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Abstract: In this paper the potentialities ofTRIMAP to provide decision support in multiobjective 

problems with multiple decision makers are exploited. TRIMAP is an interactive three-objective linear 

progra=ing package which enables a progressive and selective learning of the nondominated 

solution set. The airn is to aid the opposing parties cxplore their own preferences and to explore the 

dynamie naiure of the negotiation process. 

Keywords: MuJtiple objective Jinear programming; interactive methods; multiple decision makers; 

group decision support systems; negotiation; computer graphics. 

1. Introduction 

Most real-world problems involve multiple, conflicting, incommensurate criteria. Mathematical 

models as well as the perception of the problems by the decision maker (DM) become more realistic if 

several criteria are considered explicitly in the models, instead of encompassing the different aspects 

of reality in a single criteriori. The concept of optimal solution in single objective optimization gives 

place to the concept of nondominated solution in a multiple criteria comext. A feasible solution is 

nondominated if no improvement in any objective function is possible without sacrificing on at least 

one of the other objcctive functions. These decision problems cntail tradeoffs among the objectives, 

in order to get a satisfactory compromise solution from the set of nondominated solutions. Different 

methods to deal with multiple criteria problems exist, using different solution techniques and 

requiring distinct degrees of involvement of the DM. Interactive methods allow for the intervention of 

the DM in the solution search process, by inputing information into the procedure which in tum is 

used to guide the search process (thus minimizing the computational effort) in order to compute a new 

solution which more closely corresponds to his/her evolutionary preferences. 

On the other hand, in many real-world situation~ decisions are seidom made by an individual. The 

decision making process is participated by different opposing parties (consisting of one or more 

individuals) who interact in order to obtain a solation which can be accepted by all members of the· 

group. The interaction of the multiple DMs configures a negotiation or bargaining process in the 
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search for satisfactory solution which could be a commonly accepted. Multiple criteria problems with 

multiple DMs may be characterized as double conflict problems: tradeoffs must be made not only 

among the criteria which ref!ect distinct aspects of the reality, but also among the DMs who have 

different perspectives and interests. 

The great imponance of multiple criteria problems with multiple DMs has been recognized by 

severa! authors, and many previous approaches to deal with these problems exist, both from purely 

theoretical and algorithmic perspectives. Within the classical theoretical studies we would like to 

mention Arrow (1951), Cross (1965) and Raiffa (1982). The works of algorithmic nature include the 

methodologies proposed by Wendell (1980), Isermann (1985), Kersten (1985), Kersten and Szapiro 

(1986), Korhonen et al. (1986), Lewandowski (1989), and Korhonen and Wallenius (,1990), among 

others. A survey of recent developments in group decision support systems is presented in Vetschera 

( 1990). Most authors recognize the need of carrying out more application experiments in order to 

assess the potentialities of the methodologies proposed, in the operational framework of decision 

support systems. 

In this paper the interactive and user-friendly capabilities of the TRIMAP package are exploited, as 

a tool for providing decision support in negotiation processes based on three-objective linear 

programming models. The aim is to help the parties to explore their own evolutionary preferences (as 

more knowledge about the set of nondominated solutions is gathered in cach interaction) and to make 

the most of the dynamie nature of the group decision process. 

2. The TRIMAP Package 
The TRIMAP method enables a progressive and selective learning of the set of nondominated 

solutions. The method combines three main procedures: weight space decomposition, introduction of 

constraints on the objective function space and weight space reduction. Furthermore, the introduction 

of constraints on the objective function values can be translated into weight space reductions. The 

dialogue with the DM is made mainly in terms of the objective function values in order to reduce the 

cognitive burden on the DM. The weight space is used in TRIMAP as a means for collecring and 

presenting the information to the DM. 

The interactive process continues until the DM has sufficient knowledge about the set of 

nondominated solutions to make an informed selection of a satisfactory compromise solurion. There 

are no irrevocable decisions as it is always possible to go backwards at a later interaction and thereby 

rescind an earlier decision. Given the limited capacity of human beings to process information, the 

interactive aspects of TRIMAP were designed to be flexible (i.e., rescindable) and simple (i.e. , 

information_demands on the DM are not too demanding). TRIMAP is dedicated to support DMs in 

dealing with three-objective linear programming problems. Although this limits its application to such 

problems, this permits the use of graphical means which are particularly suited for the dialogue with 
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the DM. These graphical techniques enhance the DM's capacity in processing the tradeoff information 

by simplifying the DM-computer dialogue phase and allowing the DM to make visual comparisons. 

The fundamental structure of the DM-computer interface offered by TRIMAP is a menu bar at the 

top of the screen which lists the titles of the available pulldown men us, grouping the actions available 

to the user (thus not occupying screen space and not requiring command memorization). Overlapping 

windows improve the availability of the information, and are used for displaying graphical and text 

information. Dialogue boxes are used to request further information from the user before a given 

command can be carried out or to convey some useful information to the user. Pictorial controls 

provide the user an intuitive way for specifying his/her preferences. 

2.1. Tbree-objective line.ar programming 

TRIMAP is designed for tbree-objective linear programming problems: 

"Max" Cx 

s. t. XE X= ( XE JR n : A X= Q, X~ Q } 

where C = l.l;.1, f2, f3]' is the objective function coefficient matrix, f1, f2, i;.3 are nx I col urn n 

vectors, A is a mxn technological matrix and his a mxl RHS column vector. Without loss of 

generality we will admit that A has rank m and that all the constraints are converted inio equali1ies. 

"Max" denotes the operation of finding nondominated solutions. 

The set of effie1ent solutions is dcfined by XE = ( x e X i li x' E X : f (x')?. f (x)}, where 

f(x')~f(x) iff f(x')~f(x) and f(x')"'f(x), and f(x')~f(x) iff f1c<x')~f1c(x) , k=l,2,3. 

The criterion vector fW is nondorninated whenever x e XE. The concepl of nondominance refers 

generally to the objective function space, whereas the concept of efficiency refers to the decision 

variable space. A satisfactory comprornise solution must be an element of this se1. 

x e X is an efficient solution iff it is an optimal solution to the following linear problem 

max 11 f1<x) + 12 f2<xl + 1..3 f3W 

s. t. XE X 
3 

2. e 11 = r 2,. e JR3: r 1..1c=1; A1c>o. k=1.2.3J 
k=l 

The graphical display of the set A which leads to each efficient solution can be achieved through 

the decomposition of the weight space A. From the simplex tableau corresponding to an efficient 

basie solution to this problem the corresponding 2,. set is given by 2,.TW~. where W=CBB· 1N-CN is 

the reduced cost matrix (one line for each objective functjon, where the element Wkj is the marginal 

rate of change of objective func1ion fkW caused by the introduction of one unit of variable Xj into the 

basis). B (Cs) and N (CN) are the submatrices of A (C) corresponding 10 the basie and nonbasic 

variables, respectively. The region comprising the set of weights corresponding to a nondominated 

extreme solution (region where {t,TW~. 2,. E Aj is consis1ent) is called indifference region . Thr 
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DM may then be indiffercnt to all combinations of weights within it, because they lead to the same 

nondominated solution. The boundaries between contiguous indifference regions represent the 

nonbasic efficient variables (thosc which when introduced into the basis lead to an adjacent efficient 

extrcmc point through an efficient edge). A common boundary between two indifference regions 

means that the corresponding efficient solutions arc connected by an efficient edge. If a point 2i, e A 

belongs to sevcral indiffercnce regions this mcans that these correspond to efficient solutions lying on 

the same face. The analysis of the weight space is thus a valuable tool in the learning of the shape of 

the nondominated region. 

2.2. An overview of TRIMAP 
The interactive process begins with the automatic computation of the nondominated solutions 

corresponding to the optima of the three objective functions. This is intended to provide the DM with 

infonnation that allows him/her to have a global knowledge of the nondominated region. Next, a new 

computation phase is prepared through a dialogue phasc with the DM. "These two phases are repeated 

until the DM has decided that sufficient infonnation regarding the options and the tradeoffs among 

them has been generated to enable him/her to select a satisfactory compromise solution. 

The selection of the weights at each interaction may be made in a direct or indirect manner. In the 

indirect manner the DM selects three nondominated solutions, which arc used to construct a weighted 

function the gradient of which is nonnal to a constant cost piane passing through them. In the direct 

manner the selection of weights is made by the DM's selection of the unfilled wcight space regions. 

which he/she thinks it is irnportant to evaluate. 

The introduction of additional constraints on the objective function values and its translation into 

the weight space enables the dialogue with the DM to be conducted in · terms of those values 

(generally, the space most familiar to DMs). TRIMAP automatically converts this information into the 

weight space in graphical form. Whenever the DM irnposes an additional limitation on the objective 

function values fk W~ L1c (L1c e IR), the auxiliary problem 

max fk ~) 

s. t. ,! E Fa= ( l>. E X: fk W~ L1c J 
is solved. By maximizing fk W over F3 altemative (basie) optimal solutions are obtained. The 

efficient extreme points of Fa which optimize this auxiliary problem are selected and the subregions of 

the weight space corresponding to each of these points are computed and displayed (these are the 

indifference regions defined by 2i,T W?-0, corresponding to each efficient alternative basis). The union 

of all these subregions determines the region of the weight space wherc the additional limitation on 

the objective function value is satisfied. If the DM is only interested in the nondominated solutions 

w hich satisfy fk W :i!: Lk, then it is sufficient, from now on, to restrict the search to sets of weights 

within this region. If more than one limitation is irnposed, then the auxiliary problem is solved for 
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.:ach one and the corresponding regions of the weight space are filled with clifferent patterns, thus 

enabling to visualize clearly the rones where they have their intersections. 

It is also possible that regions of the weight space be eliminated by irnposing limitations directly on 

the variation of the weights. 

In each interaction of TRIMAP two main graphs are presented to the DM. The first one is the 

weight space displaying the indifference regions corresponding to each nondominated extreme 

solution already known. Constraints on the variation of the weights are also presented, whether they 

are directly introduced into the weight space or result from additional constraints imposed on the 

objective function values. The second graph displays the nondominated solutions already computed 

projected on a plane of the objective function space. Some complementary indicators corresponding 
to each efficient solution are also available: the Tchebycheff <Loo), Euclidean (Li) and "city błock" 

(L1) distances to the "ideał solution" (the one that would optimize all the objective functions 

simultaneously, which it is not feasible when the objectives are in conflict) and the area of the 

indifference region (which is a measure of the robusmess of the solution regarding the variation of the 

weights). Further details about the working of the TR1MAP method as well as the main features of its 

computer implementation can be found in Climaco and Antunes (1987, 1989). 

3. The Application of TRIMAP to Problems with Multiple Decison Makers 

In this work we admit that the opposing parties agree on the mathematical model (decision 

variables, constraints and objective functions), and none of the parties has a privileged position with 

respect to the decision variables. There may exist extemal players in the decision process who can 

make suggestions that will get the opposing parties to agree on a solution or relax their requirements 

throughout the negotiation prócess (a mediator), and to mediate the communication between the 

parties and the computer by helping to interpret the graphical displays and the available commands (an 

analyst). However, these players (which can be the same individual) perforrn technical functions 

only, and do not possess any power to dictate a finał compromise solution. Eventually negotiation s 

may break down and a stalemate may arise. 

The main goal is to propose rules for the negotiation process aimed at supporting the parties in the 

search for a satisfactory compromise solution, in the framework of an interactive decision process. In 

multiple objective programraing problems the set of nondominated solutions is generally infinite and 

implicitly defined by the set of constraints. A previous stage of the interactive decision process where 

the DMs can carry out an exploration of the nondominated region in order to leam about the probiem 

is necessary. This enables the ·DMs to gather knowledge about the problem which in tum may 

contribute to revise his/her preferences throughout the process, and accommodates the complexity of 

group decision problems, in which the DMs are often incoherent, they bluff and they do coalitions. 

The procedure to use TRlMAP in problems with multiple DMs is as follows: 
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• TRIMAP computes the nondominated soluńons which opńmize each objecńve function 

separately. This informańon is displayed graphically and numerically. 

• Each pany p (p=l , .. . ,P) specifies reservation rpk and aspirańon Spk levels for cach objecńve 

funcńon k (k=l,2,3). The reservańon level rpk is the minimum value that DM pis willing to accept 

for objective le. The aspirańon level Spk is the minimum value for which DM p is completeiy satisfied 

regarding objecńve le. ff the DM does not specify rp1r., then he/she accepts any value for objecńve k, 

and it is initialized as the minimum value previously computed for that objecńve function. If the DM 

does not specify Spk, then it is inińalized as rpk (thus defining a threshold value below which 

objecńvc k is not acceptable and above which it is fully acceptable). 

• Based on these levels an acceptability funcńon Gi is defined for each pany p conceming a 

K 
nondominated soluńon q as Gi = ( :[ Gik ) / K , (K=3}, 

where 

k=l 

Gqk= 1 -rpk ,forrpt~k~ (f.lkisthevalueofobjecńvefunctionkforsolutionq) 
P Spk - rpk . 

G~=O 

G~= 1 ,forSpk~ 

* An overall acceptability funcńon for the group conceming a nondominated soluńon q may be 
p p 

computed as GQ = ( :[ Vp Gi) / ( :[ vp) , where Vp is the vońng power of DM p. This value is 
p=l p=l 

computed for each nondominated soluti__Qn already known. 

• The limitańons fk;;,: sp1r. are translated into the weight space for each DM p. 

* The limitations fk~ maxp sp1r. are translated into the weight space. 

By visual inspection of the weight space graph it is easy to conclude whether nondominated 

(extreme) solutions satisfying these additional requirements exisL ff the corresponding regions in the 

weight space overlapp then a search in the intersecńon region may be carried out. If this is not the 

case, the anaiysis of the objective funcńon projection graph r~rmits to conclude whether 

nondominated solutions which are not extreme points sańsfying those limitations are already known. 

• The nondominated solution which minimizes a weighted Tchebycheff distance to the ideał 

solution or to S=(s1,s2,s3}, where si,=maxp Spk, k=l,2,3, is computed. The nondominated extreme 

points defining the face (or the edge) where this solution is located may also be computed. 

* The parties may specify new reservańon and/or aspirańon levels at any time of the interactive 

process. The acceptability values are recomputed for all solutions. 
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" If nondominated solutions which have an acceptability function value G~a'O for all DMs exist, 

then the one with the higher overall acceptability is selected as the finał compromise solution. 

Eventually compromise soiutions rnay be selected, for which G~=O for some p=l, ... ,P. 

• The interactive process ends when a compromise solution may be recognized. A stalemate 

arises when no DM is willing to relax his/her bounds on the objective function values, by specifying 

new reservation and/or aspiration levels in order to compute a solution with greater overall 

acceptability. 

The procedure proposed herein is a unstructured one in the sense that there is not a pre-specified 

rigid sequence of steps, but severa! actions are available in each interaction to be used as they seem 

more convenient to search for new solutions which may have greater group acceptability. By making 

the most of the moduiar structure of the TRIMAP package new interfaces have been added designed 

to provide decision support in multiple DMs problems. These include a graph of the acceptability 

space, as well as means of interaction for inputing parameters in a user-friendly man ner. 

4. An lllustrative Example 

In order to illustrate the use of TRIMAP to problems with multiple DMs let us consider the 

following three-objective problem. 

"Max"[ i_\~ !]x. s.1.[~ ! i ~]xs[~].2>..::.0,3.e JR 4. 
-1 5 I 2 I 2 3 4 50 

The program begins by computing the nondominated solutions which optimize each objective 

function. The results obtained are presented in Table I and displayed in fig. I. 

Solution f1 f2 f3 1'B Loo Area(%) 

1 66.0 30.0 -12.0 x1=18.0; x,=6.0 87.0 13.43 

2 51.0 SO.O 4.0 X1=14.0; X4=9.0 71.0 17.01 

3 15.0 -15.0 75.0 Xz=15.0 65.0 1.25 

4 12.5 50.0 25 .0 X4=12.5 53.5 7.87 

Table I - Numerical inforrnation conceming the solutions which optimize each objective function 

In Table I the values in bold are the components of the ideał solution, which is displayed as a black 

square on the objective function graph. The area of the indifference regions are given in percent 

values of the total weight space area. Under the column x8 only the decision variables are shown. 

Note that solution 4 is an. alternative optimum of solution 2 with respect to f2, and the 

nondominated edge between these extreme soluticins is already known. 
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50.0 ' 2 • 

12 . 6 _t,1 

-15. 

Fig. l - Graphs displayed after optimizing each objr,etive function 

With this information let us suppose that two hypothetical DMs establish the following reservation 

and aspiration levels: 

DM 1: ru=20, su=60; r12=10, s12=25; r13=30,_ s13=40; 

DM 2: r21=l8, s21=25; r22=15, s22=48; r23=20, s23=35; 

The 'lcceptability values of each solution for each DM are: 
I 2 3 4 DM I: G1=().667, G 1=0.592, G 1=0.333, G 1=0.333; 

I 2 3 - 4 
DM 2: G2=().485, G2=().667, G2=0.333, G2=0.444; 

Consideńng that each DM has equal voting power, at this stage solution 2 is the most acceptable 

one: G 1=().576, G2=0.629, G3=().333, G4=0.389. 

Additional constraints on the objective function values are then introduced (DM .1 : f12!60, f22!25, 

ff,:40; DM 2: fi:2:25, f2:2:48, f3:2:35;) which are translated into the weight space where they are 

displayed graphically. In this manner the DMs may gr.isp the traJeoffs to be made among the 

objectives conceming his/her own preferences. 

By analyzing the graphs in fig. 2, it can be concluded that no extreme solutions exist which satisfy 

simultaneously all the limitations on the objective function values for both DM l and DM 2. For DM 

I there are extreme solutions which satisfy simultaneously the limitations on fJ and f2 (solution 1, see 

fig . l ); for DM 2 there are extreme solutions which satisfy simultaneously the limitations on f1 and f2 

(solution 2, see fig. l) and on f1 and f3 (a region not yet explor_ed). 
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Limitation on: 

f1 

Fig. 2 - The weight spaces after imposing adclitional constraints on the objective function values 

SO.O f 2 • 

6 .Ó1 

-15. 

Fig. 3 - Computing new solutions by peńorming a selective search 

At this stage the DMs may use this infonnation to search for new nondominated solutions by using 

the means of interaction available in the 1RIMAP package. The graphs in fig . 3 were obtained after 

both DMs have explored the regions in which solutions more close to their preferences arc located. 

Some information gathered in this process may be sumrnarized as follows. Solutions 6 and 7 

satisfy simultaneously the limitations on f1 and f3 derived from the aspiration levels of DM 2. There 
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arc solutions on the face 2-4-5 which satisfy simultaneously the limitations on f1 and f3 derived from 

the aspiration Ievels of DM 1. 

The acceptability values of the new extreme solutions for each DM arc: 

DM l: G{=0.444, G~=0.408, Gi=0.682; DM 2: Gi=0.349, G~=0.667, G~=0.712; 

The overall acceptability values for these solutions are os=0.397, G6=o.538, G7=0.697. 

[n order to enable a further agreement Jet us suppose that the DMs arc willing to establish lower 

aspiration levels: DM 1: s11=54; s13=35; and DM 2: s22=45; 

The most restrictive aspiration Ievels of both DMs may be used to introduce additional limitations 

on the objective function values: f1~4; f2.?:45; f3.?:35 . A region exists in which the limitations on f1 

and f2 arc satisfied simultaneously, and the search in this region leads to the situation displayed in fig. 

4. 

Solu1ion 

5 

6 

7 

8 

6 

50.0 
45.0 

-15. 

Fig. 4 - Relaxing the aspiration levels and computing new solutions 

f1 f2 f3 XB L~ 
18.3 15.0 71.7 X2=1 l.7; X4=6.7 47.7 

29.0 3.0 73.0 X2=13.0; x,=8.0 47.0 

48.5 19.5 37.0 X1=7.5; ½=7.0; Xl=9.5 38.0 

55.5 47.5 2.0 X1=14.5; X,=2.5; X4=7.0 73.0 

Table Il - Numerical information concerning the new solutions 
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The acceptability values are recomputed for all solutions: 
l 2 3 4 5 6 7 8 0 1=0.667 , G1=0.637, 0 1=0.333, G1=0.333, 0 1=0.444, 0 1=0.422, 0 1=0.824, G1=0.667 ; 

I 2 3 4 5 6 7 8 Gz=0.500, Gz=0.667, G2=0.333, Gz=0.444, Gz=0.349, Gz=0.667, Gz=0.717, Gz=0.667; 

Solution 7 is the most acceptable one: 

Gl=0.583, G2=0.652, Q3=().333, G4=0.389, G5=0.397, G6=0.544, G7=0.770, G8=0.667; 

The acceptability graph displayed to the DMs is presented in fig. 5. 

DM2 

• 

• 7 
.6 .~e 

.4 
• 1 

.3 • s 

1 DM 1 

Fig. 5 - Acceptability graph (the black square is the ideał point where G1=G2=l) 

Solutions on nondominated edges and faces may also be computed. For instance, the solution 

which minimizes a weighted Tchebycheff distance to the ideał solution is fW=(33.88,26.88,44.24) 

and its acceptability value is G~~ =0.803, dr =0.799 (GL~=0.801). This would be the most 

acceptable solution considering the reservation and aspiration levels currently specified . 

Nllli: : All figures arc copies of the screens presemed IO user.;, and some minor cosmetics were added in some figures 
in order IO comply with the space limitations. Although the available graphical and numerical information would have 
enabled a more detailed analysis we have limited ourselves (due 10 space limitations) IO some commems which are 
illustrative of the type of help this decision suppon !001 can provide IO DMs in negotiation problems. 

5. Conclusions 
In this paper the interactive and user-friendly capabilities of the TRIMAP package are exploited, as 

a tool for providing decision suppon in problems with multiple DMs based on three-objective linear 

programming models. The aim is to help the parties to explore their own evolutionary preferences and 
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10 make the most of the dynamie nature of the interactive negońation process. Although an extensive 

practical experimentation is necessary in order to evaluate the potentialities of the procedures 

suggested in real-world problems, it seems that TRIMAP possesses characteristics well suited to 

provide decision aid in problems with multiple DMs. These features include the possibility of 

performing a progressive and selective learning of the nondominated solution set, the user-friendly 

and graphical potentialities and the ability to enable a comparative study of the weight space, the 

objective function space and an acceptability space. 

An extension of the TRIMAP package to perform sensitivity analyses in three-objective linear 

programming problems is exploited in Antunes and Climaco (1992). In group decision problems, the 

possibility of changes in the initial model coefficients, including the relaxation of constraints, may be 

a contribution to reach a greater agreement among parties. The operational framework 'proposed may 

also be useful for the case of multiple criteria discrete altemative problems. 
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