II. P., 1887. ]
The condition is h2 > ab. Consider the portion of the volume of the 

cone z2=xy enclosed by the planes x= ±c, y=±c, z=±c. Let PMN

Fig. 550.
(Fig. 550) be a parabolic section by a plane parallel to the y-z plane 
bounded by the planes x=y, z=0. The volume, to x=c,

The volume enclosed within the cube, x= ±c, y= ±c, z= ±c, is 8. 2/9 . c3 ; 
and the volume of the cube = 8c3.

The representative point of α, b, h, viz. x, y, z must lie outside the cone 
but inside the cube, however large c may be.

Hence the chance required = 1 -2/9= 7/9.

10. Six points are taken at hazard on the circumference of a circle. 
What is the chance that no two consecutive selected points are separated by 
more than a quadrant ?

It will not affect the problem if we regard one of the points, viz. A, to 
be at a particular point of the circle. Let AC, BD be perpendicular 
diameters. Let the other five selected points be P1, P2, P3, P4 and Q at 
arcual distances x1, x2, x3, x4 and x respectively from A measured counter
clockwise. One of these five must be in each quadrant, and not more 
than two in any one quadrant. Let P1, P2, P3, P4 be the points which 
lie in the first, second, third and fourth quadrants, and Q the one whose 
quadrant is unassigned. It will be sufficient to consider the two cases, (1) 
when Q lies in the first quadrant, (2) when Q lies in the second quadrant, 
for the number of cases when two lie in the fourth or third quadrants 
are the same as if two lie in the first or second respectively. Also when 
Q lies in the first or the second quadrant, we shall suppose that point of
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the two which is nearer to A to be designated as Q. Let the length of a 
quadrantal arc =a. Then the two cases to consider are

(1) x<x1<a and a<x<x2< 2α (Figs. 551, 552).

Fig. 551. Fig. 552.
Then the chance required where

The values of these integrals are readily shown to be N1 = 4α5∕5! ;

Hence the chance required

11. Three, random points L, Μ, N are taken within a circle of centre 0 
and radius a. Find the chance that the circumcircle of LMN lies wholly 
within the original circle. [R. P. ]

Let P be the centre and x the radius 
of the circumcircle, and OP=r. Take an 
arbitrary and indefinitely small strip of 
breadth k round the circumcircle. Its 
area = 2πxk to the first order. The chance 
that three random points should fall upon
it which we may write as

Integrating with regard to x
from x = 0 to x=a-r, which varies the 
size of this circle from radius zero to such 
a size that it will just not cut the original

circle, we have  where 2k2/a6  (a-r)4 , is an arbitrary elementary area at our

Fig. 553.
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choice. We are now to sum up all such results as the above for various 
positions of P within the original circle. Replace k2 by rdθdr, and 
integrate over the large circle.

The required chance

12. If n + 1 particles P, Q, R, S,... be thrown down at hazard upon a 
straight line OA (= a) each has the same chance of finding itself the (r +1 )th 
in order reckoned from 0 towards A. Also, since some one of them must 
occupy the (r + 1)th position, that chance is 1∣(n +1). Examine this otherwise.

Fig. 554.
The composite chance that P falls at a distance from 0 lying between 

x and x+dx, and that r unspecified particles lie between 0 and P, and the

rest between P and A, is and therefore the chance

that P occupies the place irrespective of where it lies upon

etc. 

13. Two points P and Q are selected at random within the volume of a right 
circular cone, and circular sections are drawn through them. What is the 
chance that the volume of the slice exceeds 1 /8 of the cone ?

Take the vertex as the origin and the axis as x-axis, x and y the 
abscissae of the points and y >x. The chance that a random point has an 
abscissa lying between x and x+dx is proportional to the volume of a slice 
of thickness dx, the abscissa of one of its faces being x, i.e. to x2dx, 
Also if a be the length of the axis, y3- x3⊀1/8a3. The chance may 
then be written either as

Fig. 555. and each gives a result 49/64.

The condensation curves (Art. 1692) for P-points and for Q-points, 
indicating the density of clustering on the x-axis of the ends of their 
abscissae, are(i) and (ii)
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CONDENSATION. 819
Each touches the ξ-axis at the origin ; (i) crosses the ξ-axis at α/2 3√7, and

has a maximum ordinate at (ii) crosses the

ξ-axis at has a minimum ordinate at and η increases and is

positive from to a. In Fig. 556 a is taken equal 2 units.

We are only concerned with the part of (i) from 0 to l and of (ii)
from to a.

Both densities increase from to a

Fig. 556.
The first decreases and the second increases for the rest of the range.
If we require the chance that under the stated circumstances the point 

P possesses an abscissa lying between certain limits, say βa and aa, where 
0 < β < a < 1, that chance is

It will be found that the chances that x lies between .6α and .7α, or 
between .7α and .8α, are respectively ∙151257 and 151255, and are almost 
exactly the same. This is in the immediate neighbourhood of max. 
condensation.

The point at which the condensation of the x-values reaches its maxi
mum is α3√7/20=α×.7O473.

If ya be the “ most probable value ” of x, i.e. such that it is an even 
chance whether x exceeds or falls short of ya, it is given by

i.e.

The ordinate at this point bisects the portion of the area in the first 
quadrant of the condensation curve for P-points.
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1696. Inverse Probability.Questions involving the probability of causes as deduced from observed events are called questions on “inverse” probability. Supposing P1, P2, ... Pn, the probabilities of the existence of the several causes of an event known to have happened, and that these causes are mutually exclusive, and that these are the only causes through which the event could have happened ; and further, supposing that p1, p2, ... pn are the respective probabilities that when the cause exists the event will follow, then it is known that in any case when the event has been observed to happen, the probability of itshaving done so from the rth cause is (Smith,
Alg., p. 521). This result is stated by Laplace [Mem. sur la 
prob. des causes par les evenemens, Mem. ... par divers savans, T. vi., 1774],If Qr be the probability of the compound happening of the rth cause followed by the event, Qr=Prpr, and the aboveexpression may be written1697. Let the probability of the happening of a certain event A, 
which we may call the cause of a second event B, be x, which varies 
from 0 to 1. Let the happening of B depend upon the happening 
of A in such a manner that the compound probability of B’s 
happening is ϕ(x). It is observed that B happens. What is 
the chance that x lies between two assigned limits β and a ?

Let OC denote unit length on the x-axis, and let the graph of y = ϕ(x) be drawn (Fig. 557). The ordinates represent the probability of B happening corresponding to the abscissa which represents that of A.Let OC be divided into n equal elements of length h, nh=1. The points of division are at distances from 0, 0∣n, 1∕n, 
2∕n, etc., and the probability of the existence of the rth cause is

i.e.

Hence the probability of the abscissa lying between x and
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INVERSE PROBABILITY. 821and therefore the chance that theabscissa lies between β and a is

Fig. 557.This chance is therefore measured by the ratio of the area bounded by the curve and the x-axis comprised between the ordinates x=β and x=a to that comprised between x=0 and x=l.1698. In the same way, if the secondary event B be dependent upon two (or more) primary events A1, A2, whose probabilities are represented by x1, x2, whilst that of the dependent secondary event is ϕ(x1, x2), the chance that the probabilities of these primary events respectively lie between β1 and α1, β2 and a2, where 0<β1<α1<l and 0<β2<α2< 1, is 
with corresponding expressions if there be more than two variables.1699. Recurring to Ex. 12, Art. 1695, we have seen that if a point X be taken at random on a line OA = a, and then m+n other points be taken at random on the same line, the chance that m unspecified points of the group lie between 
0 and X and the remainder between X and A is 
a fact obvious from another consideration as pointed out. We may use this problem to illustrate the result obtained in
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822 CHAPTER XXXVII.Art. 1697. The fact that X lies at a distance x from 0 may be regarded as a primary event or cause from which the nature of the secondary event, viz. the particular allocation of the m+n unspecified points, arises; and the chance of the happening of the secondary event is a function of the variable 
x which defines the cause.

Fig. 558.The total number of ways in which it can happen that whilst X lies between an unassigned x and x+dx, an unspecified m of the m+n random points lie on OX and the remainder on XA for all values of x from 0 to a is measured by 
and the number of ways the same thing can happen when 
X lies between an assigned x and x+dx is measured by

Therefore, when the compound event happens, the chance that x lies between x and x+dx is the ratio of the second of these expressions to the first, i.e.And the chance that when the compound event happens, X will lie between x=β and x=a, (0<β<α<α) is
1700. Next suppose that a new group of p+q random points is taken upon the line OA. What is the chance that an unspecified p of these points also lie between 0 and X and the remainder between X and A ?The total number of such cases when X falls between 

x and x+dx will be 
and the total number of cases for all positions of X, in which 
m unspecified points of the m+n lie on OX, whilst the other
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INVERSE PROBABILITY. 823
n lie on XA, whilst the p+q points are distributed anywhere on the line, isTherefore the compound chance that (i) X lies between x and x+dx; (ii) m unspecified members of the first group fall on OX and the other n on XA ; (iii) that p unspecified members of the second group fall on OX and the other q on XA, is

Hence the whole probability that this compound event happens when X lies anywhere on OA is
1701. The above problem forms a landmark in the History of Probability. It is associated with the names of many investigators, Bayes, Condorcet, Trembley, Laplace and others. (See Todhunter’s History, pages 295, 383, 399, 414, 467, etc.)It is often enunciated in a different way.An urn is supposed to contain an infinite number of white tickets and an infinite number of black tickets, and no others, and that is all that is supposed to be known as to the tickets. These tickets correspond to possible situations of a point to the left of X or to the right of X in the foregoing problem. Then m+n tickets having been drawn from the urn, m are found to be white and the remainder black. What is the probability that a further drawing of p+q tickets will result in 

p being white and q black ?
Laplace gives the required result as

which, without the factor (p+q)!/p!q!, supposes the tickets tohave been drawn in a specific order. Todhunter quotes the following remark of Laplace: “ La solution de ce probleme donne une methode directe pour determiner la probabilite des evenemens future d'apres ceux qui sont deja arrives.”
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824 CHAPTER XXXVII.1702. Next suppose that on the line OA (=α) several random points X1, X2, ..., Xn-1 be taken at distances x1, x2, , xn-1

Fig. 559.from 0, in this order, and let p1+p2+∙∙∙+pn other random points be taken upon OA. Then the compound chance that (i) X1 lies between x1 and x1+dx1, X2 between x2 and x2+dx2, etc.; (ii) p1 specified points fall on OX1, p2 on X1X2, p3 on 
X2X3, etc., is

Hence, for unspecified groups of p1 points between 0 and X1, 
p2 between X1 and X1, etc., whilst X1, X2,... Xn-1 lie at any points of OA, in this order, the chance is 

which at once reduces to 1∕(Σp + l)(∑p+2)... (∑p+n-1). And this is an obvious result. For of the p1+p2+...+pn+n-1 points of division, the chance of the n— 1 points standing in the specified order in the (p1+l)th, (p1+p2+2)th, etc., positions is clearly
If now another group of q1+q2 + ∙∙∙+qn points be chosen at random on OA, the chance that q1 unspecified ones shall lie in the same segment as the p1 points, q2 in the same segment as the p2, and so on, will be
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BUFFON’S PROBLEM. 825the limits for x1 being 0 to x2; for x2, 0 to x3, etc.; for xn-1, 0 to α, which we may evaluate as before.
1703. Ex. From a bag containing an infinite number of tickets, each of 

which is known to be black or white, ten are drawn at random, and found to 
be four white, six black. What is the chance that a further draw of two 
tickets gives one white, one black ?

Here m = 4, n = 6, p=1, q=1, a=1, and the chance required

What would be the chance that a draw of one ticket only should yield a 
white one, and that a subsequent draw should yield a black one ?

The chance for a white one at the next draw

The chance for a black to follow

The chance for the two draws to result in this order

The chance that x, which represents the proportion of the number of 
white tickets to the whole number of tickets in the bag, should be more 

than I of the whole is1704. Buffon’s Problem. Parallel Rulings.
An infinite plane is ruled by an infinite system of equidistant 

parallel lines, whose distances apart =2a. A thin rod of length 
21 ( < 2α) is thrown at random upon the plane. What is the chance 
that the rod will cut one of the parallels ?Take as y-axis that one of the parallels to which the centre 
C of the rod falls nearest, and the x-axis perpendicular to the set. The problem is unaffected if we suppose the centre of the rod to fall upon the x-axis, for the proportion of the number of cases in which the rod cuts one of the rulings to the whole number of possible cases is not altered thereby.Let 0 be the origin, 0C=x. Let the figure represent the case in which one end of the rod lies upon the y-axis, the angle between the rod and CO being ϕ. Then x=lcosϕ. Then for a given position of C, the chance of a cut 
and the chance that C lies between x and x+dx on a line of
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826 CHAPTER XXXVII.length a is dx∣a, and when C falls between x=l and x=a, there is no chance of a cut. Hence the whole chance required isdouble the lenerth of the rod circ. of a circle of radius α

Fig. 560.This is a particular case of a remarkable general result to be seen later. It is another landmark in the history of the subject. It was given by the naturalist Buffon in his Essai 
d'Arithmetique Morale, 1777. Also see Laplace, Theorie de 
Prob., p. 359 (Todhunter, History).

1705. Rectangular Rulings.Suppose a second system of parallel lines drawn at right angles to the former set, whose distances apart =2b ( > 2Z), thus mapping out the infinite plane into a net-work of equal parallelograms. Consider that rectangle formed by a consecutive pair of each family of rulings which finds itself the recipient of the centre of the rod. Suppose the rod to have come to rest, making an angle φ with the side of length 2α. If we join the centres of the extreme positions of the rod at this inclination, an inner rectangle is formed of sides 
2a—2l cos ϕ, 2b—2l sin ϕ, and no rod at this inclination, whose centre falls within this rectangle, can cut a side of the mesh, whilst those whose centres fall without it do so. Taking axes coincident with two sides of the rectangle, the angular position of the rod may range from being parallel to the x-axis to being perpendicular to it. The chance that the inclination lies between ϕ and ϕ+dϕ is proportional to dφ, and we are
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RECTANGULAR RULINGS. 827to evaluate the ratio of for the favourable casesto the same integral for the whole number of cases. The integration for x and for y has been effected geometrically above.The chance required is therefore

Buffon’s result 2l/πα follows at once by making b infinite. Putting α=b, the result is l(4α-l)∕πα2 for square meshes.

Fig. 561. Fig. 562.
1706. Suppose a square of diagonal 2Z to be thrown upon the above 

rectangular mesh-work, l being less than either a or b, and let the 
inclination of a diagonal to the side of length 2b be ϕ.

To avoid a cut, the centre of the square must lie within an inner 
rectangle of area 4(α-lcos ϕ)(b-lcosϕ). The range for ϕ is from 0

to and the result

If b = ∞ , this becomes perimeter of square
circumt. of circle of rad. a See Art. 1707.

If a circular lamina of radius r (< a or b) be thrown at hazard in the 
same way, the chance of a cut is obviously

And when b becomes 00 this becomes circumf. of circle of rad. r
circumf. of circle of rad. a
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This class of problem leads us to enquire as to the chance of a hazard 
throw of a lamina of any shape cutting one of a system of equidistant 
parallels drawn upon a plane. This we proceed to consider.1707. Random Lines.Let an infinite plane be ruled by parallel lines at distances apart = 2α. Let n equal short lines of lengths Ss, whether in rigid connection or not is immaterial, be thrown down at hazard upon the plane so ruled. Then each one has an equal chance of finding itself crossing one of the rulings. If p be that chance, the chance that some one of them crosses a ruling 
=np.Suppose that the n elementary lines δs are the infinitesimal elements of the perimeter of some oval of perimeter s. Then 
n δs=s, n being infinitely great. The chance of the perimeter of the curve cutting one of the rulings is therefore s, that is λs, where λ is the limit of p∕δs when δs is infinitesimally small. Next consider the case of a circle of radius a. If this be thrown at hazard upon the plane, it is a certainty that it must cut one of the rulings, and only one. Hence λ2πα=1. This determines λ.Thus the chance of a curve of perimeter s, whose greatest breadth does not exceed 2α, cutting a ruling is s∣2πa. Curves therefore of the same perimeter, and whose greatest breadths do not exceed 2α, have equal chances of cutting a ruling.

1708. Examples.
1. If a circle of radius b (< a) be thrown down at hazard upon the 

plane, the chance of crossing a ruling = 2πb∣2πa = b∣a.
2. If the contour be a square of side b (< a√2), the chance is 2b∣πa.
3. If the “curve” thrown down be a straight line of length 2l (< 2α), 

it may be considered as an ellipse of minor axis zero and perimeter 4Z, 
and the chance is 2l∕πa (Art. 1704).

4. For a semicircle of radius b (< a), the chance is (π + 2)b∕2πa.1709. Let 0 be a point fixed to the contour thrown down, and 0A a fixed axis on it.Let 0 fall at a distance p from one of the rulings, RS, and let OA make an angle ψ with the perpendicular p. Let this contour be thrown down at random upon the ruled plane a very large number of times, and let the trace of the rulings 
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RANDOM LINES. 829be marked at each throw upon the plane of the contour. Now it is immaterial whether we regard the contour asthrown down at hazard upon the ruled plane, or the ruled plane thrown at hazard upon the plane containing the contour. Take the latter case. Let a doubly infinite number of lines be drawn upon the plane of the contour according to the following plan:(α) Let the lines be drawn parallel to a standard line
which we may call the line (p, ψ), at equal distances apart, such that Fig. 563.
n of them are contained between the lines (p, ψ) and(b) Let us suppose drawn for each value of p, p+δp, etc., the infinite family of lines ψ, ψ+8ψ, ψ+2δψ, etc., there being m lines with the same value of p between (p, ψ) and (p, ψ+δψ), viz. those for which p makes with OA angles

We shall define any line chosen at random from this double set for equal gradations of p and of ψ as a “ random line.”The actual number of lines from (p, ψ) to (ρ+δp, ψ-δψ) is mn, and we obtain in this way the same system of lines as those obtained by the tracings of the rulings upon the plane of the contour after the contour plane is thrown down at hazard upon the ruled plane.Taking the case of a circle of radius a and centre 0, the number of such lines crossing it is say.Hence the number from viz. mnis
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830 CHAPTER XXXVII.Now, if 0 be a point within any closed convex contour,perimeter.Hence the number of lines crossing such a closed convexcontour : perimeter, i.e.No. of lines crossing any closed convex contour perim. of curveNo. of lines crossing a circle of radius a penm. of circleThe length of the perimeter therefore measures the number of lines crossing the contour.This is the same result as that of Art. 1707, from a different point of view.1710. If there be any re-entrant portion of the contour, the perimeter must be regarded as the length of a stretched elastic band which encircles it; that is, the re-entrant portions must be excluded by double tangents. Otherwise some of the random chords will be counted more than once by the above rule.
1711. Examples.
1. If a closed convex contour of perimeter Σ completely encloses a 

second closed convex contour of perimeter S, the number of chords of 
the outer which cut the inner is λS∣2πa. And the total number of chords 
of the outer is X∑∣2πa. Therefore the chance of a chord of the outer 
cutting the inner also is S∣Σ.

If the outer be a circle of radius R, and the inner a square of side b, 
the chance is 2b∣πR.

2. If the inner degenerates into a straight line of length 2l, and the 
outer be a circle of radius R, the chance is 4l∣2πR=2l∣πR.

3. The chance that a random chord of a circle cuts a given diameter 
is 2/π.1712. We may then speak of S or as “ the numberof lines ” which cross any convex contour throughout which the integration is conducted, whenever a comparison is to be instituted between the number of lines which cut one convex contour with the number which cut another.1713. Various Cases.In the case of a straight line of length c, which is the limit of an ellipse of zero minor axis and perimeter 2c, the number of random lines cutting it is then measured by 2c.
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RANDOM LINES. 8311714. In the case of an arc of length s bounded by a chord of length c, there being no re-entrant portion, the number of random chords crossing the contour is measured by s+c. But the number which cross c is 2c.Hence the number which cross s twice and do not cut c is s—c. 
Fig. 564. Fig. 565.1715. In the case of the contour bounded by an arc s and a pair of tangents of lengths x and y, let c be the length of the chord; then, if s be concave at each point to the foot of the perpendicular upon the chord,the number of random lines which cut x and y. but not c, is x+y—c;the number which cut s, but not c, is s—c.Therefore the number which cut x and y, but not s, is x+y-s.1716. In the case of two arcs s1, s2 and a chord c, each arc being convex at every point to the foot of the perpendicularupon the chord, as in Fig. 566 ; let c1, c2 be the chords of the arcs s1, s2 respectively.Then the number of chords cutting c1, c2, but not c, =c1+c2-c. These necessarily all cut s1 and s2, each once only. Fig. 566.The number of those which cut s1 twice, but not c1, =s1-c1. These also cut s2 once and c once.The number of those which cut s2 twice, but not c2, =s2-c2. These also cut s1 once and c once.Hence the number which cut both s1 and s2

1717. In the case where the region considered is bounded by three arcs s1, s2, s3, lying within the chordal triangle c1, c2, c3, and each concave at all points to the foot of the
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832 CHAPTER XXXVII,ordinate from the point to the chord of the arc (Fig. 567), the number of chords cutting s1, but not c1, =s1-c1. These necessarily cut s2 and s3, c2 and c3.The number of chords cutting one or other of the three arcs twice, and therefore cutting all three arcs,
The number which cut s2 and s3=s2+s3-c1. Therefore the number which cut s2 and s3, but not s1,
Therefore the number which cut any two of the arcs, but not the third, is

Fig. 567. Fig. 568.1718. Consider the case of a region bounded by such a combination of arcs and lines as exhibited in Fig. 568, where t is a chord or a double tangent; s1, s2 any arcs convex at each point throughout their lengths to the foot of the ordinate to t; 
l1, l2 straight lines tangential to s1 and s2, and σ an arc concave at each point to the foot of the ordinate drawn upon its own chord, which lies within the region considered, and either touching l1 and l2 or meeting them and lying between l1 and l2 produced.The number of lines crossing this contour, but which do not cut t, with the exception of such as meet s1+l1 or s2+l2 twice and incidentally meet t, is
where the meanings of the various letters are indicated in the figure. For the first bracket includes those which cut x1+l1, 
y1, but not s1+l1; or x2+l2, y2, and not s2+l2, the number of
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RANDOM LINES. 833which cases is subtracted in the second and third brackets. The expression reduces to s1+s2+l1+l2+σ—t.1719. In the case of two non-intersecting non-re-entrant ovals A and B, of perimeters Pa, Pb, external to each other, let the lengths of the several arcs and tangents be as indicated in Fig. 569. Let βc and βu be the stretched lengths of the crossed and uncrossed elastic belts surrounding the ovals. Random chords crossing both ovals must either(i) cross the region s1x1x2σ1T1, and except for those which cross s1+x1 or σ1+x2 twice, not cross T1; or(ii) cross the region s3y1y2σ3T2, and except for those which cross s3+y1 or σ3+y2 twice, not cross T2.

Fig. 569.Their number is therefore 
i.e. the difference of the crossed and uncrossed belts. Hence the probabilities that a random chord of A crosses B, or that a random chord of B crosses A, are respectively (βc-βu)∕PA and (βc-βu)∕PB.1720. If the ovals touch externally1721. If the ovals intersect, indicate the several arcs and tangents as in Fig. 570.The chords which cut both may be classified as(i) those crossing s1 and σ1, but which, with the exception of those cutting s1 twice or σ1 twice, do not cut T1;(ii) those crossing s2 and σ2, but which, with the exception of those cutting s2 twice or σ2 twice, do not cut T2;(iii) those which cut the region bounded by s3 and σ3.
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834 CHAPTER XXXVII.Their number is therefore
i.e. the sum of the perimeters less by the belt.

Fig. 570. Fig. 571.1722. If one oval B lie entirely within the other one A, every random chord of B is a chord of A. The number of chords which cut both is therefore Pb.1723. If a third non-re-entrant oval X lie partly between A and B and be cut by the uncrossed belt, but not by the crossed belt, as shown in Fig. 572, we shall consider how many random lines can be drawn cutting all three contours, it being understood that the ovals are so situated that for all chords cutting all three the X-segment is intermediate between the other two.

Fig. 572.Indicating the lengths of the several arcs and tangents as in Fig. 572, all such random lines as are chords of all these regions must be chords of the region (s1, t1, e, t2, σ1, T), but must not cross T, with the exception of those which cross s1+t1 twice or
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SYLVESTER’S THEOREMS. 835σ1+t2 twice, with an incidental crossing of T. By Art. 1718 their number is s1+t1+ϵ+t2+σ1-T; i.e. the amount by which the uncrossed belt has been lengthened by X having been pushed into position from outside the belt.1724. If in the last case the oval X has been pushed completely within the region bounded by the uncrossed belt, but still not so as to cut the crossed one, denote the various lengths of arcs and lines as in Fig. 573.

Fig. 573.Then the number of random lines which cut all three ovals is a-β-γ+δ, where(i) a is the number which cut the contour (s1t3ϵ1t4σ1c), but do not cut c, with the exception of those which cut s1+t3 or σ1+t4 twice, =s1+t3+ε1+t4+σ1—c;(ii) β is the number which cut (t1-y, t2-x, c), but do notcut c, =t1-y+t2-x — c;(iii) γ is the number which cut (x, y, c2), but not 
c2, =x+y-c2; Fig. 574.(iv) δ is the number which cut ϵ2 twice, but not c2 =ϵa-c2. The total, after rearranging, is
which is the difference of the increases of length of the uncrossed belt caused by its being made to pass round the contour of X in opposite directions (Fig. 574).
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836 CHAPTER XXXVII.1725. In a similar manner it is easy to examine other special cases. The last two results are due to Sylvester [Educ. 
Times], who refers for simpler cases to Czuber’s Geometrische 
Wahrscheinlichkeiten.

1726. Ex. Three pennies of diameters d are soldered together in mutual 
contact at their edges.

This figure is thrown upon a table ruled with parallel lines at equal 
distances (2α) apart (a > d). What is the chance of 2, 4 or 6 intersections ?

[Biddle’s Problem.]
Let the discs be labelled A, B, C,
Let the number of chords which cut

(i) A alone, (ii) A and B, but not C, and (iii) all three 
be respectively x, y, 3z. Then

3x + 3y + 3z = length of surrounding belt = (π + 3)d,
3z=3 × lengthening of an uncrossed belt round A and B 

by pushing C into position

(crossed belt round A, B - uncrossed belt)

Hence
Therefore the chances required are respectively

Fig. 575. Fig. 576.
1727. Crofton’s Theorem.
In any centric convex contour of area A,let AB be a diameter 

and G the centroid of the area of either semi-oval. Let P be 
the perimeter of the path of G as AB rotates; then the mean 
radial distance of any point within the contour from the 
centre 0 is 1/4P.If x,y be the coordinates of G referred to OB as x-axis, 
W the weight of the half oval, AB=2r, and if we place two
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CROFTON’S THEOREMS. 837small weights w and — w at distances 2/30B and 2/3OA from O, the new coordinates of G will be

HenceThe centroid has therefore been moved parallel to AB. The effect upon G is the same as the above, if AB rotate through a small infinitesimal angle dψ to a contiguous position A'OB', and then w is the weight of the sector =1/2r2dψ, and
and dx is an element of the arc of the G-path =ds. Hence theintrinsic equation of the G-path is and its radius
of curvature and Chord

Again Chord
Prof.Crofton’s proof of this result [Proc.Lond.Math. Soc.,VIII.] runs on different lines, but he indicates the above as a method of procedure.
1728. Useful Results for a Convex Contour of Area A and 

Perimeter L.Let C be the length of a chord, coordinates (p, ψ), with regard to an origin 0 within the oval, G the centroid of the oval, 0G (=c) the initial line from which ψ is measured, 0ξ a line parallel to the chord, p the perpendicular from G upon 
0ξ; p1 and p2 the perpendiculars upon the tangents parallel to the chord. Then we have, taking limits from -p1 to p2,

0) (ii) (iii)where Ak2 is the moment of inertia about a parallel through G.
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838 CHAPTER XXXVII.Hence integrating (i) and (ii) with regard to ψ from 0 to π, which takes in all random chords,(i) whence
Chord Area of contourPerimeter

(ii) and in thisintegration it is to be noted that p changes sign as C passes through the origin.

Fig. 577. Fig. 578.If the oval be centric and the origin be taken at the centre, we shall integrate for p from 0 to p1, the perpendicular upon the tangent parallel to C, and for ψ from 0 to 2π. Then  (i) as before;(ii) where p is the perpendicular fromthe centroid of the half area upon a line through 0 parallel to the chord (p, ψ) = 1/2A. Perim. of G-path.
Thus Perim. of G-pathPerim. of oval
1729. Mean nth Power of the Distance between two Random 

Points within an Oval.This mean may be expressed as an integral in terms of a chord. Let X, Y be the random points, and ψ the inclination
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CROFTON’S THEOREMS. 839of to a given direction. Let C be the length of the chord AB through X, Y; ON (=p) the perpendicular from an origin 0 within the oval to AB; XA=r, XB=-r',XY=p. Keep X fixed at first. Then the sum of all the values of pn which are contained between AXB and a chord AXB'. making an angle dψ with the former, each multiplied by an element of area, is 
and integrating this for all positions of 
X lying between the parallel chords (p, ψ) and (p+dp, ψ), we have 
dp dr being the element of area in which 
X lies. And r varies from zero to C and 
r'=C-r. We therefore obtain

Fig. 579.The final stage of the integration is to sum this expression for all elements dpdψ within the contour and then to divide by the number of cases, which is measured by A2.Hence1730. In the case, where n = —1, we have
This may be interpreted as an expression for the mean value of the mutual potential of a pair of unit particles at random points within the contour.The case n=0 givesThe case n = l givesThe case n=2 gives
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840 CHAPTER XXXVII.But since M (p2) = 2k2, where k is the radius of gyration about the centroid,
We obtain thus the mean values of various powers of C for cases in which the mean values of the corresponding powers of p have been otherwise found.Thus, for instance,

Area. (Moment of In. about centroid)
Perimeter

1731. Other Results due to Crofton.Let p be the distance between any two random points X, Y within a given convex contour of area A and perimeter L. Then the probability that any random line drawn across the contour also crosses a particular position XY of the line joining the random points is 2p∣L.If n be the number of cases of a random line XY, the chance that any particular one is selected is 1/n. Therefore the chance that a particular one is selected and cut by the random chord is 2p/nL; and the chance that a random chord cuts a random line XY is the sum of the values of 2p∣nL for all the cases of a pair of random points (Fig. 580),
Again, suppose the random chord to divide A into two parts Σ and Σ'. The chance that X lies in Σ and Y in Σ', or 

X in Σ' and Y in Σ=2∑∑'∕A2 for any particular position of the chord. If m be the number of random chords, the chance of selection of any particular one is 1∣m, and the chance that a particular chord should be selected for which X and Y lie
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CROFTON’S THEOREMS. 841on opposite sides is and the chance that a randomchord should cut a random X Y,

Hence, by equating the two values of the chance, we have
Moreover we have two expressions for M(p), viz.and(Crofton, Proc. Lond. Math. Soc., viii.). This furnishes an interesting illustration of a difficult geometrical result arrived at by a consideration of mean values and chances.

Fig. 580. Fig. 581.1732. A and L being respectively the area and perimeter of a 
given convex contour which encloses a second contour of area B, it 
is required to find the chance that a pair of random chords PQ, 
P'Q' of the former should intersect within the latter. (Fig. 581.)Take an origin 0 within the smaller contour, and let the random chords be denoted by the p-ψ system. Let a particular position of PQ intersect B, and suppose C the length of the chord intercepted upon it by B. The number of random lines cutting C is measured by 2C. The number of random chords of A is measured by L. Therefore the chance that one of these cuts C is 2C∣L.
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842 CHAPTER XXXVII.The chance that the particular chord C is one of the lines whose p and ψ lie between p and ψ, p+dp and ψ+dψ isthe integration being taken forthe A-contour.Therefore the chance that whilst the chord PQ lies between these limits it is met by a second random chord at a point within B is 2C dp dψ∕L2, and the total chance of the intersection of two random chords of A lying within B isfor all values of p, ψ which can give chordsintersecting B. Thereforethe required chance Area of B/(Perim. of A)2.1733. The above result is independent of the area of A or the perimeter of B, and except that it involves B and L it is independent of the shape and relative position of the ovals.When the inner curve coincides with the outer, B=A, and the result becomes 2π. Area∕(Perimeter)2.1734. Next take a very small convex contour of area do- external to A. Let a random chord of A cut the perimeter of this small contour at P and Q, and let PQ=λ, which is a small quantity of, say, the first order. The chance that the p and ψ of this chord should lie between (p, ψ) andis the integration being forthe contour A, i.e. dρdψ∣L.Let θ1 and θ2 be the angles which the tangents from P to the oval make with any specific position of PQ (Fig. 582). Then regarding the chord PQ as itself a narrow oval whose greatest breadth is an infinitesimal of the second order, the chance that a random chord of A cuts this line PQ is, by Art. 1719, (Crossed Belt—Uncrossed Belt)∕L, i.e. in the limit (2λ — λ cos θ1- λ cos θ2)∣L. Hence the chance that the chord of 
A should be selected to lie between (p, ψ) and (p+dp, ψ+dψ), and then cut by a second random chord of A within the smallcontour, is (vers θ1 +vers θ2)
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CROFTON’S THEOREMS. 843Now λ being an infinitesimal of the first order, θ1 and θ2 may be regarded as constant throughout da for a given direction of PQ, and the integration ∫λ dp gives the area dσ when taken for the small area. This integration therefore gives dσ dψ(vers θ1 + vers θ2)L2. We next integrate with regard to ψ, and vers θ1 + vers θ2=2-cos (ω-θ2)-cos θ2, where 
ω is the angle subtended by A at the elementary area da.

Fig. 582. Fisr. 583.The possible directions of the chord cutting PQ will vary between the directions of the common non-crossing tangents to A and da, and one of these tangents may be taken as the fixed direction from which ψ is measured. We therefore have dψ=dθ2, and we have to integrate from ψ=0 to ψ=ω. This gives
We may now integrate this through any finite convex oval of area B external to A. Thus the chance that two randomchords of A intersect within B is1735. If B be taken as the whole of space external to A, the chance of the random chords intersecting outside A mustbe 1 —the chance of intersecting within A, i.e.Hence we obtain the remarkable theorem that
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844 CHAPTER* XXXVII.where the integration is taken over the whole plane external to A. This theorem is also due to Crofton. It is quoted by Bertrand, Calc. Int., p. 491. It is another curious example (see Art. 1731) of a geometrical fact brought to light by consideration of chances.1736. D’Alembert’s Mortality Curve. (See Todhunter, History, p. 268.)Definitions. Mean Duration of Life. For a person of age x years, the mean duration of life beyond x years is the sum of the lengths of the lives lived by a large number of persons beyond that age, divided by the number of persons.Probable Duration of Life. For a person of age x years, the probable duration of life beyond x years is such a period that it is an even chance whether the life of the individual exceeds or falls short of it.1737. Let ψ(x) denote the number of persons still living 
x years after their births. Then the graph of y=ψ(x) is known as the curve of mortality.Let c years be the supreme limit of life, i.e. the greatest age to which any person can attain. Then ψ(c)=0.By the definition,Mean duration for a person aged a years = ∫caψ(x)dx∣ψ(a),Probable duration for a person aged a years=b years, where ψ(b)=1/2ψ(a).

Fig. 584.In Fig. 584, OC=c is the limit of longevity, OA=a years.The ordinate AR represents the number of persons alive at age a years, AP the probable duration of life beyond the 
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DURATION OF LIFE. 845age a for persons now of age a, the ordinate at P being half that at A. AM measures the mean duration for persons of age a years, and is such that AR. AM=area RAPCQR.

1738. A Different View.The usual method of estimating the mean and probable duration of life for a person aged a years is somewhat different from that explained above, but will be shown to be in agreement with it.Let ϕ(x)dx be the number of persons who die between the ages of x and x+dx. Then, since ψ(x)≡≡the number of persons living at age x, ψ(x+dx) is the number living at age x+dx. Hence to the first order, ϕ(x) dx=ψ(x)-ψ(x+dx) = -ψ'∕(x) dx and ϕ(x)=-ψ'(x). Suppose a person to die at the age of x years, where x> a. The length of life for this person beyond 
a years =x-a, and the average value of this is
This then is the mean duration for persons of age a years. The probable duration is b years where

i.e.

1739. Agreement.The agreement of these estimates with those of D’Alembert will be clear.For (i) and

(ii) Again, since we have
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846 CHAPTER XXXVII.

1740. Chance of Survival.For a person of present age a, the chance of death betweenthe ages p and q (p <q) is andand the chance of survival to at least the age of q is ψ(q)/ψ(α).The probability of death between the ages of x and x+dx for a person of age a is
The probability of death for a person of age x years, between the ages of x and x+dx, i.e. of almost immediate death, is — ψ'(x) dx∕ψ(x)=-d log ψ(x).

1741. Expectation of Life.Defining the “ Expectation of Life ” at a definite age of a years as the average or mean duration of life after that age, the following results were calculated by Neison (Vital Statistics, p. 8) from the tables of the Registrar General. (See Boole, 
Finite Differences, p. 45.)
Age

Expectation

Expectation
(Expectation)
etc.The expectations for intervening ages may be very closely obtained by the ordinary interpolation methods, e.g.

But probably no purely algebraical law expressed as a series in powers of the age, on which supposition interpolation formulae are based, would be adequate to express the true law of expectation for all ages; particularly near the extremities of the table, for ages of very young children or for persons of very advanced years. The graph of this expectation is shown in Fig. 585.
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DURATION OF LIFE. 847In the decades of the first differences from 20 to 60, it will be noted that there is but small change. Hence in the graph of the expectation the fall in the value of the expectation between these ages is roughly uniform, and this portion of

Axis of ageFig. 585.the graph is very approximately straight. From the age of 60 onwards the curvature shows a definite bending away from the axis of age, the curve becoming more definitely convex at each point to the foot of the ordinate. This is the curvethat is
1742. Remarks on the Mortality Curve.It has been remarked by Todhunter (Hist. of Prob., p. 269) that the “mean duration” beyond a represents the abscissa of the “ centre of gravity of a certain area,” namely of that area which is bounded by the curve y=ϕ(x), the x-axis and its ordinate for age a, the abscissa in question being measured from x=a. The “ probable duration ” beyond a is represented by the abscissa, also measured from x=a, of the ordinate which bisects that area. It would appear from tables that the “mortality curve” y=ψ(x) is not either always concave or always convex to the foot of the ordinate upon the x-axis, and also that the probable duration is not always greater than the mean duration. (See Todhunter’s remarks on Buffon’s tables and on d’Alembert’s views, History of Prob., p. 285.)
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848 CHAPTER XXXVII.

1743. Let us take a supposititious law that the probability of a person 
of present age x years dying before he is aged x + dx is λ,xndx, where λ 
and n are certain constants.

Let ψ(x) denote the number of persons alive x years after their birth,
ϕ(x) dx the number who die between x and x+dx. Then ϕ(x)= —ψ'(x).

And is the probability that a person aged x will die between

x and x+dx. Hence i.e.
where A is a constant and ψ(0) = A.

Hence the mean duration of life from birth is

When x is large, the integrand becomes extremely small, and its value 
is insensible. Hence we may, without sensible error, take c, the superior 
limit of age, to be ∞. Put

Mean duration at birth

The Probable duration of life at birth is b years, where

i.e. i.e.

For a person of age a years, the probability of death within the next
r years

If r be small in comparison with α, this becomes approximately

where
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CHANCE. 849PROBLEMS.1. A cardioide is drawn upon a plane and a point P is taken at random within the contour; show that the chance that it is nearer to the vertex than to the cusp is where2. Given that p and q are any two positive quantities, of which q cannot exceed 9 and p cannot exceed 6, show that it is a 2 :1 chance that the roots of the quadratic x2 -px + q = 0 are imaginary.3. Three positive quantities are chosen at random, except that their sum is known. Show that the chance that the sum of any two is greater than 1∕nth of the third is 1 - 3∕(n + 1)2, provided n⊀1.4. There are n letters and n directed envelopes. The letters are placed at random, one in each envelope. Show that the chance that r specified letters go wrong and s specified letters go right is 
where n⊀r + s.5. A circle of radius r lies entirely within an ellipse of semi-axes 
a and b; m + n random points are taken within the ellipse. What is the chance that m of them lie within the circle and the rest do not 16. Let two points P and Q be taken at hazard in a line AB in either order, and let three other points be now taken at hazard upon the line. What is the chance that (i) all three should lie between 
P and Q, (ii) one should lie between P and Q and the others not so, (iii) two specified ones should fall between P and Q and the other not so ?7. A point P is chosen at random upon a line AB, and then a random point Q is taken upon AP. Show that the chance that AQ is less than 1∕nth of AB is log n√en, (π>1).8. Four random points are taken upon a straight line. Show that the chance that the sum of the squares of the five parts should not exceed the square on half the line is 3π2∕100√5.9. A rod is divided into five pieces at random. Show that the chance that none of them is less than 1/10 of the whole is 1/16.10. A rod AB is broken into three pieces AP, PQ, QB at random. Show that the chance that the sum of the squares of A P and QB shall be less than the square of 5PQ is25/1029 (35 - 6 log 3∕√2).
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11. A random point X is taken upon a line AB. Six other 
random points are then taken on AB. What is the chance that two 
of these will lie on AX and four on XB?

12. From an urn containing an infinite number of balls, all of 
which are known to be either red or white, a group of seven is 
drawn out at random, and four are found to be red and three white. 
What is the chance that a second draw of seven shall also produce 
four red and three white ?

13. A square ticket of side a is thrown at hazard upon a large 
table ruled into squares of side 2α. Show that the chance that the 
ticket will cross a ruling is about 0.86.

14. A circle of radius a is thrown at hazard upon a table ruled in 
squares of side 3α. Show that the chance of crossing a ruling is 5/9.

15. A large table is ruled with parallel lines two inches apart A 
one-inch equilateral triangle is thrown at hazard upon the table. 
Show that the chance it cuts a ruling is 3∕2π.

16. A letter L, with thin arms 3 inches long and at right angles 
to each other, is thrown at hazard upon a large table ruled with 
parallels 4 inches apart. Show that the chance of crossing a ruling 
is 3(2 +√2)∕4π.

17. A cardioide of axis 2α inches is thrown at hazard upon a large 
table ruled with parallel lines at a distance 4α inches apart. Show 
that the chance it cuts a ruling is 9√3∕8π.

18. Show that the mean value of the cubes of all random chords 
of a circle = 3/2 × area of circle × radius.

19. Show that the mean value of the cubes of all random chords 
which meet an equilateral triangle of side a is 3α3∕16.

20. Show that the mean value of the lengths of all random lines 
terminated by the sides of a square of side a is πα∕4.

21. A circle of radius b lies entirely within a circle of radius a. 
Show that the chance that a pair of chords of the latter intersect 
within the former is b2∣2a2.

22. Show that the chance that a pair of random chords of the 
director circle of an ellipse of semi-axes a and b should not intersect 
within the ellipse is 1 - αb/∕2(α2+b2).

23. Evaluate the integral ∫ (ω - sin ω) dσ for all elements of area 

dσ which lie outside a given circle of radius α, ω being the angle 
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between the tangents from the element dσ to the circle. Explain 
the connection of this integral with the theory of chances.

24. Find the chance that if two points be taken at random within 
a circle of radius a the distance between them will be <c where c<2α.

[St. John’s, 1885.]

25. Two men, A and B, are walking at rates equally likely to be
anything from 0 to a miles an hour and from 0 to b miles an hour 
respectively. They walk in the same direction along a straight road 
for a time c∕(α - b) hours, where c miles is the initial distance between 
them. What is the probability that A, who starts behind B, will 
overtake him ? [Trinity, 1889.]

26. Suppose there are n sugar sticks each of length 2α, each broken 
at random into two pieces. A child is promised the biggest of the 
2n pieces. What is the value of his expectation ?

[W. A. Whitworth, E.T., 13736.]
Show that the expectation of the piece of rth largest size is 

{(r+ 1)n+ l}∕2r(n + 1) of a whole stick.

27. If there be an infinite number of balls in an urn, each ball
being known to be of one of n different colours, and if p1 +p2 + ... +pn 
balls have been drawn and found to be p1 of one colour, p2 of 
another colour, etc., what is the chance that a further drawing of 
q1 + q2 + q3+... + qn will yield q1 of the first colour, q2 of the second, 
etc. ? [Zerr, E.T., 11924. ]

28. Two points are taken at random within a circle of radius r, and
a chord is drawn at random. Find the chance that the chord passes 
between the points. [Colleges β, 1888.]

29. An equilateral triangle lies entirely within a regular hexagon 
whose sides are equal to those of the triangle. A random chord is 
drawn to cut the hexagon. Show that it is an even chance that it 
also cuts the triangle.

30. In a circle of radius a the mean of the inverse distance between 
two random points within the circle is 16∕3πa.

[Crofton, Lond. M.S. Proc., viii., p. 309.]

31. If the probability of a person of age x years dying before he 
is aged x + dx be λxdx, show that the average length of life from 
birth is √π∣2λ, (See a problem by Stanham, E.T., 13021.) Also 
show that the probable duration of life is √(21og2)∕λ, which is 
rather less than the average duration.
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32. Prove thatTwo points are taken at random within a circle. Find the chance that their distance apart is less than the radius of the circle.
[Ox. I. P., 1916. ]33. Show that the mean of the cubes of all lines PQ, which are random chords drawn across the contour, are (i) for a square of side 

a, 3a3∕4; (ii) for a circle of radius a, 3πa3∕2 ; (iii) for a semicircle of radius a, 3π2a3∕4(π + 2).34. Show that the mean of the fifth powers of all lines PQ, which are random chords drawn across the contour, are (i) for a square of side a, 5a5∣6; (ii) for an equilateral triangle of side a and area Δ, 5α∆2∕9 ; (iii) for a circle of radius a, 5πa5.35. If two pennies of diameter d be soldered together by their edges so as to be in firm contact in a plane, and be thrown upon a plane ruled with equidistant parallel lines whose distance apart is 
a {a> 2d), show that the chance of both pennies being cut by a ruling is (ττ — 2)d∕πa.36. If a straight line be divided at random into four parts, prove that the chance that one of the parts shall be greater than half the line is 1/2. Show also that the chance that three times the sum of the squares on the parts is less than the square on the whole line is π√3∕18.37. If a straight line be divided at random into five parts, show that the chance that four times the sum of the squares of the parts is less than the square on the whole line is 3τr2χ∕o∕500.

[Wolstenholme, E.T., 2753. ]38. If random values between ±α2 be assigned to H and between ±(2α3 + β2) to G in the cubic x3 + 3Hx + G = 0, show that the chance of three real roots39. Obtain the mean value of x2 + y2 + z2 subject to the condition 
χ + y + z = 0, and that x, y, z each lie between - c and + c.

[Laplace; Todhunter, Hist., p. 411.]
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