ha^{2} RESEARCH 1 N

IFAC/IFORS/IIASA/TIMS

The International Federation of Automatic Control I The International Federation of Operational Research Societies The International linstittite for Applied Systems Analy sis The Institute of Management Sciences

SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES

Prefrints of the IFACIIFORS/IIA SA/TIMS Workshop
Warsaw: Poland
Sine 24-26, 1992

Editors:

Roman Kulikowsk:i
Zbignicw Nahorski
Jur:W.Owsinivi
Anidriej Struszak

Systems Research hastitute
Polish Academy of Sciences
Warsaw, Poland

VOLUME 2 :

Names of first authors: $\mathrm{L}-\mathrm{Z}$

SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES

 Preprints, IFAC/IFORS/IIASA/TIMS Workshop, June 24-26. 1992. Warsaw, Poland
Mathematical Model of Generalized Grey Linear Programming And Its Solution

Wang Qingyin
Grey System Research Laboratory, Hebei Coal Mining and Civil Engineering college, Handan, People's Republio of China.
Zhuo Qiting
Hefei Polyteohnical University, Hefei, People's Republic of China.

Abstract

Abstrect - On the basis of studying grey characteristics of linear programming problem and through analysing instances, we establish generalized grey linear programming model (Model G-WZ) and prove its solution. A theoretical evidence and a wide sense solution are given for studying generalized grey linear programming problem.

Koywords: grey Iinear programaing, interval grey number, the objective functionsconstraint condition, the maximum value range, the narrow sense minimum value range.

Because of the existence of grey characteristics of objects, many linear programming problems are difficult (or not able) to be solved by olassical linear programming method. In artical [1], professor Deng Julong discussed the linear programming problem which includes grey elements, such as predicted linear programing problem and drifted one. In order to give the solation of generalized grey linear programming problems, under the enlightenment of the thought of prof.Deng, and according to the conception of grey number and its operational rules ${ }^{283}$, we establish generalized grey linear programing model and give general solution through some practical examples.

1. The Establichmert of Model G-WZ

Guiding Exarple-There are 1000 ohickens raised in a chicken farm, and they are raised with two kinds of forage soya and millet. It is known that each chickens eats $1 \sim 1.3 \mathrm{ki}$ logram of mixed forage every day, and that it needs $0.21 \sim 0.23 \mathrm{~kg}$ of protein and $0.004 \sim 0.006 \mathrm{~kg}$ of calcium at least every day. Per kilogram of soya contains $48 \sim 52 \%$ protein and $0.5 \sim 0.8 \%$ calcinm. its price is $0.38 \sim 0.42$ yuan. And per kilogran of millet oontains $8.5 \sim 11.5 \%$ protein and 0.3% calcium its price is 0.20 yuan. How should the forage be mixed in order to pay the least expense of the forage? What is the least expense?
Obviously, the paraneters in the Guiding Example are mostly grey numbers. This kind of problems are countless in practice, but it is difficult to find the solution of them using directiy the olassical linear programming method. To solve this problem, me establish the linear programming model as follow:
Suppose that X_{1} kilograms of soya and X_{2} kilograms of millet are needed in the whole chicken farm every day. Then we have:
The objective function: $\operatorname{MinZ}=[0.38,0.42] X_{1}+0.20 X_{2}$
Constraint condition: $\quad X_{1}+X_{3}=[1,1.3] \times 1000$
$[0.48,0.52] \mathrm{X}_{1}+[0.085,0.115] \mathrm{X}_{\Omega}>[0.21,0.23] \times 1000$
$[0.005,0.008] X_{2}+0.005 X_{3}>[0.004,0.006] \times 1000$ $\mathrm{X}_{1}, \mathrm{X}_{2}>0$
Where, a number such as $[0.38,0.42]$ is called interval grey aumber, and mark $[0.2,0.2]=0.2$. This modie is called Grey Linear Programming Model. Such that, we can establish generalized grey inear programming model.
 $i=1,2, \ldots, m ; j=1,2, \ldots, n$. Then the mode! as follows:

$$
\begin{aligned}
& \operatorname{Hin}(\operatorname{Max} x) \quad Z=\sum_{j=1}^{n}\left[e_{\jmath}, d_{\jmath}\right] X_{4} \\
& \sum_{j=1}^{\infty}\left[a_{1}, b_{1},\right] x_{i}>(=,<)\left[e_{1}, f_{1}\right] \quad(j=1,2 \ldots \ldots, \ldots) \\
& X_{1}, X_{m}, \ldots, X_{m}>0 \\
& \text { is called generalized grey linear programming model, and called Model G-WZ for short. }
\end{aligned}
$$

2. Solution of Model G-WZ

Giving the solution of the goidiag example as an example, we explain the solution process of Model G-WZ.
2.1. Standardization of the Model

The model in the above-mentioned Mefinition 1 can be standerdized as follows:

$$
\left[\begin{array}{l}
\operatorname{Min} Z=\sum_{j=1}^{n}\left[c_{j}, d_{j}\right] X_{j} \\
\sum_{j=1}^{n}\left[a_{1}, b_{1}, j X_{j}>\left[e_{1}, t_{1}\right] \quad(i=1,2 \ldots, n)\right. \\
X_{j}>0 \quad(j=1,2, \ldots, n)
\end{array}\right.
$$

2.2. Determine the Maximum Value Range and the Narrow Sense Minimum Value Range on the Constraint Condition.
At lirst, if we have a constraint condition: $[1,2] X_{1}+[1,4] X_{\mathrm{a}}>[2,4]$, it can be transformed into a group af inequalities: $\quad 1 X_{1}+1 X_{9}>2, \quad 1 X_{1}+1 X_{m}>4, \quad 2 X_{1}+4 X_{m}>2,2 X_{2}+4 X_{3}>4$, $2 X_{1}+1 X_{3}>2, \quad 2 X_{1}+1 X_{3}>4, \quad 1 X_{1}+4 X_{3}>2, \quad 1 X_{1}+4 X_{3}>4$. Aocording to graphic solation we can find clearly that, in the range of $X_{1}, X_{0}>0$, the range of inequality $2 X_{3}+4 X_{2}>2$ includes ones of other inequalities, and the range of $1 X_{1}+1 K_{3}>4$ is the mioimum one among them. When the coefficients X_{1} and X_{2} change separately is the range of $[1,2]$ and[1,4], and the constant term of the inequality ohanges in the range of [2,4], the above-mentioned conclusoin ean be achieved similarly. Therefore well that $2 X_{1}+4 X_{n}>2$ is the maximum value range on the constraint condition $[1,2] X_{1}+[1,4] X_{2}>[2,4]$, and that $1 X_{1}+1 X_{0}>4$ is the narrow sense miniluum valve range on that constraint condition. Generally, have:

Dafinition 2. Let

$$
\begin{align*}
& \sum_{j=1}^{n} a^{e_{i}}{ }^{2} x_{j}>e \tag{2}
\end{align*}
$$

Then
 Defintion 3. If the value range of a constraint inequality can include ones of ali other constraint tmequalitien, the valne rage of this inequality is called the maximum value range of all constraint inequalities. If the valoe range of a constraint inequality is included in one of any other constraint inequalities, the valus range of this inequality is called the narrow sense minimum value range of all constraint inequalities.
Thecrem. Let (2) be characteristio formula of constraint condition (1).
then

$$
\begin{equation*}
\sum_{j=1}^{n} x_{1}^{\prime \jmath\rangle} x_{j}>_{e_{1}} \tag{3}
\end{equation*}
$$

is the maximum value range inequality of (1).

$$
\begin{equation*}
\sum_{J=1}^{n} a_{i}^{(j)} X_{j}>e_{e} \tag{4}
\end{equation*}
$$

is the narrow sense winimun value range inequality of (1).
Proof:
(i) In formula (2).let only one ooefficient $a^{(m)}$ change. When $a^{(k)}$ equals $a_{i}^{(k)}$ and $a^{(k)}$ separately, (2) is transformed into:

$$
\begin{align*}
& a^{(1)} X_{1}+\ldots+a^{(m-1)} X_{k-2}+a_{1}^{(m)} X_{m}+a^{(m+1)} X_{k+1}+\ldots+a^{(n)} X_{n}> \tag{5}\\
& \left.a^{(2)} X_{1}+\ldots+a^{(n-2)} X_{k-1}+a^{(m)} X_{m}+a^{(n+1)} X_{n+1}+\ldots+a^{(n)} X_{n}\right\rangle e \tag{8}
\end{align*}
$$

 resolved into the sum of value ranges of two inequalitiesia $a^{(a)} X_{1}+\ldots+a^{(m)} X_{n}+\ldots+a^{(n)} X_{n}>e$ and $\quad e^{\gg} a^{(1)} X_{1}+\ldots+a^{(m)} X_{m}+\ldots+a^{(n)} x_{n}>e^{-\left(a^{(m)}-a^{(k)}\right) X_{k}=e-\varepsilon .}$ This means the value range of (6) includes one of (2). Therefore, in formula (2), when only one coefficient $a^{\langle k)}$ ohanges in the range of $\left[a_{i}^{(k)}, a_{\left.a^{(N)}\right]}^{[k}\right.$, (B) is the maximum value range of (2). Similarly, in formula(2), when oaly one coefficient $a^{(k)}$ ohanges in the range of $\left[a^{(k)}, a^{(k)}\right]$, the value range of (2) includes one of (5). (5) is the narrom sense minimum vaiue range of (2). Acoording to afore-sald conclusion, we can get, when $a^{(1)}, a^{[(0)}, \ldots, a^{(n)}$ all change simulstaneously (e doesn't change), the maximum value range of (2) is:

$$
\begin{equation*}
\sum_{s=1}^{\infty} a_{2}^{[s>} x_{s}>e \tag{7}
\end{equation*}
$$

Similarly, we can get, when $a^{(1)}, a^{(2)}, \ldots, a^{(n)}$ all change simultaneously (e doesn't change), the narrom sense minimum value range of (2) is: $\sum_{j=i}^{\infty} a_{1}^{(J)} X_{s}>e$
(ii) If $e=e_{1}$, (7) is transformed into (3). As $e \in\left[e_{1}, e_{m}\right], e_{1}<e_{a}$, (3) can be resolved into
the sum of value ranges of two inequalities:

$$
\sum_{0=1}^{n} a_{2}^{(N)} x_{j}>e \quad \text { and } \quad e>\sum_{n=1}^{n} a_{2}^{x_{2}^{\prime}} x_{j}>e_{1}
$$

This means the value range of (3) includes one of (7). So (3) is the maximum value range of (7). According to afore-said (i), we know that (7) is the maximum value range of (2) when e doesn't change. Therefore, (3) is the maximum value range of (2).
Similarly, we can get, (4) is the narrow sense minimum value range of (2).
Thus, the theorem is all right.
If constraint condition of standardized model is made up of a group of inequalities, every inequality can get one maximum value range inequality and one narrow sense minimum value range inequality. Then all maximum value range inequalities merge into the maximum value range of total constraint condition, and all narrow sense minimum value range inequalities merge into the narrow sense minimum value range of total constraint condition.
2.3. Transform Model G-WZ into Two Generalized Classical Linear Programming Problems. Since coefficients of Nodel $G-W Z$ include grey number, the final operational resultobjeotive value $\operatorname{Min} Z$ is grey number too. Let $\operatorname{Min} Z=\left[z_{1}, z_{2}\right], z_{1}<z_{8}$.

Io the objective function; $\quad \operatorname{Min} Z=\sum_{s=1}^{n}\left[c_{\jmath}, d_{\jmath}\right] X$,
since, $X_{1}, X_{8} \ldots \ldots, X_{n}>0$, lower limit z_{1} and upper limit z_{z} of MinZ separately are

$$
Z_{2}=M i n Z_{1}=\sum_{i=1}^{n} c_{j} X_{j} \quad Z_{m}=M i n Z_{3}=\sum_{j=1}^{\infty} d_{j} X_{j}
$$

And, z_{1} should be objective value of $M i n Z_{1}$ in the maximum value range, z_{2} should be objective value of $M i n Z_{2}$ in the narrow sense minimum value range. Therefore, Model $G-W Z$ is finally transformed into the resolution of two generalized linear programing problems.

$$
\left[\begin{array} { l l }
{ \operatorname { M i n } Z _ { 2 } = \sum _ { j = 1 } ^ { n } c _ { j } X _ { j } } & { } \\
{ \sum _ { j = 2 } ^ { n } b _ { 1 } X _ { j } > e _ { 1 } } & { (i = 1 , 2 , \ldots , m) } \\
{ X _ { j } > 0 } & { (j = 1 , 2 , \ldots , n) }
\end{array} \quad \text { and } \quad \left[\begin{array}{ll}
\operatorname{Min}_{3}=\sum_{j=1}^{n} d_{j} X_{j} & \\
\sum_{j=1}^{n} a_{i j} X_{j}>f_{1} & (i=1,2, \ldots, m) \\
X_{2}>0 & (j=1,2, \ldots, n)
\end{array}\right.\right.
$$

To the guiding example, they are:

$$
\left[\begin{array} { l }
{ M i n Z _ { 2 } = 0 . 3 8 X _ { 1 } + 0 . 2 0 X _ { s } } \\
{ 1 3 0 0 > X _ { 1 } + X _ { 2 } > 1 0 0 0 } \\
{ 0 . 5 2 X _ { 2 } + 0 . 1 1 5 X _ { 3 } > 0 . 2 1 \times 1 0 0 0 } \\
{ 0 . 0 0 8 X _ { 1 } + 0 . 0 0 3 X _ { 2 } > 0 . 0 0 4 \times 1 0 0 0 } \\
{ X _ { 2 } , X _ { s } > 0 }
\end{array} \quad \text { and } \quad \left[\begin{array}{l}
\operatorname{Min} Z_{3}=0.42 X_{1}+0.20 X_{3} \\
1300>X_{1}+X_{s}>1000 \\
0.48 X_{3}+0.085 X_{2}>0.23 \times 1000 \\
0.005 X_{3}+0.003 X_{3}>0.000 \times 1000 \\
X_{3}, X_{3}>0
\end{array}\right.\right.
$$

2.4. Solve It Using Classical Linear Programming Method and Cet the Final Results. According to classical linear programming method, solve the two linear programming problems above, we can get z_{1} and z_{s} separately (may be not resolutive). Corresponding programing value are $X_{i}^{\prime}, X_{9}^{\prime}, \ldots, X_{m}^{\prime}$ and $X_{i}^{\prime \prime}, X_{1}^{\prime \prime}, \ldots, X_{m}^{\prime \prime}$. So the objective value is: $\operatorname{MinZ}=\left[z_{1}, z_{m}\right]$ programming value can be marked as:

$$
\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\cdot \\
X_{n}
\end{array}\right)=\left[\left(\begin{array}{c}
X_{i} \\
X_{1}^{\prime} \\
\cdot \\
X_{n}^{\prime}
\end{array}\right),\left(\begin{array}{l}
X_{1}^{\prime} \\
X_{i}^{\prime} \\
\cdot \\
X_{n}^{\prime}
\end{array}\right)\right]
$$

If z_{1} is not resolutive, z_{s} must be not resolutive. Then the objeotive function MinZ is not resolutive too.
If z_{2} is not resolutive and z_{1} is resolutive, we can mark Min $2=\left[z_{1}, \infty^{+}\right]$. Programing value
$X_{i}^{\prime \prime}, X_{i}^{\prime \prime}, \ldots . X_{n}^{\prime \prime}$ doesn't exist, and then don't write it.
To the guiding example, we can get:

$$
X_{1}=234.57, \quad x_{2}=785.43, \quad z_{2}=242.22 ; \quad X_{1}=1050, \quad \dot{X_{2}}=250, \quad z_{1}=481
$$

Therefore, the objective value of the guiding example is: $\quad \operatorname{MinZ}=[242.22,481]$
the programming value is: $\binom{X_{1}}{X_{2}}=\left[\binom{234.57}{765.43},\binom{1050}{250}\right]$
Conclution shows that, the objective value MinZ is grey number [242.22.481], $\binom{234.57}{765.43}$ and $\binom{1050}{250}$ 765.43
(250) are separately programming value when objective value separately lower limit and upper linit of grey number [242.22,491].
In the end, to compare with solution of drifted grey 1 inear programming and pseudo-solution of grey linear programming, we solve one example of article[1] using Method C-WZ.
Examplo-Solve the follow grey linear programing problem:

$$
\left[\begin{array}{l}
\mathrm{MaxZ}=[1,7] \mathrm{X}_{1}+[4,12] \mathrm{X}_{\mathrm{g}} \\
{[1,21] \mathrm{X}_{1}+[4,10] \mathrm{X}_{\mathrm{s}}<380} \\
3 \mathrm{X}_{1}+10 \mathrm{X}_{2}<300 \\
4 \mathrm{X}_{2}+5 \mathrm{X}_{2}<198 \\
\mathrm{X}_{1}, \mathrm{X}_{2}>0
\end{array}\right.
$$

Solution: Using Method $G-W Z$, we can get, the objective value of the example is:

$$
M a x Z=[118.34,425.28]
$$

coresponding programming value is: $\quad\binom{X_{i}^{\prime}}{X_{3}^{\prime}}=\left[\binom{3.34}{29},\binom{19.2}{24.24}\right]$
Andysis: In article [1], the programming solution of above-mentioned example is given. There, drifted optimum solution is: $X_{1}=3.34, X_{2}=28$, and its objective value is $f=371.18$, Which is a definite value of the above-gotten objective value range (that is Max2). Such is the pseudo-solution of grey linear prigramming. However, we give definitely the range of objective value using Method G-WZ, and provide decision-makers with scientific data available. And it is of great practical value.

References:

[1] Deng Julong (1988). Grey Prediction and Decision Making, Huazhong University of Science and Technology. (in chinese).
[2] Wang Qingyin etc, Basic Element of Grey System-Grey Number, Journal of Huazhong University of Science and Engineering, No. 1, 1890 (in chinese).

