CHAPTER XXXIX.

THEOREMS OF STOKES AND GREEN.
INTRODUCTION TO HARMONIC ANALYSIS.

1780. It is proposed to give in this chapter several theorems
of the Integral Calculus which are of especial service in the
higher branches of Physical Analysis.

1781. STOKES THEOREM.

Let X, ¥, Z be the components referred to rectangular axes
Oz, Oy, Oz of any vector quantity U. Then the line integral
of this vector taken along a given path on any given surface
from a fixed point 4 to another fixed point B is

I iyl K,rd”+ P e ds_j(x der Yy Bday

Let us deform this path into an adjacent arbitrary path
from A to B on the surface.

Then 6X—é‘z6m++, d‘ngdm_{__;_, and

$Lup= (6ot +)+(Xdowt+)
B B B
("X dot )X b0t +12—[Lax sot )
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880 CHAPTER XXXIX.

But if P, @ be adjacent points (z, ¥, 2), (¢+dz, y+dy,z+dz)
on the path 4PQB, and P’, @ the points to which they are
deformed, having coordinates (z+dz, etc.), and to the first
order (z+ dwz+ dx, etc.), these four points are to that order the
corners of a parallelogram the area of whose projection upon
the plane of y-z is 8y dz— 8z dy.

Fig. 588.

Let dS be the area of the element PQQ'P’; I, m, n the
direction cosines of the normal to the surface at «, y, 2z Then
to the second order
Sy dz—dzdy==1dS, dzdrx—dzdz=mdS, dxdy—dydz=ndS.

Therefore the variation in the line integral along 4 PQB by
deformation into 4P Q’B is

i D) (2Bl

the integration being for all the elements of S which lie
between the two paths.

If we.enlarge the strip by taking a new variation of the
path AP'Q'B to an adjacent path AP”Q”B, the extra increase
is the same integral taken over the area between the second
and = third paths; and this process may be followed by
other deformations to any extent so long as X, Y, Z and
their differential coefficients remain single-valued, finite and
continuous in the deformation (Fig. 589).

If then A and B be any two points upon a contour ACBD
drawn upon the surface within which contour X, Y, Z and
their differential coefficients are at all points single-valued,
finite and continuous, the difference of the line integral along
ACB and that along A DB is measured by the surface integral

”: —|— +:|dS taken over the whole surface bounded

by the contour. Also the line integral from A4 to B along
ADB=— the line integral along BDA (Fig. 590).
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STOKES’ THEOREM. 881
Hence the line integral round the whole contour is equal to
the surface integral j[ o aY)++:|dS over the whole

area bounded by the contour

C

Fig. 589. Fig. 590.

Now let B be some vector quantity whose components
2€, 2y, 2§ are such that
0p2Z_2Y o 9X of ,. 0¥ oK
9y oz’ % o B oy’
then we have
e 41842203 e,
taken over the bounded surface.

But 2(l€+mn+n() is the component of the vector R along
the normal =R cose, say, where ¢ is the angle between the
normal to the surface and the direction of R; and if ¢ be
the angle between the vector U and the tangent to the contour

ds+Y +Zd =U cos €.

Hence || R cos GdS=IU cos € ds, a result due to Stokes and

of the highest importance in Higher Physics. [See Lamb,
Hydrodyn., Art. 33.]

It is remarkable that the surface integral is independent of
the form of the surface, and depends only upon the line
integral round the bounding edge, so that it is the same for all
diaphragms with a given edge ; provided that in the deforma-
tion from any one diaphragm to any other no point in space is
passed for which X, ¥, Z or any of their first order differential
coefficients cease to be single-valued, finite and continuous.
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882 CHAPTER XXXIX.

1782. GREEN's THEOREM* LorD KELVIN'S EXTENSION.

Let V, and V, be any two functions of @, y, 2, the coordinates of
a point P, and a any quantity, constant for Green’s Theorem, or
any function of the variables for Lord Kelvin's extension, and
suppose all three functions and their differential coefficients to be
single-valued, finite and continuous throughout a finite and con-
tinuous region bounded by a given surface S. Let volume integra-
tion be conducted throughout the volume so bounded, and surface
integration over its surface. Let V2V be an abbreviation for

Qo Bl Rk 2 o
?x(“za_x>+’a_y<“ ay>+az<“ az>'
Let dn be an element of the outward drawn normal at any point of

the bounding surface S. The theorem to be established is

oV, oV, , oV, oV, , oV, oV,
” (o -l *)da dy dz

=IIV1a2 AL ds—”fvlw Vs dy e

=Hvzaz ok, ds—mvzvz ¥ iy i

20V, oV

7

Consider the term 'Uj 2d wdydz. Integration by

parts gives

0T a2

Construct an elementary rectangular prism parallel to the
z-axis on base dydz in the y-z plane, and let it intercept upon
the surface S elementary areas dS,, dS,, dS,, ..., at which the
direction cosines of the normals are (A, uy, 1), Ay, #y, w5, ...,
the suffix 1 relating to the element furthest from the y-z plane
and the others being in order of approach to that plane. Then

dy dz=+NdS;=—N\,dS,=+\;dS,=....
Now the limits in the first integral [V a? a—Vl:I are those

which correspond to the elements in which the elementary
prism cuts the surface S, .. from the end of any intercepted

* Math. Papers of the late George Green, Edited by Dr. Ferrers,
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GREEN’S THEOREM. 883

portion of the prism nearest the y-z plane to the end furthest
from that plane. Let the values of Vza’%—gl at the several

points be denoted by the corresponding suffixes to the square
brackets.

Then Ij[Vzaz '%I;‘] dy dz taken for the whole prism

e[ ] v
Vet %V‘:L(+A3dsa)—...},

that is simply, when we integrate for the whole surface,
summing the results for all such prisms

—IIVza o1 \ds.

il i e

¢ Uh
(o) x
b
Fig. 591

Treating the remaining terms in the same way, and noting
that A — +,u

stated.
Green’s Theorem, for which a=1 and V*=

ay az an we have upon addition the theorem

o B is

J‘_”. Al aV2++)dxd?/dz—_UV BVZ —”. V., V2V, dx dy dz

oz ox
HV s dS—”J'IQVz V. dody da.
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1783. Various Deductions.
1. It follows that

ff(v CLO aV‘)dS fff(v,v V,— V,VAV;)dzdy ds.
2. If 7y and V,both satisfy Laplace’s Equation V2V=0, we have

ff V,%”dS:ff V,%%ds.

7

3. If V,=constant, f% dS=fffV' Videdydz. This is known as
the Divergence Theorem (see Webster, Elect. and Mayg., p. 66).

4. If V,=constant and V, be a function of z, y, 2, viz. V, satisfying

Laplace’s Equation, / f =~—dS8=0. It follows that V does not under

such circumstances admit of a true maximum or minimum value for all
directions of displacement at any point of space for which it remains
finite and continuous and satisfies Laplace’s Equation. For if at any
point such a maximum or minimum could exist, ¥ would be decreasing

or increasing in all directions from that point, and therefore oy would
maintain the same sxgn at all points of a small sphere with that point
for centre, and f f =—dS could not vanish for that surface. The same

thing is obvious also from Laplace’s Equation directly ; for one condition
for a maximum or a minimum is that V.., V,,, V., must have the same
sign, and therefore their sum could not be zero.

5. If V, and V, be two homogeneous algebraic functions of 2, y, 2 of
respective degrees p and ¢, each satisfying Laplace’s equation for the
region between a pair of spherical surfaces of radii @ and b, whose centres
are at the origin ; then if V, and V, be written respectively as 7Y, and
r1Y,, so that ¥, and Y, are functions of angular coordinates only, then

T (2%
z will L L Y,Y,sin §dfdp=0, provided
A p¥gandp+g+ —1.
For f V,aV' asS= / V,,aV” s, the integra-

tion being conducted over the two surfaces.

Writing dS=a?dw or b*dw for the respec-
tive elements.of the outer and the inner
surface, dw being an elementary solid angle,
we get

f (Y, gAY~ MY oY, )dS =0,
e and (g-p)ate-0e)[ 7,7, du=o,

r (2
and therefore, provided p + ¢ and p+¢ + -1, fo fo Y,Y,sin 0dfde=0,
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GREEN’S THEOREM. 8856

or writing p=cos 6, flf:’Y,Y,dpd(#:O; that is fV,,quS=O, where
the integration is taken over the surface of any sphere with centre at the
origin.

The theorem is due to Iaplaee The proof is Lord Kelvin’s [Thomson
and Tait, Nat. Phil. 1879, p. 180].

Note that in the proof of this general result the taking of an inner
surface =5 avoids the continuation of the volume integration over the
immediate region of the origin at which such a solution of Laplace’s
Equation as ¥V =7"* would become infinite, and Green’s Theorem on which
this result is based would be inapplicable.

6. Many other deductions will be found in works dealing with attrac-
tions, electricity and magnetism, etc.

The region bounded by the surface S is regarded as “singly connected,”
or capable of being made so by suitable diaphragms ; so that any of the
infinite number of paths from any point 4 to any second point B within
the region are deformable into each other without crossing the boundaries
of the surface.*

1784. Unique Character of Solutions of Laplace’s Equation.

If a solution of Laplace's Equation has been found which
18 such as to assume a definite assigned value at each point
of a given closed surface S bounding a given region, that
solution 18 unique for all points within the region; and if
it 18 such as to vanish at o it is also unique for all points
outside the region.

For, if two functions V, and ¥V, could each satisfy the stated
conditions at points within the surface, their ditference W would
vanish at &ll points of the surface. But Green’s Theorem gives

[ LY+ + Jaody da=[ WS as—([[vew azay de=o.

Hence %—IZ, a%, %vzz must vanish at every point of the
region, and therefore W must be a constant throughout the
region, vanishing at the surface, and therefore at all other
internal points. Hence ¥, and ¥, must be identical.

Similarly for points outside the surface with the condition
as to vanishing at infinity.

Hence solutions of Laplace’s Equation are unique and
determinate for any finite region when their values are
known over its surface supposed closed.

* For the effect of Cyclosis, see Clerk Maxwell, E. and M., 1., page 109.
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886 CHAPTER XXXIX.

We note also that if %, were given at each point of the

surface, we should equally have IW —— d8=0, for aalz 0.

HARMONIC ANALYSIS.

1785. Def. Any homogeneous function of z, y, z which
satisfies the equation V2V =0is called a Spherical Solid Harmonic.

Denoting z®+4y2+422 by 72, we have V¥™=m(m-+1)rm-2
(D.C., p. 137).

This vanishes when m=0, or —1, (except where r=0).
Hence a constant is a spherical solid harmonic of degree zero,
and 7! is a spherical solid harmonic of degree —1.

Laplace’s equation is unaffected by writing 2—zy, y—y,,
z—z, for =, y, z respectively.

Hence {(w—zo)’—}-(y——yo)”+(z~zo)”}'§ is also a solution,
except at (2, ¥y, 2,), Where it becomes infinite.

If V, be any homogeneous function of degree n satisfying
V2V =0, then V,/r*t! is also a solution (D.C., p. 137). Its
degree is —m—1. Therefore te any spherical solid harmonic
of degree n corresponds another, viz. V,/r***! of degree —n—1.

1786. Specimens of Spherical Solid Harmonics.

Lord Kelvin (Thomson and Tait, Naz. Phil., pp. 172-176) gives a long
list of particular solutions of V2V'=0. We select a few typical cases,
which may readily be verified.

: r+z dy L
Degree zero, log i tan 2 Ay

S PIEOT g LA
Degree —1, L rlogr 2 Pty

Degrees 1 and -2,

. Y. L0808 A an-1dy
Ax+ By+Cz, ztan PR rstan (a:’+y2)"

Degrees 2 and -3, 2:2-2%—y% a%-3% Ayz+ Bar+ Cxy, yzfr.

1787. If V, be a spherical solid harmonic of degree m, and
we write V,,=r"Y,, as in Art. 1783 (5), Y, is a function of the
direction of the point z, y, z as viewed from the origin, and if
we take r as a constant, Y, is called a “Spherical Surface
Harmonic ” or a “Laplace’s Function,”



HARMONIC ANALYSIS. 887

1788. Number of Arbitrary Constants in the General Spherical
Harmonic of degree 7.

The number of coefficients in the general rational integral
algebraic expression of degree m in three variables is the
number of homogeneous products of degree n in @, ¥, 2, viz.

$(n+2)(n+1).

When operated upon by V2 we have a homogeneous function
of degree n—2 containing }n(n— 1) coefficients, each of which
is to vanish, which furnishes this number of relations amongst
the original coefficients. Hence the number of independent
arbitrary constants in ¥V, or Y, is

t(n+4+2)(n+1)—in(n—1)=2n+1.
s 1 a i ar
Such a series as = Y0+772 Y1+,,—.s Y2+"'+fr"_+1 Y,, where a

is given, will therefore contain 1+43+454...4(2n+1), d.e.
(n+1)% arbitrary constants, and in the case where Y=0,
as for the potential of a magnetic body, the number is less
than this by unity, viz. n(n+2).

1789. Construction of New Harmonics,

Since V2V=0 is a linear differential equation, when any
Qatb+e !
Seoyhor |8
another solution. So that if ¥, be a spherical solid harmonie

of degree 7, we have another of degree i —a—b—ec.

solution V, has been found, it is obvious that

Moreover (l a’a&“”"a% +n 8%) V, will also be a solution; or

further still, if (I, m,, ny), ({5, 7y, M), ... be any number of sets

of direction cosines of arbitrary linear elements dh,, dh,, ...
Dic 050 w0

so that o, *lla +my, ay+"1a , etc., then oty g Oy " Oy 14

is also a solutlon of Laplace’s Equation, and is a spherical

solid harmonic of degree 1—j.

1790. Poles and Axes. Clerk Maxwell (E. and M., p. 162)

Consider a spherical surface of centre O and radius 7,
referred to three rectangular axes Oz, Oy, Oz. Let 4, 4, 4,, ...
be fixed points on the surface, and P any other point upon
the surface. Let the direction cosines of 04,, 0O4,,... be
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1y, my, ), (Lyy My M), ....and 2, y, z the coordinates of P.

Let A\;=cos 4,0P, uy=cos AOA, Let dh,, dhs,... be linear
elements in the directions OA,, OA,,.... Then the lines
0A4,, 04,, ... are called “axes”; 4,, 4,, ... are called ““ poles” ;
%-&m% is called differ-
entiation ““ with regard to the axis 04,.”

Let p; be a perpendicular from O upon a plane through P
perpendicular to 04,; then p,=lx+my+n,z=r;, and we
have

A )
and the operation B_h,-zli’a_m—i_m‘

8
: l.g7+miaar+n‘%—l4 +m‘y+n(— =)u,

)
%j=(l‘55+ +Xlx++>=lil/+m4m,+nm,=yq=;m=.a—llz;,
o) _ 3(1),)_1 ﬂ!—)\« j_ O\
DhiOhi\r )" T =%

1791. Consider the effect of the operations

L2, Cpl 2 Lpl R
oh,’ ah oh,’ Ohy Ohyoh,’

performed successively upon the function ,%' Let us write

ZINi=%,8 for the sum of all possible products consisting of
1—28 N’s with different suffixes and s u’s with double suffixes,
each suffix 1, 2, 3, ...4 occurring once and once only in each
product

Also let us write V_;—; for (—1)!
7! U;

At )

ah 3 BT k ,and also
i— 1

V_,-_1=,ri—+1Y.-= el Then V_;_;, U; are spherical solid
harmonics of respective degrees —(¢+1)and <. We then have

gty

r »

Uy 21 12 X

R e Ohy 7 =2 Ohy 12

U. 079 1 -AMA, 1.3

2 V—S“‘(‘_l) ah a/l ¥ AZ f"lZ ”r == .J (A')‘ %/“12))

—l—]-"— C oo s g etc.:l' '5()\1)\2)\3—§2)\1p‘), ete.

AR L L A
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HARMONIC ANALYSIS. 889

1792. The General Form is

U .3 (2T
= V_,_l_—-7pfl—){x Ny oo Mim g EN2
1 B P }
tEoDE— > P
to 1—;—1 or % terms, according as ¢ is odd or even,

. R Ak 1 45
ie. Y.-_——Z.—!—{xlxg i L

1 8
N 4,&-...}.

1793. This form may be established by induction (Clerk
Maxwell, E. and M., I, p. 161). To do so it is desirable to
substitute for each A the corresponding p/r. For differentia-
tion of r and the p’s is simpler than that of the \’s in

performing the operation i
ahi+l

1794. When all the axes coincide the \’s are all equal, and
- the u’s are each unity.
If we write V_g_‘zi!rl—.YJr‘; when the axes are different, and

115 when they are coincident, we have

ri-}-l
1.3...(2i— 1 .
Y.-=—.21———H{)\1/\,...)\,-— : z)\**zw(%_1)(21._3)2)\'—%_...},
(2; 1) i(i— (i-1)G—-2)(i-3) |,
il {M 2(21 )‘i e aEi-nE=3) 4""}'

1795. In the latter case, when the ¢ axes coincide, Z; is a
function of one variable only, viz. the angle which the vector
to «, 9, 2 makes with the fixed axis. When this angle is
fixed, the value of Z; is fixed, and the equation Z,=const.
gives a family of circles on the surface of the sphere, the
planes of these circles being at right angles to the axis of
the harmonic. The harmonic is now called a “ zonal harmonic.”

1796. In the former case Y; is a function of the 4 cosines

1(1—1)

A1s Ags ooo A; which are variables, and of the g cosines

Myg> Myg» Mggs-.- Which are constants. As there are in this
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890 CHAPTER XXXIX.

case ¢ arbitrary axes, and each requires three direction cosines
l, m, n to fix it, between which there is an identical relation
P4m24-n2=1, ¥, will involve 2i arbitrary constants. Also
since the expression for ¥; may be multiplied by any arbitrary
constant M, and the function V,=:!MYs* still satisfies
Laplace’s Equation, this value of ¥V, contains 2;41 arbitrary
constants inclusive of M, and is the most general form of a
spherical harmonic of degree 1 (see Art. 1788).

1797. The Zonal Surface Harmonic Z; will contain three
arbitrary constants, viz. two which fix the direction of its
axis, and M. After the fixation of the axis, say to coincide
with the z-axis, the only constant left is M, and if we choose
M=1, Z, becomes a definite numerical quantity.

If the axis OA of this zonal harmonic Z; be in the direction
(6o, po), t.e. given by its co-latitude and azimuthal angle, and
if OP be drawn in the direction (6, ¢), then

A==c0s8 6 cos O, sin 0 sin B, cos (p— o).

If the axis be the z-axis, then §,=0 and A=cos 6.

In the former case there are two independent variables
6, ¢, and the Zonal Spherical Surface Harmonic is known as
a Laplace’s Coefficient.

In the latter case there is but one independent variable, viz.
0, and the pole of the harmonic is the pole of the sphere
which is the positive extremity of the z-axis.

1798. LiGENDRE'S COEFFICIENTS.

If we expand the function (1—2ph+h2)"b in powers of A,
taken as < 1, as

(1—2ph+ 1) A =P+ P+ PJo+ ...+ P+ ...,
irrespective of what p may stand for, then P, or P,(p) is
called Legendre’s Coefficient of order n.

If (, 6, ¢), (9, 6y, Ppo) be the coordinates of points P, 4
and )\ the cosine of the angle 40P, O being the origin, the
inverse of the distance AP is (r*—2rro\ +r02)'*, and may be

: 1 ro o2\t 1 A -4 ;
written as ;; (1—2)\ E)+7T2> or ;(1—2>\ i -r—2> ,according

as ryis > or < r. Accordingly, we have
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1 2 n
. —(QO+QI}+QZ:—2+...+Q”’—,.+...)forr<ro,

AL
(@@ 4@, 40,1 ) for r > 1,

where the @'s are Legendre’s Coefficients for the case when
pis <1 and is a certain cosine. And for all values of 7y/r one
or other of these expansions holds good.

Also Al being an inverse distance is a Spherical Harmonic,

and that series of the two above which is convergent is a
spherical harmonic, and satisfies Laplace’s Equation; and as
it does so for all consistent values of r,, each term will do so;
so that one or other of the sets

@ 0 0% (2.9, % )

forms a series of spherical solid harmonics. Moreover, by
Art. 1785, if one set be spherical harmonics, so also are the
other set. Therefore they are all spherical harmonics; and
@, is a spherical surface harmonic of the zonal species.

It follows therefore that a Legendre’s Coefficient for
which p is a cosine is a Zonal Surface Harmonic. We shall
see later that it satisfies Laplace’s Equation whatever p may be.

1799. The function
Boi= (ot yt sty
satisfies Laplace’s Equation.
Let a®+y°+22=7% and write (22+32+2%)} as f(2).

Then E I -
Bimfe—g=fe) =l e 2L L EW AT,

Again, writing 2=, R"1=(0‘2—27\0’r—i-02)‘i and taking r>c,
Pl c [ c®
R 1=;<Q0+Ql;+Q27—2+...+Qn7‘+...).
Qi A 1) B ad— 1N R8sl

rrtl T ql 2" n!l Q2" r

Hence

The harmonic @, is therefore identified with one of those
obtained in Arts. 1791 to 1794.
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892 CHAPTER XXXIX.

1800. Preliminary Remarks on Legendre’s Coefficient P ,(p).
The definition being
(1—2ph 4k =P+ P h+ P2 +...+Phr+... (h<1),
it follows that, whatever p may be,
Py(p)=1,
P,(1)=coef. k" in (1—h)1=1,
P,(—1)=coef. h* in (1+4h)1=(—1)",
R P 21.3...(n—1)
S n ; B e LA AT
P,(0)=coef. A" in (1+k%)2=0 or (—1)% R
according as n is odd or even.
If the signs of both p and k be changed, (1—2ph+k?)? is
unaltered. Therefore
Po(p)+Py(D)ht ..+ Pu(@Ih+ ... =Py(—p)— Py (— ) ...
+(=1)*P,(—p) "+ ...
Hence
Py(—p)=PLy(p); P(—p)=—Py(p), ete, Po(—p)=(—1)"Pu(p)-

1801. Power Series for Legendre’s Coefficient P,(p).
To obtain an expression for P, as a power series in terms
of p, we proceed directly by Expansion of (1—2ph k%3, viz.

1.3..(2n—
=1+h(2p—h) + ...+ 3 o= C0=B) gz__g;h”—lﬂp—h)"‘l

1.3...(2n—1)

+W’L"(2p—h)ﬂ+....

Picking out the coefficient of h*, we have

_1.3...(2n—1){ Nomn=1) e
P n! P en=1)?

n(n—1)(n—2)(n—38) .
W 2.4(271—1)(2)72_3))1" 4—"'}’ i)
which is in agreement with-the second series of Art. 1794.
P,(p) is therefore a rational integral algebraic function
of p of degree m. The highest index is m. P, is an odd or
an even function of p, according as » is odd or even; and
P, (—p)=(—1)"P,(p), as already seen.
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RODRIGUES’ FORM. 893

1802. Rodrigues’ Form.
Applying Lagrange’s Theorem [D.C., p. 454],
h Rl d? k"1 d®
(1-2ph+R%) 3= 1+1,;d";( 2 1)+2,;2dp2(p 1P+ 407 o g (PP D
Hence

Ealp)= Ty (p2 1)*, a form due to Rodrigues. ....(B)

n' dp
1803. Rodrigues’ form satisfies the differential equation
d s dP,,] )

B 0—P G ] Hn@+1P,=0.

For writing z=(p®—1)", and denoting by suffixes of 2
differentiations with regard to p, we have 2z (p*—1)=2npz;
and differentiating this n+-1 times by Leibnitz’ Theorem,

zn+2(P2_1)+2Pzn+1=n(n+l)zm
e %[(pﬂ-l)z,.ﬂ]w(n 1)z,

d o dP

= il = n P, =0.
e gl =P G [+nnt1)P=0

1804. Expansion in Terms of Tangents of Half Angles.
Using Rodrigues’ form and putbing p+l=y,p-1=v,

1 n, __ n_y ngY 2, n—1 n n—2,
P= 2“n‘dpﬂ(u )= {u +C U+ "Cum % + ...+ v} ....(C)
! 0 Siei0
and putting p=cos 6, u=2cos? Py —2sin 35 We have

P, =cos™ -g {l —-n0? ta,n’-g+"022 ban‘g-— sG3 tan°~g+ } SRR (D)

1805. Expansion in a Series of Powers of tan 6.

Regarding (p%-1)* as a function of p? and applying the rule of
Diff. Cale., Art. 106,

P,=p"+ 22"0, 20 p" 2 (p*-1) + 24"04 10 PP = 1)+ .. (E)
and writing p=cos §, we have a form homogeneous in cos § and sin 6,

(n )

P,=cos"f - cos™2 @ sin% @

n—('ﬁ_—l) n=2)(n=3) gt G 8int 8 iy cali (F)

iie. Py=cosng[ 1-20221) an=9+"(—”'—1)2(,,”.f——4,1—)(”'—‘°’)tan'9-...]. (@)
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1806. These forms may also be derived by writing
(1-2ph+4%) " = {(1-php+22(1 -},
expanding and ' picking out the coefficient of 4"
[Todhunter, F. of Laplace, p. 12.]

1807. Expansion in Powers of cos g
Since (p*~17'=(pF1 -2 (p+1y
=(=1)"[2"(p+1)"="C2"Y(p + 1) +C2"¥(p+ 1)"+2 ...,
we have by Rodrigues’ form, and putting p=cos 6,

Pu=G-1) [l —"+10, () cos? —g+ +20, "C, cos‘g—“""’()'3 "y cos® g+ :I (H)

1808. Expansion in Terms of Cosines of Multiples of 6.
Taking 2p=t+%=2cos 0, we have, writing
(1-2)7% as Ao+ Az+ 422 +...,
V=(1-2ph+h?) Y= -ht) Y1 -ht1)}
=(do+djht+ ...+ A J"" + .. )(do+ A bt + ... + AbCT + ),
and the coefficient, of 4" is obviously
Apd o (@ + )+ Ay Ay (2 0+
=2[4¢d,cosnf+ A4, 3co8(n—2)0 +... + Apa. Apyacos 0 or 4,2,
2 AT 2
as n is odd or even ; i

1.3...(2n-1) .3...(2n-3)

. . 1 l
i P"=2{—2.4...2n cosn6+§- 2—.--4—.—“—(T_2)cos(n—2)0
1.3 1.3...(2n—5)
Havd mcos(n%)(ihu} ....... (1)

1809. Limiting Values of the P’s.

The binomial coefficients in the above form of P, are all
positive, and therefore P, cannot exceed in numerical value
that for which each of the cosines is replaced by unity. And
in this case the expression for P,=2(4,4,+4,4,_1+ ...)=coef,
of p* in (1—p) 3 (1—p)}, i in (1—p)?, 4.e. 1, i the value
of each of the P’s cannot lie outside the limits 41 and —1.

The convergency of the series 14P;h+Pyh*+... follows at

once by comparison with 1+h+h2+...=ri—h; b2l
1810. Expressions in Terms of Definite Integrals. [Laplace,

Méc. Cél., X1.]
Supposing @ positive and > b, both being real, we have

" dx L5 o ;
L at+beosx JaP—b*'
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and writing a=1—hp, b=h/p*—1, where p is positive and
>1, and % negative to ensure & being positive, and both
a and b real, we have

1—2ph+h=a2—b2= ¢,

A ™ J‘" dx 7
CV1-2ph R Jo1—h(p—p*—1cosy)’
and expanding each side in powers of 4 and equating co-

efficients, P,(p)= ~I (p—~p*—1cos ) dy.

i811. Upon expansion of (p Vp*—1cos x)* and integra-
tion from 0 to m, all terms arising from odd powers of cos x
disappear, and we are left with a rational integral algebraic
function of p of degree %, which is identical with P, (p), (which
is known to be a rational integral algebraic function of p of
degree n), for all positive values of p greater than unity, s.e. for
more than n values. Therefore the identity with P, (p) must
hold for all values of p, though it was convenient in the last
article to take p positive and > 1. It will be seen that the
expanded form is identical with the expansion () of Art. 1805.

Also, since the terms with odd powers of cosy contribute
nothing, we have also

Po(p)=1 || (p+ VP =T cos .
1812, Writing p=cosh a, we have
P, (cosh a) j (cosh ¢ Fsinh a cos x)"dy,

and we may transform these further by putting

cosh a cos u+sinh a
cosh a+cosusinh «

cos xy=
to the forms
P, (cosh a) = %_J. (cosh a=sinh a cos u)="1duw.
0

1813. Various Forms of Laplace’s Equation.

Before proceeding further it is convenient to collect to-
gether for reference the more useful forms which Laplace’s
Equation V2V=0 takes when transformed to other systems
of coordinates than the Cartesian, and the modifications it
undergoes under various circumstances,
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By direct transformation to spherical polars (r, 6, ¢) (D.C.,
p- 469),

Gl B NG [’
2V — el
ViV = Fron aew e =0 becomes
ng_aV 29V 12V  cotOoV  cosec’d 2%V 0

i raTese@ 7 o P 99
1f V,=mY,, Y, being a function of # and ¢ only, we have

2
VeV, =2 2 4ot 0 Ot 4-cosect aa;;"+n (n+1)Y, |=0,

and any solution of this is a Spherical Surface Harmonic or

Laplace’s Function. See Art. 1787.
Writing u for cos 6 this equa.tion becomes

0
a{(]‘_ P “2 B:/)’
Laplace’s Coeﬁ‘iclents, which are Zonal Harmonics and are
cases of Laplace’s Functions, satisfy this equation. When ¢ is
absent, V, is a homogeneous function of the n*" degree sym-
metrical about the z-axis; Y, is a function of 6 alone, =P,
and the equation becomes, when p is written for u,

! d P,
(A R

Legendre’s Coefficients satisfy this equation, and are the
cases of Laplace’s Functions for which ¢ is absent, and

+n(n—l—l)Y =

P=p=cCo08 6.
Other forms of V2V =0 are

<><><——>

aV b Tl

1814. Method of Obtaining these Equa,tions from Hydrodynamical
Considerations.

The readiest way to reproduce any particular form of the differential
equation is not by direct transformation, but by formation of the appro-
priate hydrodynamic *“Eguation of Continuity,” expressing the physical
fact that in the case of any fluid motion, no creation of matter is going on
in any element, any increase or decrease of mass in that element being
due to what enters the element from outside or which leaves it,
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For a homogeneous fluid in motion with velocity potential ¥V, this
condition may be written in the notation of Art. 789 as
o < hy '(DV) 0
ap, hyhs Opy p
and by expressing this for Cartesians, for Cylindricals, for Spherical-polars,
ete., the several forms cited are at once obtained.

1815. Reverting to the power series,
(1—2hcos y+h2) d=Ry+ Rh+R2+... 4+ Rhn+... (h<]),
which defines a case of Legendre’s Coefficients in which
cos y=cos 0 cos O,+sin O sin O, cos (p—P,) (Art. 1797);

it appears that R, being a zonal harmonic, and a function of
and ¢, is a solution of the equation

R,
%g;-i—cot@aa—R” 2" +n(n+1)R,=0,

or, what is the same thing, if we write u, u, for cos6 and
cos By, so that cos y=mpe+~/1 —,uK/I — Mo2c0s (p— ¢by),

3 °R,) . 1 oR,
a{(l—,ﬁ au}+1 = w Ry | n(nt1)R,=0.

1816. The General Solution in the Case when ¢ is absent.

If the z-axis be taken coincident with the axis of the
harmonie, wy=1, cosy=pm=cosf=p, and the Laplacian
equation reduces to

{(1—p2) }+n(n+ DR D e 1 (1)

It will be noted that we usually use p instead of u in this case.
The zonal harmonic P, is a solution of this equation. To
obtain the general solution put R,=P,u, and we obtain

o[- d % 2 n(n+1)P, ]

dP, du
+a-ppSu 2P, g +20-p 2 T -0,

in which the first bracket disappears. We therefore get
dw/dw 2 2dP, . du B

@ dp—i—p* P,. dp’ ““ dp~ PX1—pY)

B being a constant.
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The general solution of equation (1) is therefore of the form

R,=AP,+BQ,, where Q,= .‘P 2(? PA1—p% which is called a

Legendre’s Function “ of the second kind.”

If, then, we limit our solutions of equation (1) fo such
functions of p as give R, a rational integral algebraic form,
we take the arbitrary constant B to be zero, and therefore the
most general solution of (1) of this form is R,=A4P,,.

1817. Since P, is a particular form of the Spherical Surface
Harmonic for which we have obtained the general result

J.:J.:"YmYn dud$p=0 when taken over the surface of the
sphere, we have
Jl ‘j:"PmPu dpd¢p=0, and .. J.l 1PmP" dp=0, (m=n).
1818. Particular Cases of P, expressed in Terms of p, and

Positive Integral Powers of p in Terms of P’s.
The general result being

a3 3' (‘7n——]) - n(n—1) -t n(n—1)(n—2)(n—3)
o “a@n—1)P" T2 d@En—DEn—=3 "

we have the particular cases

Po=1; Pi=p; P=3p’-}; Py=§p*—ip;
,5743_5213 i L O T
’ 14 3. 41'1 22 P-{- Pﬁ—m})’—2§—.—4pa+2—'—4py ete.

Reversing these results, we have
1=Po; p=P;; p*=3P,+}Py; p3=3P;+3P,;
P'=5%Put 1Py +1Py; etc.

1819. The general character of these latter results will be
obvious, viz. p" will consist of a series of Legendre's cofficients
beginning with P,, falling in order two at a time, with certain
numerical coefficients; 7.e. its form is

p”:—AnPn +An—2Pn—2+An—4Pn—d+ L

and we shall consider in due course the law of formation of
the successive 4’s.
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We note at once that, since each of the P’s becomes unity
when p=1, we have 4,+4, ,+4, 4+...=
Again, if m <n,

1 1
j p"’P,,dp=j R SR T A
iy =

1820. If f(p) be any rational integral algebraical function
of p of lower dimensions than n, then, in the same way,

1
| sw)Padp=o.
1821. The same result may be deduced from Rodrigues’ form of P,,.

For f_llf(P)P”dp=ﬁ1;.!f_llf(p)‘%. (p2—1)"dp

l dﬂ—l 3 dﬂ—’
= gami LI () i (B~ 1" =1 (2) s (= 1+
1
+(=1ifd(p). (p -1 | =0,
for after the differentiations are performed (p?—1)is a factor of the whole.

It follows that f f(p)P, dS=0 when the integration is taken over the

surface of the unit sphere.

1822. The theorem f ] pmP, dp=0, (m <n), may be used to obtain the
several functions Py, P:Ps, ... without using the general formula.

Ex. 1. To find P;, assume P;=A4p°+Bp. Then 44+ B=1.

Multiply by p and integrate; then —-é+—— f pP,dp=0.

Hence T=—%=5 and Pa_—2—3p
Ex. 2. To find P,. Assume Py=Ap*+Bp*+C. Then A+B+(C=1.
Multiply by 1 and by p? and integrate.

B

Then 151+§+g—-0 and ',‘_1+ +C 0;

LA R 0 Lk i _ 35p*—30p%+3
S e s e anh st e Raiedh

Or we might use a determinant to eliminate 4, B, C.

These processes, however, speedily grow laborious by virtue of the
number of equations to be solved or the order of the determinants to be
evaluated. It is therefore desirable to follow another method, as we now
show.
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1823. Lemma.
If it be dasired to solve a system of equations of form
i Jeiae A z y z
ata b+a+c+a+ a+B+b+B+c+B+
& Y z
—— st ——..=0.
a+‘y+b+7+c+y+
one less in number than the number of unknowns, with
it oo Al iy
e e g R it &
% z

and further to calculate such an expression as + 0 Py 0 - 0+

.y

for the values of #, 7, 2,... found from the above equations without
actually calculating z, 7, 2, ... themselves, we may proceed as follows.
For convenience take the case of three letters x, y, 2.

Then a+0 b-:l-B ¢5g '8 to vanish when §=a or 8 and to become X

when @=A. Such requirements are obviously satisfied by
Yy, 2 _l@+A)b+A)e+A) (-a)-RB)
a+0 b+0" c+0 X(a+0)b+0)(c+0) (A=-a)(A-)’
which is an obvious identity, for it is a gquadratic relation in 6, and
satisfied by three values of 6. The value of x can be found by
multlplymg by a+ 0, and putting 8= —aq, viz.
_L(@+M)(b+A)c+A) (a+a)(a+p)
A (-a)e-a)  (X-a)(X-pB)’
and similarly for y and 2. When A is indefinitely large, the last of the
given equations takes the form #+y+2=1, in which case
(a+a.)(a+ﬂ)
/ (b—a)(c—a)’
and generally we have

y=ete., z=etc.;

vl by z (6-a)(-B)(6-7)..
a+0tsyotoret (a+0)(b+0)(c+0)(d+0)

there being one more factor in the denominator than in the numerator,
no A occurring.
1824. Ex. 1. Calculate P;. Assume Py=Ap®+ Bpd+ Cp.

A B
Then 9+7+0 0, I; B+0—O A+B+C=1.

Take a=4, 8=2, a=5, b=3, ¢=1 in the Lemma.

(a+a)a+B) 9.7 7D 5.3

e el | i 3 LRahe

Then G-a)e-a) 2.4’ B=["g.3’ C=34
9.7 7.5

and I’6 p‘ 2. 5 4p*’-{-g—a
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1
Ex. 2. Calculate f PP, dp.
-1

The result is clearly ?l—g'+gl—li;+-2§, but without calculating 4, B or C,

we have, putting §=8,
,B-4)(8-2)_2.4.6 16

13.11.9 9.11.13 429°

1
1825. We have seen thatj p™P,dp=0, if m <n. Butif
L

m 4« n, we can readily calculate the value as in the above

example.
But first note that if m and n are one of them odd and the

other even, the result is still zero. For writing

pm=Aum‘*'Am—2Pm~z+"' ’
1 2
! p'”P,, dp:j (A4nPr+Ap o3Py st.. )P, dp:o’
=t =

as no two suffixes in any of the products of the P’s can be

equal.
But if m and n be both even or both odd, and m < n, the

result does not vanish. In this case, writing
Pﬂ=Ap"+Bp"_2+0_’p"_4+... !

multiplying by p*, where k=n—2, n—4, n—6, etc., and

integrating from —1 to 1, we have a set of equations of
4 B C

the type T i Tk tnl T hEn—a Tt "

number than the coefficients to be found. Also

A+B+C+...=1,

: 24 2B 20
and [ pPudp= e byt

=0, one less in

Hence the problem of evaluating this integral (m > n) is
that considered above.

Here a=n—1, B=n—-3, y=n—-5..,

a=mn, b=n—2, c=n—4...,

and 6=m-1;
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and

i (m+1—mn—1)(m+1—n—3)... to ﬁ;—l or gfactors
[" pmpodp=2 —
i (m+1+n)(m+14+n—-2)... ”i—}— or Mt

R gy factors
5 (m—n42)(m—n+4)... m—1 (or m)
Y (m+n+1)m+n—1) ... m+2 (or m+1) "

1
1826. If m=m, we have j p™P,, dp=2m+1(m 1)?/(2m+1)!.
-1

1827. Again

. 306t dp _ 1, 14k
I-I(P0+Plh+PJL2+...)2dp-—~"._1 I—:W_I_llo'gm’

ie. [ (Prrpudy ot yap=2(145 451 ),
-1 2

Hence

Cprap=2; | Prap=t, ete, [ Prap=g 2

.“—1 A AR AND 16 o Bty it J.—l b el 7o

Remembering that the area of an elementary belt on the
unit sphere may be written as do=2 sin 6 df=—2ndp,
we have for the whole sphere

R .
IP,, do—gars.

1828. Professor J. C. Adams has shown that we may calculate the value
1 ——
of 1.~ /_ § %‘dp, where R=y1—2ph + k2, by means of Rodrigues expression

for P, and thence we may establish the integrals f : P,P,dp=0 or 2n2+l
according as m ¥ n or m=n. i
Integrating by parts, we have at once, writing X for (p?—1)" for short,

4] de
oI, = B W(‘p’_l)ndp

SEE= =) KB . 4

o' ¢ 9P
=(=101.3.5.. (2n-1)A"| X els=(-1)".1.3.5...@n+1)A"U, say.

v [ o
Then ﬁ=f_l(p=—1) 2=k ip.

Take a sphere of radius unity, 04 the radius, OH=% <1, H lying
upon O4. Draw an elementary double cone with vertex H intercepting
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superficial elements do, do’ at Pand Q. Let AHP=y, AOP=0,Q0A=0,
HP=R, HQ=R. Then do/R:*=do’'|R?; p=cosG=h+ RcosV;

sin §/R=sin /1, dp= —sinfdl, do=sinfdldd,
¢ being the azimuthal angle of the plane 40P ;
*. sin @d@/R*=sin @ dO'|R?, i.e. dp/R*=dp’|R*;

dU _ —sin2 )" g
v SR 1( 8}?;0) Rcosllldp o 1),.f sm.n\,,cos,#%’

and for opposite elements at P and @, sin®*"yr and R P have the same values,

but cosy has an opposite sign; hence corresponding elements of the
integrand cancel when the integration is effected for the whole sphere,

t.e. ——-=0, and therefore U is independent of 4.

au
dh

Q da,l
Fig 593.

Hence to evaluate U we may take 2=0, and therefore R=1.
Then (-1)»(2n+1)U=f_'l(1—pr)ndp=/°sin*ﬂa(—sin 9d6)
=2Fsin=~+lad0=2"+ln!/1 3.5, (2r+1);
0

2. Roe
on+1"

It follows that [ Pu(Py+Pili+...+ P+ - )dp= g
f P, P,dp=0, (m +n), and f Plrdp= 2 t as seen before.

n

0 A

1’ whence

1829. If Im=f_lF';dp, where R?*=1-2ph+ A% —1—2———11, -p and

2h(p—h)=1-A%—R? and we have

dl, [* mP,p-hk (2 Py 1=h2—R*y . 1=t wm
. 70 _1R"'+lep=mj_1R’"+3 o P=" g Ima=gpIm:
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Thus 7, ;.= li_ﬁlzi(% & +;L ‘illk ) a reduction formula for such integrals.
2" 25" 25
But Ir— PR [3=——le.3’ I= 3= h,)a1(2n+3 —(2n—1)A%} ; etc.

1830. Since (1 —2ph +4%) " = Py+ Plh+ ... + Pehb+ ... + Poyibi® + ...,
we have

B Py drEP dP %
l.3...(27c—l)(1~—2p/¢+1¢’) dp; "“h d;;‘*h i
1
and writing (1-2ph+42) 2 =@+ Q.+ @k +...+Q,h" + ..., we have
R 1 d"PH....
"=13.. @k=1) dp*
Therefore
1 P.d
Iak+1=f o %+1—./’ Po(Qo+ @b+ ...+ Q™ +...)dp

(L—2ph+42) %
f_lP,,Q,,. dp=coef. of 2™ in Iy,

. L @ Py §
.e. ,/-1P"' ~d—}:,:i~dp= 1.3...(2k—1) x coef. of A™ in I, ;
or writing k+m (A

d Pz

"d —dp=1.3...(2k—1) x coef. of A~*in Iy

1831. We can now undertake the calculation of the
coefficients of the series referred to in Art. 1819. It is
convenient to consider the cases of odd and of even powers of
p separately.

(i) Take p*+'= A4, Pomi1+Aom1Pomr+ .. +4:Py.

Multiply by Pypiy, Pam—y --- successively, and integrate from

=—1to p=1. We then obtain

v, o 2.4..2m _
2(2m~+1)+1  “(4m+3)(dm-+1) ... 2m+3)’
R e, 4.6..9m ,
2@m—1)+1 “@m I L)@Em—1).. (2m+3)’
S ot 6.8...2m

2(2m—3)+1 “(4m—1)(4m—38)... 2m +3)
Hence writing 2m+-1=mn, we have (n odd)

n_ n! 2n+1
p —m[(%Jrl)Pﬂr@n s f g8

+(2n— )‘2"“"2” et i
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(ii) Take p*m=Ad,,Psn+AgmoPoms+ - +A4:Py;
then multiplying by P,,,, Py, _,, etc., and proceeding as before,
and writing 2m=mn, we obtain the same result.

Particular cases have already been given in Art. 1818.

It will now appear that any rational integral algebraic
function of p of degree m may be expressed as a series of
Legendrian coefficients, of which the order of the highest is n.

1832. Expansion of f(p) in Terms of Legendre’s Coefficients.
Supposing the expansion possible, let f (p)=§m:A,,P”. Then

multiplying by P,, P,, ... and integrating f(r)'om —1 to 1,
. I f(p)P, dp, which determines 4,;

2n—l—1
5 S =3 St P dp.
It is assumed that f(p) remains finite and continuous
throughout the range of integration.

1833. The Series obtained for f(p) is unique.
For if a second series for f p) were possnble we should have

)= ZA P, and f(p)= }JB P, ; whence E(A —B,)P,=0.
Multiply by P, and mtegmte from —1 to 1 Then

(4n—Bn)

n=2Dn

2n +l
1834. Differential Coefficients of P, in Terms of Lower Order
Legendre’s Coefficients.
P, being a rational integral aigebraic function of p of

degree n, %}1—2— is a similar function of p of degree n—1, and
therefore expressible in terms of P,_; and lower Legendrian
functions, and of form

= duiPast AeiPostdo st ..
Multiply by P,,_,, Pﬂ_a, P, ;, ... and integrate from —1to 1
Then, since j Py ”d =[PP I P dp, and

m having any of the Yalues n—1, n—8, n—5, ..., m and n are
one of them even and the other odd, we have P,,,P,,=l or. —1

www.rcin.org.pl



906 CHAPTER XXXIX.
according as p is +1 or —1, and therefore [P, P,].,=2; and
further, sinjce %B'l cannot contain a Legendrian function of as
high order as P, the second integral vanishes. Hence in all
1
such cases I_le (g;)" dp=2. Hence
24, ,/@2n—1)=24,_;/(2n—5)=24,_;/(2n—9)=...=2,

and we have

dP NP B BIP, 4 (RRLDP, ... +8P; (or. P)

accordmg as n is even or odd.

1835. Similarly we may write

d*P,
ot =B, 2Py 3+ By 4Pp 4+ B, 4Py ¢ +...=2B,L,, say,
and multiplying by P, for r=n—-2, n—4, n—6, ..., and integrating from
p=-—-1to p 1 and using accents for differentiations,
1
o Br=[ 22 ”dp [P0y~ PP+ [ PP dp,

and as r < n the final mtegml vanishes.
Also, since (1-p*) P, —2pP,'+n(n+1) P,=0, we have, when p= +1,

, n(n+1) P, . s n(n+1) r(r+1 G G
P= (2 )7", and therefore [P,P, —1’,.1’,,]‘_1={ (2 48 (2 )}I: ’;)J:l_l

and n and r being both odd or both even, P’I‘JP' is an odd function of p,

1
and therefore [P'I"P'-J =2. Therefore B,= 2rT+l_ (m—r)(n+r+1) and
-4=1

=1.(2n—1)(2n - 3) Ppy+2(210 —3)(2n - 7) Pu_y+3(20—5)(20 —11) Pugt ...,

and in the same way higher order differential coefficients may be expressed.

1836. Obviously

‘a4l APy 0 [ t2m- i A
Bo ik dp—f_l[(2m 1) Ppa+...][(20 1) Poy+...]dp

and, if m+n be odd, no suffixes can be the same in the two brackets, and
the integral vanishes. But if m+n be even, suppose m 3> n. Then the
terms which do not vanish are

1 1
(2m—1)2[_11’;_1dp+(2m-5)=f_lpfn_3dp+...
=2[(2m—1)+(2m—5)+(2m —9)+...+1 (or 3)] as m is odd or even ;

. 1 o i * G T
and there being m—;- or5 terms in the two cases, their sum is in either

dP,, dP )
case m(m+1), w[ b —dz—)"dp=0 or m(m+1) as m+n is odd or even,
m being the smaller of the two, m and n.
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1837. We might also proceed directly thus (m < n),
1dP,, dP " g i3
[ G2 do=1pp a1~ [ PP ap;

and since 7 is_greater than the degree of any power of p in P,”, the
terminal integral vanishes.

Again, (1-p? P,"-2pP,’ +m(m+1)P,=0, and therefore if p==+1

,_m(m+1) Py

Pyi= D) &

Y 2 L i 4
Now —™-% is an even or an odd function of p according as m+n is

1
odd or even, and therefore [P—"';'] =0 or 2 as m+n is odd or even;
-1

1 D
therefox‘ej d‘g}" 2 dp=0 or m(m+ 1) according as m +n is odd or even
-1
and n £m.

dp

1838. Differential Equation satisfied by Legendre’s Functions.
Starting again from the definition of Legendre’s Coefficients,

viz, V=(1—2ph-+h2 P =S P,hn, it is easy to see that they
0

satisfy a form of Laplace’s equation, without reference to the
fact that when p is a cosine these coefficients are Zonal
Harmonics.

For V2(1—2ph+h?)=1 and 2log V+log(1—2ph+h?)=0,
whence

14 o) e )
oV _hys, 2 —(p—h)V3, and Pyt =RV ..1)

op oh

Again,
G} BV}
O fa—p) 2t = —2hpV3+3h2(1—p?) V5,
ap{( p)ap ip (1—p?)
2 (15°V _ (9% — 352 73+ 3h2(p— R V5
5E(hz,ah)_mhp 312) V31 3h2(p—h)2 V5,

2oV
and adding, 3—2’{( 1—p? g—Z} +35 (h2 55) A SR (2)
by virtue of V2(1—2ph+h?)=1.

Substituting V=Z2P,k" and equating to zero the coefficient
of h»,

d TS _
@{(l—p)d—p}+n(n+l)Pﬂ—-0, ...................... (3)

d2Py dP
o (1% gp—z’—'%"

dp T DPL=0 (Art. 1813). ....(4)
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908 CHAPTER XXXIX.

1839. Differentiating s times, we have

dst2P, AP
(l_p) d s+2 2( +1) dp""’l

which is known as Ivory’s Equation.
If we then take as the expansion of P, in powers of p,

2 3
P,,=A0+A1%+A2%+Aa%+... ;
it follows that
Agio={8(8+1)—n(n+1)} d;=—(n—s)(n+s8+1)4,, s+n.
Moreover,

(1—n@p—myte. 4 L2 @) iy gy

shows that 4,=1.3...(2n—1), also that 4,,,, 4,.s, 4pys, -
are all zero, for the coefficient of A" contains no power
of p above p"; and this coefficient containing the powers
pt, ptt pnt, L., it is clear that 4, ;, 4, 4, 4, ¢, ... are also
all zero. '

Also, as Ay;=—A4,,5/(n—38)(n+s+1), we have

1.3...2n—1
4,=1.3...(2n-1), An—zE—'_2(27—z(:n1)—),

.. (2n—1)
473, 4(2'n DEn—3)"

and we have the series of Art. 1801 (A).

4

(Zl;"=l .3.5...(2n—1), and that all
higher differential coefficients of 2P, vanish.
If n be even, =2m, the lowest order term of P, is an
arithmetical constant, viz. what is got by putting p=0, s.e.
. £ fobiie o e 1180 (Snead)
the coefficient- of 2% in (1+472%) °, viz. (—1) e B % el
If » be odd, =2m +-1, the lowest order term of P, contains p,
3.5...(2m+1)
3.4...om ¥

viz. (—1)m
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LEGENDRE’S COEFFICIENTS. 909

1841. Various Theorems.

Since dP;“ 2n+1)P,+(2n—38) P, o+ (2n—T)Pp_y+...

we have

dP,,, dP,.

dp+1 pl_(z +1)P and P,,+1 "_1——(2n—l—1)-" P dp
and since {(1 Pz) dp }+"(”+1)P Fo

» 1

h Pdp=——— (P-4

we have L wdp (n+1)(17 1) dp
2n+1
N P,,.u_Pn—l 'n(:j:l)( At 1) dp
1842. Since

V=(-2ph+ k) =3P j and ?;; =(p—Hy7,
we have (1—2ph 412 Z(n+1) P,y h=(p—h) ZP, h";
whence (n+1)P,,,—2pnP,+(n—1)P, =pP,—P, ,,
256 (n+1)P,,;—(2n+1)pP,+nP, =0,
‘which forms a difference equation connecting any three
successive Legendrian Coefficients.

1843. Again
I%I;—VJW el 2hp+h2)2h"-‘—~2h"P,,,
T ST N dP,,_1 ,
o —Tp———zp + dp =Lp,
and subtracting the result dz;“ de‘l (2n+1)P,,
[/ e )
we have p%— e —nB

1844. Since %:hw and ——-—(p h)V3, we have
oV :
(ﬂ—l)—a;—-(l—pk>ﬁ=—Vsp(l—-zph+h2)=—Vp,
ov_oF. a
i.e. (p*— l)Zh” —-——ZnP hn—1—p3InP, k"1,
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910 CHAPTER XXXIX.

*. equating coefficients of A"-1, (p?— )dP ‘l—nP,,—in,,_,,
) f % =1 dP,, dP,y
i.e. P,—pP, = Ry
dP,
or (»*-1) —p—'(n+l)(Pn+l PP,).
P—1dP, _ _@ntD)pP—nPyy o
Hence s Py =P, 1—PP,=— Nil —pP,;

i (Pz_l)Tl;=n(an_Pn—l)
We therefore have the two results,

18
P,—pP, =T ==

*nlx

- I
A G e

ne

1845. We now have P,,,—pP,= 7 +11 g

= fP,,dp [since(lip(l—_}ﬂ@ﬂ)+n(n+l)f’n=0:|

=n(J:——j:)'P”dp=nJ.:PndP+0:

where C is a certain constant, viz. the value of P,,, when
p=0. To find C,

; 1 dn+l(p2___1)n+1_ 1
"+1—2n+1(n+1)' dpn+1 _2n+l(n+1)!
d(-lpﬂ+1[ n+2__n+1() 1]’2" Lo n+1() zpzn-z gL ( % l)r n+lorp2n—2r+2 AL ]

If »n be even, each term left after (n+1) differentiations con-
tains p, and therefore in this case C' vanishes. If n be odd,
there is a term not containing p after the differentiations, viz.

when r=7%1. Hence when p=0, we have in this case
+1 n+1
e 1 ”Tn 1 _(_1) 2 (n+1)'
Or g By D 2 P n F Tl

on+l @j'_l | 2
()

: > e g L) oo e .13
dp ks J:Pndp+0, where (=0 or ‘. (i !)2
i e

according as n is even or odd.
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LEGENDRE’S COEFFICIENTS. 911

We also have by differentiation (and writing n—1 for n),
Pi—pP, i =nP, .
1846. Since (n+1)P,,;—(2n+1)pP,+nP, =0, we have
(n+1) Py — @+ 1)pP,+nP,_,=(@n+1)P, =Py, — P, ,,
nP,,—(2n+1)pP,+(n+1)P,_,=0,
a difference equation for the first differential coefficients of
the P’s.
1847. Differentiating again,
0P — @0+ 1) Pt (1) Py = @n+ 1) Py=Py— Py
whence (n—1)P,,,—©2n+1)pP,+(n+2) P,_,=0.
Similarly (n—2)P,,,—(2n+1)pP; 4(n+3)P,_,=0,
and so on, forming a series of difference equations for the
higher differential coefficients

1848. Since pH.— P, 1=nP,... (1), and P, —pF =P 04 (2) (Anta
1843 and 1845), we have, by squaring and subtracting,
(PP=1) (PR =Pl =nd(Pa—Pa_1): ecvereneissninians (3)
Writing n2P2 - (p?— 1) P;'=U,, we have
Up—Upy=nt—(n -1 Pi=2n-1)Piy;

% U,,_l — Up—o= =(21l -_ 3)1",’}_2, etc.,
and. U,=F—-(p*-1)P? =1=PF,.
Hence n2l%—(p?—1)Pl=Pi+3Pi+5P5+...+(2n—1)Pr_q. oo (4)

1849. Again differentiating (1) and (2) r times, and again squaring
and subtracting,
(p* = D) {(PE) = (PER) ) =(n = )2 (PR) = (A1) (L)',
or writing Va=(n—r)2(P0) — (p2—1)(PTH),
Vo= Vaa={(n+r)* = (n—1-r)}(PiL) =(2n - 1)(2r + 1) (P31},
andif a=r, V,=0; if n=r+l, Ve =(2r+1)2(PY);
ey )
2r+1
or completing the series with zero terms and reversing the order,
Val@r+1)=(POV +3(P)+5(P0) +... + @n = 1)(PL))"
1850. Illustrative Example.
To find a series S which will assume a constant value A at all points on

the surface of the unit sphere in the northern hemisphere, and a constant value
B at all points of the surface in the southern hemisphere.

Suppose the series to be 8= Cy+C,Py+CyPy+ CyPy+....

whence (2n- D)(PE) + (20— 3)(PELo)* + ...+ (2r+1)(PT)?,
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912 CHAPTER XXXIX.

Then 8=A4 from p=0top=1, S=B from p=—1to p=0. Therefore
multiplying by P,,

jij”Pnidp;fo BP,.dp+fl AP, dp; andf’ P,.dp:(—l)"f‘ P.dp;

2n2+l sl i 1)"B}f Hiedgy A;(Ewll);Bf dp{(l' ") dp}dp
__Ar:r((rn—+ll);B[(l e o dp]
=';‘(‘+f’l)(‘fd_1;')p=o=o, ;fldn :% even (=)
" =(2i+fi)_(21:+2) s 4(2'“)( 1)}, if 1 be odd (=2i+1);
., Ot -(eSnys ok gstd 1)‘(4“’3) g:;;; (4-B).
N if #=0, Co_%(A+B)f dp-—A+B

if n=1, 0,=3(A—B)fo pdp=3(4-B).

Hence the series required is
_4+B A-B(3P, 3 7P, 3.511P;
i BECEEr R U o B B i i 8

1851. In case the distribution be symmetrical about some other axis
than Oz, the zonal harmomes may be expressed in terms of harmonics
with Oz for axis.

1852. For instance, if we require an expression in terms of Harmonics
: with Oz for axis, where the value of
the function is A over the whole hems-
sphere with OA for axis and nearer
to A, and is B over the hemisphere
more remote from A, then we have
just found an expression for such
a function in terms of Zonal Har-
monics with axis 04, viz. 2C,P,.
If P be any point on the spheri-
cal surface, and we put z6A=a,
OP=0, POA=¢, A:P=¢, we
have, from the spherical triangle
AzP,
o cos ' = cos a cos 0 +sin a sin § cos P,
Fig. b94. and P,(cos §’) becomes a spherical
Surface Harmonic @, expressed in terms of 6, ¢, and the value of the
function sought will be

S_A+BQ° A-B{:;Q, 3 79, . 3. 511@5 o }

1.2 .2°3.4°3.4.5.6
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WORKING FORMULAE. 913
1853. List oF WoRKING FORMULAE FOR LEGENDRE'S COEFFICIENTS.
(Dlﬁ'erentlatlons with regard to p are denoted by accents.)
1. {(1 -p®)P, }+n(n+1)P =0; (1-p3)P,”-2pP, +n(n+1)P,=0;

dP
de?

i p=p=cosf.
00 G v % /DDA s

2. Rodrigues’ Formula ; P"=§’Tn_! [lﬁ(p =1)m

3 _1.3.5...2n-1) nn-1) , .

s nl - 3En-1)?
n(n—-1)(n-2)(n-3) , .
2.4@n-1)2n-3) 2" +)

4. Py=1, P=p, P,=3p*-%, P;=§p’-3p,

7.9 5 o5 7 3.5

L TR W (K 3 = 3
Po=gar'-2gaPtaep B 2P tagh o
n! 2n+l

5. p”=1————(2—ﬁﬁ){(2n+1)P +(2n 3) Pn—z
(2n + l)(2n ~1)
+(2n—7)———2—I—P,,_.+_,,}.

6. 1="P,, P=P1’ p2=§P0+§P2', p3=§P1+-§P3,
Pr=1P,+4P,+ 4P, p°=3P,+§P3+§5Ps, etc.
dx

i B —-—-[ (p£NPT=1 lcosx)ﬂdx_.—[ PFVP =T oos "

! 2
=0 i Sy T
8. ﬁlP,nP,.dp—Olfm%n, f_lP,,dp e
9. P/=(2n—1)P,_;+(2n—5)Pp_3+(20—9)P,_5+... to P, or 3P;.
(2n +1)
n(n+1)

10. P, =P, ,=(2n+1)P,. TP P =
12. (n+1)Pyy1—(2n+1)pP,+nP, 1 =0.

13. nP,,, —(2n+ 1)pP, +(n+1)P,_,=0.

T4 {pPILP Py Py =P, =nP.,.

3 o e fedma
15. Pn"an—]:%-P”.—l) an_Pn— =p,n Pn-

2-1)P,..

16. P,,“—pP,.—n[ P,dp+C. C=0,if n be even, and

- ‘2}21’ { <(:%+l1;'} if » be odd.

17. 1+ 3P, +5Py+ 7Py +...=0 for all values of p except p=1, and then
is . See Art. 1857.
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914 CHAPTER XXXIX.

1854. The Roots of P,=0.

Between any two real roots of a rational algebraic equation
f(x)=0, at least one real root of f(x)=0 must lie; and if the
roots of the equation f(z)=0 are all real, the roots of f'(z)=0
are all real, and separated by the roots of f(z)=0, and lie
between the extreme roots of f(z)=0. The roots of f”’(z)=0
are therefore all real and lie between the extreme roots of
J'(#)=0, and therefore between the extreme roots of f(z)=0;
and similarly for all the derived functlons

Hence the roots of P,=0, i.c. of EF‘ (p2—1)"=0, lie
between +1 and —1, for the roots of (p*—1)" are all real, and
either 41 or —1.

Also no two roots of P,=0 can be equal. For if they

65;;":0 would have a common root. But

B
b 1) dpz [ $3p ~yt dp "=n(n+1)P,

and

d =Py
(P 1) d 42 +2( +1)P d s+1 +{s(8+1) n(n'}'l)} d)’ =0
for all positive integral va.lues of s. So that if P,=0 and
dpP, B, P,

719—:0 we have sz B —(ZF,— ,. ete., all zero. But this is

contrary to the result ld;; =1.3.5...(2n—1) (Art. 1840).

Hence the roots of P,=0 are all different and lie between
+1and —1.

It is obvious from the forms of P, shown in Art. 1818, that
when » is odd one of the roots is zero. Also, that in any
case as the powers of p are either all odd or all even, all the
other roots occur in pairs, one positive and one negative, of
each magnitude.

1855. The Curves 7=al, r=aP,, "=aP,, etc, are readily
traced.
(1) »=aPy=a is a circle, centre at the origin and radius a (Fig. 595).

(2) r=aPy=acosf is a circle of radius g touching the y-axis at the
origin (Fig. 596).
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GRAPHS OF LEGENDRE'S COEFFICIENTS. 915

20 —
(3) 1':aP2=a3%! has max. rad. vect. r=a, r=g, where §=0 or
m, and 0=(2n+1)‘g, and touches the lines §= +cos—13"3 (Fig. 597).
o 4 &
r r
L6 [
0 = 0 %
Fig. 595. Fig. 59.
S H— —
(4) r=aP,=aw has max. rad. vect. a and a/+/5, where

2
6=0and +cos—15"%, and touches 6= + cos—/3/5 and 0=1; (Fig. 598).

b

S
O x 0
Fig. 597. Fig. 598.
4 2
() r=al;=a phooe g 30cos 4+3 has max. rad. vect. @, where §=0;

m 3“ 4 _, /1512430
8 , where =2 X — if @=cos \/7, etc., and touches 0= cos 35 }

and so on for those of higher orders (Fig. 599).
7

*Fig. 599.
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916 CHAPTER XXXIX.

1856. We may now note the effect of a small harmonic when super-
posed upon the graph of a curve otherwise circular by tracing curves of
the type »=a(l+¢P,), where € is a small positive fraction. We merely
have to add with their proper signs the radii of the curves traced, multi-
plied by ¢, to those of the circie.

(1) »=a(1+€P,) means that the radius of the circle is slightly but
uniformly increased (Fig. 600).

Fig. 601.

(2) r=a(l+€eP;). Here the new locus shows the substitution of a
Limagon locus for the circle. _The Limagon lies partly inside and partly
outsice the circle (Fig. 601).

(3) r=a(l+¢€P,). This change substitutes an oval for the circle, which
is thereby extended at the poles, and contracted at the ends of the
perpendicular axis (Fig. 602).

Fig. 602. Fig. 603.

(4) r=a(l+eP;). Here the circle is extended in three places, and
contracted in three other places (Fig. 603).
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GRAPHS OF LEGENDRE’S COEFFICIENTS. 917

(5) r=a(l+eP,). Here the circle is extended in four places and
contracted in four others, and so z
on (Fig. 604). i

If we revolve these curves about
the axis, the corresponding shapes
of the solids of form r=a(l+eP,)
can be readily imagined ; r=a re-
presenting a sphere, and e small
and positive. The shape is that of
a sphere slightly swollen out at
the pole, and surrounded by belts
alternately lower than and higher \
than the normal level of the
spherical surface, and when = is
even the equatorial plane is a plane
of symmetry.

If the radius of the sphere be
affected by other harmonics, e.g.
r=a(l+eP,+¢P,), the locus can
be similarly constructed by superposition, z.e. the addition of the separate
effects to the radius of the sphere. -

1857. A Remarkable Discontinuity.

The expression 1+4+3P;+5P,+7P;+...4+(2n+1)P,+... is
discontinuous. It vanishes for all values of p except p=1,
when it becomes infinite.

For (1—2ph+h2) 2= Pk, and differentiating,
0

(p—h)(1—2ph+h2y *=>" nP ko1,
1
Multiplying the second by 2k, and adding to the first,
(L—h)(1—2ph 412 E = @n+1)Phn,
ik

]

and putting =1, 02(2n.—|—1)P,,=0

for all values of p except when p=1, 4.c. at the pole of the
sphere, and there the expression becomes infinite, being the
limit when - 1 of (11T+}}:)—2
Similarly putting A= —1,
1—3P,+5P;—7P3+...+(2n+1)(—1)"P,+...=0
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918 CHAPTER XXXIX.

except when p=—1, .e. at the opposite pole, and there it
becomes infinite.

We kldo Hive j j (1+3Ph+5P A +...)dp dg

=rf'sinedod¢. o A B ey }
oJo (1—2h cos O+ h2)t b L (1—2hcos8+n2)t
LR
[ 1+h+1 h] =27 .2=4m.

1858. Physical Meaning.

The potentials produced at points within or without a spherical surface
of area § and radius 7, by a layer of matter on the surface of surface
density (2n+1) P,/S are respectively
P fratt and Pyry*fr*+). For both
these expressions satisfy Laplace’s
Equation; the second vanishes at «
and Green’s surface condition is
satisfied, viz. that the difference of
attractions on two points on the
o A same normal, one just outside and

= one just inside, is to be 4w x surface
B density. And such a solution is
unique.

4 Take a particle of mass unity
c situated at the pole C of the sphere
with centre the origin O and radius
7o- The potential produced at any
point P distant 7 from O in colatitude cos™ p is

(72— 2pror + r’)—}=-l— EP,.(L)" or 1‘2P,.<r—°)'l as r < or > 7y, ...(I)

z

C

y
Fig. 605.

and we have seen that an internal potential P, j and an external

potential Pn;%l are produced by a dlstrlbutlono of surface density
which varies as (224 1) P,. {
Hence the potentials (I) are produced by a distribution 3)(2z + 1) P,.
0

But the distribution producing a given potential inside and outside is
unique, and we have seen that a concentration into a point at the pole ¢

does produce it. Therefore the distribution §(2n +1) P, must represent
0

a concentration of matter into a single point at the pole C, and must
therefore vanish at all points of the sphere except at the pole, where it
must become infinite.
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A DISCONTINUOUS SERIES. 919

This theorem is of great service in obtaining expressions for the
potential in the case of discontinuous distributions of matter.

1859. Let P be a point at which there is no attracting
matter, O the origin, @ the position of an attracting element
of mass m; OP=r, 0Q=r, PQ=R. Suppose the attracting
body to be a homogeneous solid of revolution whose axis is
taken as the z-axis. Then the potential at P is expressible
in the form V=Z%=%A,,Pnr”+%)3“%, where 4,, B, are
constants; the first summation Z4,P,r" referring to that for
all those particles for which » <+, and the second for those
for which r > 7/, and this is a unique solution. Now supposing
that the potential is known for these two parts in convergent
series for each such portion at each point on the axis, where
P,=1, then the values of 4, and B, are known for all values of
n. Therefore, assuming that the potential at any point on the

. By . i
axis is expressible as E(A,.’r”-}-r—"), its value at any point

‘off the axis may be at once written as Z<A,,r"+r-;‘ P

1860. Consider the expression i
2(2n+1) Pa(A) Palpe), > Q.
where P, (A), P.(p) are Zonal Harmonics 1 Q
and A, p the cosines of the colatitudes of :
two points. ; o 5
Take the case of a circular wire of Fos=1\
infinitesimal section. Take as origin o x

the centre of a sphere of radius 7, of
which the wire forms a small circle,
and let the z-axis be the normal to the
plane of the wire. Let M be the mass
of the wire considered of uniform line- Fig, 606,
density. g

The potential of the wire at a point Z, (0, 0, 2) on the z-axis is

M (r - 20rgz+22) " Y, where cos™\ is the angular radius of the small circle,

e. yil’,,(/\)(i)“ or il iP,,()\)(’l’> as z< or >y, and therefore
70 0 7o zZ 0 z

at a point @ in colatitude cos™u and distant » from O, the potential is

@ n M . \ 2
%OZP,.()») P,.(p.)( ) at @,, where r < 7¢; and = %P..(/\)I’,.(;L)(;—o> at Qe,

o
7o

where » > 7.
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920 CHAPTER XXXIX.

Now (2r+41) P, (A) is the law of distribution of surface density giving
a potential o« " within and o« P+ without the sphere. Hence
a surface density §(2n+1)1’"()\)1’n(p) will give the same potentials as

0

it has been seen that the distribution of a uniform line density
along a circular wire gives, and is unique. Therefore the expression
2(2n+1) P4(A) Py(p) must be zero at all points of the spherical surface
0

except for such points as lie along the small circle of angular radius cos™* A,
where the surface density is infinite but the line density finite. That is,
the expression is zero except where A =p, where it is infinite.

The theorem is similar to one occurring in Poisson’s discussion of
Fourier’s Theorem, Chapter XXXV.

1861. Practical Method of Expression of a Rational Integral
Algebraic Function of x, y, z in Terms of Harmonics on Unit Sphere.

Let H,=Aa"+ax"1(By+Cz)+az"2(Dy2+Eyz +F22)+... be
the general homogeneous expression of degree n, which con-
tains §(n+1)(n+2) coefficients. Subtract. and add
(@42 42 H,_,, where H,_y=d'zr242%3(By+C2)+ ...,
which contains {(n—1)n coefficients 4°, B, (’, ... to be found.

Apply the operator V2 to H,—(a®+y%+22)H,_,, Viz.

A=Az +....
We then obtain, after this operation, by equating to zero each
resulting coefficient, }(n—1)n equations to determine the
3(n—1)n quantities 4', B, C’, ete., and H,—(a?+1y2+22)H,_,
becomes a spherical harmonic of degree n. Next apply the
same mode of procedure to H,_,, and so on. We have then
expressed H, in the form

Y - r3(r52Y )+ (rn-tY, )+
or (Yot Yo s+ Y0 it )5
and if we take our sphere as r=1, we have
Yn"l‘ Yn—2+Yn—4+---y

a series of surface harmonics.

If the rational integral algebraic function considered consist
of groups of terms of different degrees, the same rule will
apply to the terms of each group.

As a preliminary to such procedure, all terms which are
obviously already solid harmonics should be laid aside, to be
restored when the process is completed, amongst the other
harmonics of their own degrees.
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1862. Ex. Express
b=+ agy + dyz + bra® + byy® + bg2® + byyz + bgsaw + bexy + cxyz
as a seriesin the form rY,+r2Y,+rY,+ ¥,.
We only need consider the terms b,z? + byy? + byz?,
i.e. (by=A)@® + (by— A)y® + (bs — A)2® + A (2? + y2 + 22),
and  W2[(by— A)a® + (by— A) 7%+ (bs— X)22] =2(by + by + b3 —3A)=0
if A=%(by+0by+05);

2by—b3—b 2b3—b, - b
3 2 2 3 1 3 1 2
&z + 3 Iyt 3 2t

Lop=cayz+ [2b1 _:’ b
+ byz+ bgzz + bexy]

+ [y + agy + agz] + Iﬁ%r’,

which on the surface r=1 is of form Y3+ Y, + Y, + Y.

1863. If the function be not already expressed in Cartesians,
it is usually best to express it so first.

Ex. Express sin® §sin?2¢ in terms of Surface Harmonics.
sin 0sin?2¢ =4(sin 6 cos p)?(sin fsin pP2=4a%? (r=1),
and proceeding as before,
= 4 {aty? (e + ey — o)) + r (Bt + Byt - N + oy B
and putting z=sin fcos ¢, y =sin fsin ¢, z=cos §, and r=1, we have a
result of the required form Y,+ ¥, + Y.
1864. Change of Axis of a Legendre's Coefficient.

If P, be Legendre’s coefficient of order n, we have the series
of solid harmonics
3p—1 , 322—12 22 gl g2

oty + S = - .
Pr=z; Py’= T el 2 o 3 ;

28—8zrt 228 —3za®—32y?

2 o 5 2 2

Writing IX+mY +nZ for z where l2+m2+n2=1' and

@t y2 2t =X24 Y2+ Z*=R? these solid harmonics become,
when referred to new axes 0X, 0Y, OZ, IX+mY +nZ;

3(IX+mY+nZ)P—(X*+Y?*+2%) 51X+ +)—-3R*(1IX++),

2 ? 2 :

85
P313=5p 3 31073:5 ete.

ete.,

. M AN
m n

and the axis of this set of harmonics is %‘
(Fig. 607).

If we transform to polars so that this line is given by
l=sin @'cos ¢', m=sin O'sin ¢', n=cos @', and X=Rsin 6 cos ¢,
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Y=Rsinfsin ¢, Z=Rcos, the axis 04 of the new set of
harmonics is inclined to the new Z-axis at an angle 6 and
the azimuthal angle is ¢, and the expression

I X+mY4nZ

R
and is still a cosine, viz. the cosine of the angle between the
original axis O4 and the direction OP of the point X, Y, Z.
If then we take r=R=1, and if, instead of p, we write
cos A cos 6'+-sin @ sin 6" cos (p— ¢"),

we get a more general form of Harmonic than the Legendre’s
Coeflicients. There are now two independent variables 6 and ¢,
0" and ¢’ being regarded as known.

The Harmonics in their new form are known as Laplace’s
Coefficients and denoted by Y, Y,, Y;.... Thus for Legendre’s
Coeflicients the z-axis 04 is taken as the axis of the system, and
AOP=6. In Laplace’s Coefficients the axis of the system is
the line €', ¢, and the direction of P is 6, ¢.

is cos 6 cos @'} sin 0 sin @ cos (p—¢'),

Z
e .
A
9,
o\
Y ,
N ? X
@
Y ;
Fig. 607.

The curves for which 40P is constant are a set of parallels
about the axis of the coefficient in either case, viz. cos §=const.
for a Legendre’s Coefficient, and
cos 0 cos @' +sin O sin 6" cos — ¢’ =const. for a Laplace’s Coeff.
Both sets are Zonal Surface Harmonics. When multiplied by
7" d.e. OP" they are Zonal Solid Harmonics. If we further
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transform coordinates so that Z becomes the distance from
any other fixed plane through O, the Solid Zonal Harmonic
remains a Solid Zonal Harmonic and the Surface Zonal
Harmonic remains a Surface Zonal Harmonic.

1865. Tesseral and Sectorial Harmonics.

Take the case of an unreal plane Z=z+a(z-tw), l=a, m=a,
n=1, so that [24m2}n2=1.

Then, if F(z) is a Solid Spherical Harmonic, so also is
Flz+a(z+y)}, ie.

2 8
F@)+{ i@+ F @)+ 5i(e+@PF @)+ ...+ 5@+ ) F) + ..

also satisfies Laplace’s Equation V2V'=0 for all values of q,
and the equation being linear each term of this expansion will
also do so, and will itself be a Solid Spherical Harmonic; and
taking either sign for ., we have new forms of Solid Spherical
Harmonics (z+y)'F“(z). Also their sum and difference are
also Solid Spherical Harmonics. Therefore transforming
to polars with r=1, z=sinfcos ¢, y=sin0Osin¢, z=cos 6,
sin’ 6 cos 8¢ F“ (cos 6) and sin® @ sin s F¥ (cos @), or, what is

thdisdne thlng, (1 _pZ)T‘I cos 8¢ d‘;le): and (1—p2);— sin 8¢ d;IG:R are

new forms of Spherical Surface Harmonic functions of 0, ¢.

1866. These new Harmonics are called Tesseral Harmonics
of degree » and order s. When s=n,

(/03 N i 7' A 3
T dp =1.3.5...(2n—1), a constant.

Rejecting the constant, (1—p?)* cos ng and (1—p?)* sinng are
called Sectorial Harmonics of degree n.

It has been seen that in the case of a Zonal Harmonic its
vanishing gives an equation of degree n in p with all its roots
real, and the spherical surface is mapped out into a series of
belts or zones by circular sections at right angles to the axis
of the Harmonie, the angular radii of which sections are
determined by the roots of this equation.

In a Sectorial Harmonic the roots p?*=1 give the poles in
which the axis of the Harmonies cuts the sphere. But in
addition we have, by the vanishing of such an Harmonic,
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cos ngp=0 or sinng=0, as the case may be, which indicate
roots 'n¢=2>\7r+;—': or A7; i.e. a set of great circle sections

through the axis of the system of Harmonies, which therefore
map out the surface of the sphere by meridians.

In the ca.se of a Tesseral Harmonic the vanishing of

4 cos

(hrgtly sin ¢d

(ii) the merldlans (in number s), the solutions of dﬁ‘ ={);

(i) the poles,

This is an equation of degree m—s in p determining n—s
small circles whose planes are at right angles to the axis of
the system.

The surface is now mapped out by these meridians and
small circles into a set of tile-shaped elements or tesserae.
Thus to any Zonal Harmonic correspond new Harmonics,
Tesseral and Sectorial, which are all species of Laplace's
Functions.

1867. The most gemeral homogeneou9 functio'n which s
rational with respect to x=sin 6 cos ¢, y=sin 0 sin ¢, z=cos 6,
and of the n'™ degree, for which r is put =1, and which satisfies
the equation

9 2Q 1 2
S\t s (- 1Q=0,

. el Q=0a,P,+ > () cos k¢ +b, sin k¢) sin a;f,:‘ )
1

where P, is the Legendrian coefficient of the n'" order.

For considering the expression A, cos k¢ B, sin k¢,
A, cos k¢ could not be a rational integral algebraic function of
sin @ sin ¢, sin O cos ¢, cos O unless 4, itself contains a factor
sin* .

Put Q=cos k¢ sin* §. v=cos k¢ . u, say. Then the differential

du 2
equation becomes (1 — u 2)12——2"d n(n+1)_l————,u’ u=0;

and writing u=(1—,u.2)7‘rv, we have

2y ?
(=) T3 2w (b D52+ (m(+ 1) — k(e 1)} =0,
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which is Ivory’s Equation of Art. 1839, where

2 du
v=a—M{AP,,+BP jpz—z)[ (Art. 1816).

But as we require the imfegral function of x which will
satisfy the general equation, we take B=0. Hence

N o
k n
Q=24 cos k¢ sin* e

satisfies the equation. And in the same way, starting with
Q=:sink¢ sin* 9. 'v, We should have arrived at a solution

Q=Bsinkg sm"0 it} and these solutions hold for all posi-

tive integral va.lues of k. Hence the most general solution
of the kind required, viz. homogeneous (with r=1) and a
rational integral algebraic function of sin 6 cos ¢, sinfsin ¢,
cos 0, is that stated above, viz.

> o D
0— aoP,,+Zl;(a,, cos k¢ + by sin kgp) sin* 6 %’

where p=cosf, and contains 2n+1 arbitrary constants. It
is clearly useless to continue the summation for values of
k > m, for the last factor would vanish for such terms.

It thus appears directly from this form of the Laplacian
Equation how the Tesseral and Sectorial Harmonics arise.

1868. To expand any Function of u and ¢, say F(u, ¢), in a
Series of Laplace’s Functions.

We have seen when p is any quantity between =1, that
with the definition (1—2ph+h3)'§51+P1h+P,h’+... , wWe
have 14+3P,+5P,+...+(2n+1)P,+=0 except where p=1,
when the sum becomes w. Let p stand for the cosine of
the angle between the direction u, ¢ and a fixed direction

w, ¢, 80 that p=puu’ +/T— /T —pcos (¢ —¢'), and consider
the itagral ”(1 8P+ 5Pyt F(u, ¢) dudop.

If we integrate over any closed region S on the sphere, which
is not cut by the direction u’, ¢, this result is evidently zero.
If the integration extends over the whole surface of the sphere,
the direction u’, ¢’ must be included; but no part of the
integration contributes anything to the result except that
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included in a very small contour about the direction u’, ¢, and
in this direction F(u, ¢) becomes F(u', ¢). Hence the value

of this douBle integral is F(u/, ¢")”'(1+3P1+5P2+...)du do,

taken over the infinitesimally small area within the small

contour just enclosing u’, ¢ But as 14+3P;+45P,+...
vanishes at all other points of the sphere, this is equal to

P, )| [(T+3P 5P+ ) dudy,
taken over the whole sphere, =4=F(u/, ¢'), by Art. 1857;
’ ’ 1 =
o PG )= S @) [ 4)Pududs.

When the integrations are effected each term is a function
of u, ¢’, which enter through the P functions alone, and each
term will satisfy Laplace’s Equation and be a Laplace’s
Function.

This proof is due to O’Brien.

When F(u, ¢)is itself a Laplace’s Function, say Y,, we have

AWt 2(27‘—}—1) ”Yﬂp, dudg,

where Y, represents the value of Y, along the axis of the
functions, 7.e. when u=u"and ¢=¢’; and every term vanishes
except that for which #=mn, whence

1 (o 7Y,
'[_Jo Y, Pydudp=gi .
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1869. The Value of the above Integral may be readily deduced by
Physical Considerations.

Take a layer of matter of surface density o=Y, on the surface of the
sphere (radius @). The potential at any internal point C at distance  from
the centre and R from the element ds,

2
v =f£"§= __EE_W=IY"£(I’°+P,£+P,£~,+...)d8,

(a?—2ar cos 0 +

ie. V= f YuPotd

Similarly, at an external point,

2
V,=[y,.1(1’,+}>,‘1‘+P,‘7-‘2 + ...)ds,

rn+1

e, V. fY P,

But, by Green’s Theorem,

(Bl 0 e e

at any point 4 of the surface. Fig. 609.
. 2n+1 , :
. f Y,P,d8=4rY,’, and dS=a’dw, where do is the elementary
solid angle subtended by dS at the centre.
Hence fY Py dw-—41ry ’.
n + 1
1870. Lemma.

d
If u=p+1,v=p-1 and DE@, we may show, by applying Leibnitz’
Theorem and comparing the 7** non-vanishing terms on each side, that
ups Dyt (n4-8)! =D *utp™/(n —s)! ; i.e. that if 2= (p2—1),

FADM+sn(n48)! =2~ EDn=s;m (0 — g)!

1
Hence f 28(Dn+s7) 2 dp

b2 =3 (n+s)!
an I n+ts,n THn—s,n J,
_j.lz Thuuns o€ TR LT dp'(n—a)!

e

= g:f:;‘ f_ : Drtsgn, D=5z dp, and integrating by parts,
! i

ot (-1 Drmpap

(n+3)! 2

(n+8) s(Qn
i (1@l

e

112", nv)zj P de_
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1871. Integral of Product of Two Harmonics over Unit Sphere.
If Y,, Z, be two Spherical Harmonics each of degree n, viz.

| 4K+ ) (4, c0s 5+ B,sin sp) K,
%

and Ko+ Zﬂ: (g cos s¢p+bysin s¢p) K
1

where K,=(1— p2)’;P§;’) (Art. 1867), we have, upon integrating
the product with regard to ¢ from 0 te 2,

Zm
L Y, Zudp=2m A K+ 73 (A0, + Bb)K,
T
and integrating this with regard to p from —1 to 1, we have
1 (2r
by the Lemma j [ Y,Z,dpd¢
-1J0

i 2 ” (n+s)! 2=
_27era°——2 +1+$1(Asas+Bsbs)(n—_s')—! . m

— gy (2t 33 o (A + B

In the case when the harmonics are of different orders,
viz. n and m,
j j Y Z.dpdp=0, by Art. 1783,

If the harmonics be identical, 7.e. Z,=Y,, we have
: (n+s) |
2 2 2
S e
1872. If any function of u, ¢, say V=F (,u., ¢), be expanded
in a series of Laplace’s Functionsas V=Y ¢+ Y+ Y,+ Y3+...,
which is true upon the surface of the sphere r=aq, then at
points within the sphere we shall have

T s

Vi=Y0+ Yl(_1+ Y2(72+”'7

and at points without
- ad P

Vg=Yo;+Yl;2‘+ Yz,;?i'+"' .
For each term is a spherical harmonic satisfying Laplace’s
Equation and satisfying the conditions at the surface, and the
latter vanishes at co; and there is but one value of ¥ which
does so. '

Thus, when V is given all over the sphere, we can write
down its value at any internal or any external point.
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1873. Differentiation of the Zonal Harmonics
Z,=Prm, Z_,,Ez—:}'"'—l.
With cylindrical coordinates (p, ¢, 2),

r=v22+4p?  p=cos 0=z/N2+ p,

O tn Rt D SR R B Ou__ m/1—p?
%2 Jz2+p2 il 50 Vg a it i AL TR
AR T ey 2
n 3 A 2, B3 2),
Te“ "ar+ o el il b r o)’

oZ,
. 5——— {me,,-}—(l ,uz) }r"‘l—m'“—lP,, 1=1Zp_y, (Art. 1844),
A)
oZ_, AR (
ity {— pnPp 4+ (1—u?) £ ‘}r“"“— =" Py=—nZ., ..
Therefore, whether ¢ be positive or negative, —%—Zz—‘=iz,'_1, a
rule analogous to the differentiation of a power. It follows that
82Z Z;
g "33—,——¢(z—1) (=1 4+1)Z;_,.
Agam, by Arts. 1843, 1845,
Zs 5 aP,\ n19Pn1
30 =1 M2 <’nP,,-—-y.d > —VI—pt o A ! 1 I8
Bl i g, Cap g
% ————\/1'—,“'27'_” l{npn—1+l1- du =—n1—p2rn l?,u.— J

1874. Change of Origin of Zonal
Harmonics to a New Origin O’ or the
same Axis Oz.

Let m be a positive integer. P p
Taking O as the origin and Oz as
the axis of the Zonal Harmonics,
Z, is a function of p and z alone, X
=f(p, 2). Then taking O at the (o) -
point (0, 0, —a), the new ordinate 2’
of any point P, whose coordinates o N
are x, y, z with regard to axes with A
origin O, is when referred to parallel Fig. 810,
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axes with origin 0, 2+a, and the corresponding Zonal Har-
monic Z,’ is denoted by f(p, 2), i.e. f(p, 2+a); and this being
of degree n in z, we have

P of , %% ar of
Zn —f+“a_z+‘>' 28 Tl 5n

the accent denoting the Zonal Harmonic of degree »n with
reference to the new origin That is,

& a?2*Z, a"oZ,
T= e e 5y B ]
= +mZ,,_l+”(” Doz, ot ... 4nam1Z, +an

Similarly, if the Zonal Harmonic be of negative order,
Z_, and r>a, we have a series in ascending powers g but

extending to . For, as before, Z_,.is of form F(p, 2),
oF  a**F

Z.=F(pz+a)=F+a= +5 =5 +..
digval ;z _"_1+n(n+l) Wz %Z%_,—i—m.

But in cases where r, being measured from the first origin,
is < a, this expansion is inadmissible. We then have

2= 2+ e+ 0Py = (a+2ar cos 0+ 1%
1 2
=E<P0_P1£+PBL_'"')
1<Zo 4yb Za )

a a Ta?

Diﬂ'erentia.ting with regard to 2, i.e. with regard to z+a on
the left side,
°Z., 2Z, 38Z, 4Z
(G20 B 80, L),

%
: Zg: v
L= e _1 ) Dt 80T ek
se. 1.Z_,_a,(1.z., 21437 4aa+...).
Differentiating again,

i 2z_3_l(1 97,~2.3 l+3 4%

a ai at

Z’ ), ete.,

and thus, by continued differentiations, we arrive at

7 [1__ n(n+1)Z _n(n+1)(n+42) Z, ]
16 " Lo ot b bt it X
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PROBLEMS.

1. Show that 4a®+ ByS+ C2%— 3 (a2 +y2+2%)(Adx+By+C2) is a
spherical harmonic, and that the corresponding surface harmonic on
unit sphere is

(4 cos®¢ + Bsin®¢)sin®60 + Ceos® 6 — 2(A cos ¢ + Bsine)sinf — 2 Ccos.

2. If 04, 0B, OC be three perpendicular axes cutting a unit
sphere with centre O at 4, B, C, and if P be any other point on the
surface, show that cos P4 cos PB cos PC is a surface harmonie.

3. ABC is a fixed quadrantal triangle on unit sphere, and a
point P moves on the surface, so that

V=acos? PA+bcos? PB+ ccos? PC + 2f cos PBcos PC
+ 2g cos PCcos P4 + 2h cos PA cos PB

is a surface harmonic. Show that the cone 7’=0 has three perpen-
dicular generators.

4. If P, be Legendre’s coefficient of order », show that

f P,P, (5P, - 3)dp=0,
-1
unless n =3, in which case the value is 6/7.

5. Show that
1 i Wi
I (PWT+P3+Pp5+ ...+ PufBn T 1)dp=2(n+1).
-1
6. Show that jl p* P, dp =0, except in the cases
~1

1 1 1
j B ot ek J'_lp‘Pg dp =, I_lp‘ﬂ dp =gy
7. Show tha.t,-r p°Ppdp=0, except in the cases
-1
1 1 1
[ priap=t, [ ppao=s, [ pPadp=ds
ik e -
8. Show that the area of one of the larger loops of the curve
Skl e o
r=aP, is 5—,2<5\/—2--|-llcos IJZ—’»)'

9. Show that if e be very small, the area of the nearly circular
figure 7 =a (1 + ¢P,) is approximately ma?(1 + e).

10. Show that if ¢ be very small, the volume of the nearly
spherical surface 7 =a(1 +¢Py) is very approximately §7a®(1 +$¢?)
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11. Show that if B2=1 - 2az+ a2, RZ%=1-2Bz+22,
1 ldy’ i3 —s
il W sl -1
J-_IRR, JaB tanh—1/ap,
and deduce the values of

1 1
I PpPndp, m+n, and I P idp.
-1 -1

12. Show that

8in 304118 sin46 4 16 sinbd 1 8 128
g P2+’-3—5-

o33l e sty ety L

13. Give the rational integral function of the second degree of the
three quantities, sin A, cos Asin 6, cos A cos 6, and put the terms of
the second order under the form

¢, 8in? A + (¢, sin? € + ¢4 sin 6 cos 6 + ¢, cos? 6) cos? A

+ (c5 cos 0 + ¢4 sin 6) sin A cos A,
and show that, with the addition of an arbitrary quantity c,, it
becomes a Laplace’s function if 3cy= — (¢, + ¢, +¢,).

[Smite’s Prize, 1876.]

14. For points z, y, z which lie on the sphere 2?+32+22=1,
express ) as a series of surface harmonics, where

Q=2+ 2y+ 32+ 422 + 5y° + 622 + Tyz + 822 + Yxy + 102% + 11ayz.

15. Express sin* 6 in a series of Legendre’s coefficients as

: 8 16 8
R R b
sin 0—15Po 21IZ’2+35P4.
Why cannot sin®é be expanded in a finite series of spherical
harmonics ? [MATH. TREP., 1873.]
1 dr(p-1)

16. If P,=

Tonl G prove that if IP,.d;L be taken to

vanish when p=1,
P dﬂ;._l_(ﬂz_l)%- Py=@n+1)|P, dp+ P,
n n(n+l) dF ) n+l 4 n n—-1*

Show how by the help of these formulae the numerical values of
Py, P,, Py, ... P,, and those of their differential coefficients, may be
conveniently found for any given value of p.

[Pror. Apams, S.P., 1873.]
17. Prove that

0
log(l +cosec§> =P+ 3P+ 5P+ P+ ... [CorL. Ex.]
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18. Obtain a solution of the differential equation
‘%(sin xd%P,,) +n(n+1)sinzP,=0

in the form of a series of cosines of multiples of .
[MaTa, TrIP. II., 1888.]
k=1 )
19. Show that if (1 - 2az+a?) * =1+ >7@,a", then will
0
(1+2) Qua — @04k +1)2 Qs + (0 +E— 1) Q=

[E. J. Rours, Proc. L.M.8., xxvi.
20. Prove that if

Va(l —2aa:+u.2)_%=l+Ka+K2a2+...+K,‘a”+

i) mé—l—,—-a%z-&t"’ff‘

4 o
(ii) (1 —a:z) —855 +m2 Sk = 120278

(il) (1-2?)K," -4z K, + n(n+3)K,=0;

(iv) (n+1)Kpyy - @n+3)zK, +(n+2) K, 1 =0;

™) K/=@n+1)K, 1+ (2n-3)K, 3+ (22 -T)K, 5+...
(vi) (2n+3)jK,,dw=K,,+1— n—1 +const. ;

(vil) Kgp 1=8P+TPg+...+(4n—-1)P,, ,,
K,,,= 145Py+ 9P+ ... + (4n+1)P,,.
(viii) K K,dx=0 or (n+1)(n+2),
according as m+n is odd, or even and m 4 n;

i 2kl
21. f V=(1-2ap+a?) 2 =1 +3Q,a" show that

43 1 d "'P
=13 @m-1) (@) mn:
2mtl

22. If V=(1-2ap+a?) 2 =1+2Q,a" prove that

A 2m(2m+1)...2m+2r-1) .. (1
@) I_,Q”'dp=2 1.2...(2r+1) i () | Caradp=0.

23. Show that the roots of
n n(n-1) xn_’_'_n(n— 1) a(n--1)(n-2)(n-3)
I2n(2n-1) 1.2 2n(2n-1)(2n-2)(2n - 3)
are all real and unequal,.and lie between 1 and — 1.

h— =i =0

www.rcin.org.pl



934 CHAPTER XXXIX.

24. Prove that one solution of Legendre’s Equation
(1-2%)y, - 20y, +n(n+1)y =0,

where n is a positive integer, is a polynomial of the n** degree, and
determine it.

25. Prove that a like statement is true of the equation

(1 -2?)y,+azy, +n{n—-1-a)y=0

unless 1+a —n be one of a series of numbers n -2, n—4,n -6, ...
which terminate in 1 or 0, according as n is odd or even, and in that

case a polynomial of degree 1+a - n is a solution.
[MATH. TrIP. IL., 1918.]

26. P,(p) being the coefficient of 2" in (1 — 2/uh+h“)'i and m, n
1
unequal, show that “‘ p2P,(p) Pp(p) dp is zero unless m and n
-1

differ from one another by 2, and that when m=mn+ 2, its value is

2(n+1)(n+2)/(2n+1)(2n+ 3)(2n + 5). [Mars. Trie. IL., 1916.]
if m =n, show that the value is

2 (4n8 + 602 - 1)/(2n — 1)(2n + 1)(2n + 3).
27. Prove that

1
O [ 0-Bri@P@E=0 @rm);
3
/i
G [ a-a)pi@pds =mm@s 1y
- [MaTH. Trrp. IL., 1914.]
28. Prove that P,,+1—P,l,_,=(2'n+l)j Ppdp= (2n+1)j P dp.
29. Prove that

i) I'P,,(cos 0)dé =0 or { (8- )} as n is odd or even ;
nmw
+1

2.
(ii) j cos P, (cos 0)df=0 or { ('n, 2)} as n is even or odd.

30. Show that
() (1- z)—b=f{1+5( )P +9(35)P -»13(;'_3_4:_2)2P6+...};
(i) 2 4 B 5() o(35 ) 3(gag) + s

(iii) ~/1—p—132 =£{3.%Plr+7<%> 3p 11(1 By P5+...}.

[Use formula of Art. 1813.]
[CrELLE, Jowr. LVI. ; ToDHUNTER, Punctions, p. 115.]
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31. Show that .P Poup P2,2_P1/2y Ps'z—Pz’z’ P‘rg e Palz are
respectively equal to (p%-1)/12, (p2-1)/22, (p®-1)/3% (p®-1)/42,

i-“/E_lorl
5 :

and that P,=P,, whenp= —}orl; Py=P, whenp=

32. Prove that
P2+ 3P2+5P2+ ... +(2n+1)P2=(n+1)2P,2 - (p?-1)P,'2
[MarH, TrIP., 1888.]
33. Prove that
Py24+3P/2+5Py)2+...+(2n+1) P, 2=1{(n+2)*P, % - (p*-1)P,"2}.

[MarH. TrIP., 1888.]
2l+1

34. If (1-2az+a2) 2 =1+Zja+Zpad+...+Z,0"+. ., | being
a positive integer, show that, accents denoting differentiations with
regard to z,

Q) j‘ Z,Z,do=0 if m+nbeodd;
o |
(i) (1-2%)Z," - 2(1+ 1)aZy +n(n+ 2+ 1) Zn=0;
(i) Zy = {20 +D) = 1) Zy + {2041 = 5} Lyt {2(040) = 0 Zp g ...
35. If (1—2az+a”)—"'=z P,, na™ show that

n=0
Nebd) d
(1) x_Pm.n"a"me.nd:an-ﬂ;

@) (1 - x’) d -(2m+l)m P, "+n('n+2m)Pm =

(i) I (1 -a2m—4P,, P, . dz=0, r#n;

22111 (n +2m 1) [ II(m - 3) \*
m+n _ Il(n) {H(2m-1)}'

(iv)I (1 -a?)m—iP?  de=

36. Show that, if k>0 and P, be the Legendrian coeflicient of
order A,
- SdEPy bR,
() j (22 -1 S dn =0
m and n being different

+1 : el .
ii) | eprPy, do= L -‘. a?P,dx;} positive integers, and p
w j MITIEeAS o any positive quantity.

(iii) I PP, dz },L"—[ oPP, dx;
0

+n+3 [MaTa. TrIP. II., 1889.]

37. Prove that P,(sec6)= ;L sec™@(1 + sin 6 cos x)*dy.
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38. If P, () denote Legendre’s coefficient of degree n, show that

L AP sdP ) % ; :
p(l- ’LZ)T;[ a dp. is zero unless m ~n be unity, and determine
its value in these cases. [MatTn. Trie., 1896.]
39. Prove that
m
1 m=n (wg 1)! dn+m(zl o ])m
(x +cos p/a® —1)" —2nn| dxn(”’ r+ 2"—124(n+m)! dantm

and deduce the formulae
g 1 dn—m
@ (n—m)! dan—m

- 1(~
(i) Py(@)=_ L (z+cos gz —1)"d$.  \fary Tere., 1887.]
40. Denoting by P,(r) the Legendrian coefficient of order n,
prove that if m < n,

j’l d;’f d;f,.d _(~n—l)n(nzl)(n+2){3m(m+l) n(n+1)+6},

if m +n be even, but zero if m +n be odd. [MATH. Trrp., 1897.]

cos me,

8- 1)m dn+m
(& T m))! dgn @ = 1"

(@~ 1=

41. Prove that if n be a positive integer (smh’x~> cosech"':c is
equal to

(- 1)"27! coth™z {1 + sech?z +

"(%}_) ”(n-l);:‘.;?)(n_s)sech‘x+...}»

and that either expression satisfies the differential equation

smh'xi—=n(n+ 1)y.

da? [MaTH. TRIP., 1897.]

42. Prove that
: ¢ )

6
cos ne cosy cos ne sin =
T P, (cos0)= Endd b
V2 0 Jcos ¢ - cos 0 0 ¢ Jeos B —cos ¢

except when n=0, when the right side =/2Py(cos 6).
[DiricaLET ; ToDHUNTER, Functions of Laplace, p. 35.]
43. Show that if the usual polar variables 6, ¢ be replaced by
2, y defined by cotg. e =z, tan g e$ = —y, the surface harmonic of

- P 'n(n+ 1
order n satisfies the equation 'ay e y}g)

If 7 be any solution of this equation, verify that
oF . OF. T« olca) 0P | SaKe A Jor
a‘*‘@', m55+y@, x a—+y5y—
are also solutions. [Marh. Trrp. IL., 1889.]

=0,
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44. X,' is the solid Zonal Harmonic of positive order n, having
the axis of z for its axis and the origin of coordinates for its
origin ; X,, is the solid Zonal Harmonic of positive order m, having
the same axis, and a point distant @ from the origin for its origin ;
prove that

X=X, +naX,q + 2020

L.

a?X, o+ ... +na"1X, +an

The corresponding Zonal Harmonic of negative order being
denoted by Y/, prove that for points included within any sphere
whose radius is less than a, and whose centre is the new origin,

11 _(@+)1X, (n+2)! X, ("+3)!X3+...].

A =0
n = gnil n! a 21n!  a? 3in! a8

Obtain the expression for Y,’ for points outside any sphere
whose radius is greater than «, and whose centre is the new
origin in the form

4 1 ! + 2)! + 3
Y Y ("l: ) Yn+1 5 (’n2' ) 2Y“+2 (n )

a‘stH! A

[MATH. Trip., 1885.]
45. Prove that the series

PP S (- DR+ 1) g P

is equal to —p for all values of p from —1 to 0, and to p for all
values of g from 0 to 1. Apply this formula to calculate the
potential of a hemispherical shell whose surface density varies as
the density from a diametral plane at an external or internal point.
[MaTH Trrp., 1878.]

46. Show that the surface

e a[l LbF, & 1h.3 98,5 1.8,.0.13F, jl

5*3T.4 94367294658

consists of two equal spheres which touch each other at the origin.
[MaTH. TRIP., 1884.]

47. If a=sno+ Agsndz+ A sn®z + A, sn’a + ..., show that

(2n+1) dgppa =k" + (n+ l)n kn1(1 - k)2
FRRIELINE a1 - Bk oke
9 (K
s :J' {dn(u, k)2 du,
T Jo [Mara. Trre. III., 1886.]
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48. Prove that if p?=22+142 and 2=p%+22% then U; being the
solid Zonal Harmonic of degree 4, and P; the corresponding Legendre’s
coefficient, ' > o
a—p2 |'+2=T"[P.‘..1 —(iz +i4 l)P',],
2 U
Op? 128 T
where accents denote differentiations with regard to the cosine
of the co-latitude, giving

2 2i—8 2
o 2Uedt™) 0 = (20 +1) Pi.

and

1Py - i(i- 1) Py,

op? op?
49. If p=a2+9? and /; be the solid Zonal Harmonic of degree 7,
show that | iy 3 Vi,
7-2i+1 'ap Op ,.m—s’
where 12=22 + 2 + 2% [Mars. Trrp., 1890.]

50. Show that

dmP dmP, anPy
(n— m+1)—L“ n a > . [S.P., 1875.]

51. Find the number of independent solutions of the equations
Ug + Uy + Uy = 0, Ty + Yty + 2u, = nu, and prove that if « be a solution,
w(z2 4 32 +22) “ ¥ 3150 will satisfy the first equation.

Prove that if

o+ Bo+ye?=f(z+yo+20?) and A4+ Bo+Co?®=d¢(a+ Bo+yw?),

where o is one of the primitive cube roots of unity, then o -,

B-v,y—0, A-B, B-C, C— A will all be spherical harmonics.
[MaTH. TrIP., 1876.]

52. Prove that the function which has the value +1 on the
Northern hemisphere and —1 on the Southern is given in Zonal
Harmonics by the series 2Cy, 1Py, .;, Where

1.3.5...(2n-1) 1.3.5...(2n+1)
Conaa=(- 1)"[ 3.4.6...9% +2.4.6...(2n+2)}'

Hence find a function which has the values 4+ B, 4 - B on
(i) the Northern and Southern, (ii) the Eastern and Western, (iii)
any two corresponding hemispheres, respectively, the axis of the

Earth being permanently the axis of the harmonics.
[MATH. TrIv., 1884.]

53. The polar equation of a nearly spherical surface is r=a +0P,,
where P, is a zonal harmonic of the n degree, and b is a small
quantity whose powers above the second may be neglected. Show
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that the area of the surface exceeds the area of a sphere of radius a
by 27b%(n? +n +2)/(2n + 1). [MaTH. TrIP., 1878.]

54. In the nearly spherical surface r=a+bP,, where P, is a
zona!l harmonic and b is small, prove that at any point the excess of
the measure of curvature above 1/a? is to a first approximation

b

e T

ad (n?+n—2)P,. [MaTH. Trrpe. II1., 1886.]
55. Show that the Legendre’s function @, of the second kind

(Art. 1821) may be expressed in the form
2n—1 2n — b5 2n -9
ulf gy L
Q, = P, tanh-1p { o Pyt g ])P,,_3+5(n_2)1>,,_5+...},
and that the general solution of John Ivory’s Equation,

%{“‘P2>‘“§pe+1}+{"<n+1>—s<s+1>}<1 Py =0,

is given by - =A4P® + B@Y; and further that @, may be expressed

(n41)
as Qﬂ=0<@) il (1 —p?)~ntl a form corresponding to that of

Rodrigues for P,, C being a constant.

56. Find the integral of the square of a tesseral harmonic over
the surface of the unit sphere.
If the general expression for a tesseral harmonic be of the form

m
A(1 - p2) 28 cos mep, where the coefficient of the highest power of
p in 8¢ is unity, prove that

(m) (m) _
a1 =My 4n2 B TR [MarH, Trip.]
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