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ABSTRACT: We diacws the uae of a quadratic norm for departm-,;s from the bliss value of a decuion 
problem under coilflicting objectives. The use of a quadratic norm is, for example, of interest within the 
dynamie framework of optima! control. The possihllity of tailoriur; the quadratic objective fuuction to 
generate optima! policies which a.re acceptable to the policy maker is explored with two alternative 
interactive algorithms . One of these is for objective functious with diagonal weighting matrices and uses 
updates of the blis1 values. The second &lgorithm proceedr by updating non-diagonal weights, while 
keeping the bliss v&lues fixed. The equivalence of both algorithms a.re established. 
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1. JNTRODUCTION 

Let ~ E R" be the bliss value of a multi-objoctive decision problem. Consider the 

determinatiou of the relative importance of attaiDinr; the different elements of 13. The attainment of 

different elemeuts of ~ generally represent conflicting objectives. 

We adopt a quadratic objective for measuriug de\iations from the bliss value . The quadratic 

function is of interest, for example, within the framework of optima! control. In Section 2, we describ< a 

way of avoiding, if required. the ,:vmmetric nature of the quadratic fuuction . We consider two 

int•ractive methods for the sp<cification of the quadratic objective. The purpose of both methods i., to 

tailor the objective function such that the optimally r;enerated rolution of the decisiou problem is also 

politically ac cep table to the decision maker. The first is a method for the specification of the quadntic 

obj«·tive with a diagonal Hessian. The second m,thod is for the specification of the weigbt, and 

g"!'nerates a nondiagona.l Hessian or weighting matrix . 
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Comider the linear-quadntic optimal decuion problem 

(l.l) 

where x E E", b E Em i• a fixed nctor, D il a diagonal matrix with nonnegative element., 11 ił the 

blin n.lu, of x or the uncon.str&ined optimum of the quadratic objectin. The colmiuu of matrix N E 

E" X m u-e &nWDed, without lot1 of generality, to be linearly independent. The diagonal weighting 

matrix in (1.1) occun in economic decision makinc &Dd in generał m linear-quadratic optima! control 

problemo. In the lal.ter cue, (1.1) can be regarded u the tramcription of the d_ynamic problem into 

,t&tic form c- e.g. Polu, 1971). We can thuo otue the problem u follows: 

Ld O ~ E• denote the set of policies accept.able to the decition mak er. We &11Ume that there 

does not exitt an analytical char&etemation of O and th&t O exists on1y in the mind of the decision 

maker. If an explicit char&cteriation of O wu ponible, it could be uoed to augment the con.strainto of 

( 1.1) and the resultant problem could euil,y be solved. An ana!ytical char~on is both inherently 

difficult, or imponible, and sometimes also politically undesir&ble from the decition maker'• point of 

view. The problem i, to t&ilor an objective function for which the optimal solution of (1.1), -x•, abo 

satisfies x· eo. 

We diłCUIS two t:JJ)el of solutiom to the above prob- The fint involves modiłicatiom to "B 

and lr.eep, D fixed u a diagonal matrix. The second involves modificat.iom to D and gent,rates a 

nondiagonal weighting matrix while lr.eeping "B fixed. We diłCUIS the equivalence of both methods. 

The desirability of a diagonal D i, due to comput.ational reasons u well u the interpretation of 

the problem and the optima! solu~ion. Non-diagonal weighting mat.rices can be diagonalized by 

appropriate transformatiom of the variables. However, such tramformatiOB1 lead to computational 

complicatioia, particular]y in relation to the con,tr&ints. A mOR import.ant upect. ił the difficulty of 

auigning an interpretation to the off-diagonal element. of a generał oymmetric weighting matrix. These 

element• are usual]y underst.ood to represent trade-of& between acbieving alternative objectives. 

However, they are difficult to usign an interpretation u distinct from the diagonal elements, which 

represent the relative importance of each objective. Also, for linear qu~dratic d_yn&mic problems, solved 

via dynamie programming, maintaining the bloclr. diagonality of D, in terms of the time ,tructure, is 

desirable at least for the physical interpretation of the resultant optima! Jinear feedback laws. This 

r.ontra.ts with the ca.e when non-diagonal weighting matrices have to be factorized and the ońginal 

variables have to be transformed in order to obtain feedback laws which m~y ·only apply to the 

transformed variables. 

In most «anomie deci.9ion making problems UD.der ronflicting objectives, the preCUe value of 
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the weigbting matrix ia not lrnown. Even a judicious choice of the weigbting matrix need not necessarily 

yield a oolution of problem ( 1.1 I that i• in the oet of acceptable policieo, O. In Section 3, we discuss an 

iterative algorithm, involving interadions with the decision maker, to ,pecify a diagonal quadratic 

objective function that generates a aolution of (1.1) which is accepuble to the decision ma.ker. The 

algorithm involveo the modification of the blia va.lues. In Section 4, the method is shown to be 

equivalent to an alternative met.hod involving the reopecification of the generał non-diagonal symmetric 

matrix (Ruatem, Velupillai, Weotcott, 1978; Ruatem and Velupilla.i, 1988, a) . In the latter method, the 

bliss valueo ~main fixed but the weigbting matrix i.I alte~d and does not ma.int.a.in a diagonal 

atruct~. This c:orreopondence is helpful computationally as diagonal matrices are simpler to compute. 

Converaely, the correopondence provides the non-diagonal weigbting matńx that would generate the 

same optimal solution as the one obt.a.ined by modifying the bliss va.lues. In addition, the 

co=spondence can be used to discuss the complexity and polynomiaJ time termination property of the 

algorithms by invoking the ~ts in Ruatem (1990) and Rustem and Velupilla.i (1988, b) . 

2. NONSYMMETIUC QUADRATIC FUNCTIONS 

The quadratic function (1 .1) assigns equaJ importance to deviations in either direction from the 

bliss value of a varia.ble. Thus, if a variable could do better than the bliss value, the quadratic objective 

penaliJeo auch a depart~ juat as much as it would penaliae depań~ of the variable in the interior 

direction. Conaider, the~fo~, the problem 

where the auperscript i denote• the i tb variable, di is the <orresponding weight and 

Extending a similar approach in linear programming, for each variable ~quiring non-symmetric 

penalisation, we define ,:i - ,ii= ,:i+ - ,:i_, where ł+, ,:i_ ;::: O and 

if 

if 

~-: ~- if 
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,} - ~ < o. 

Thus, either ,! _ = O or .!+ = O or both. In addition to the nonnegativity restrictiotu, we therefore 

have to impose the constraint (,.i_) (,.i+l =O. S~ce in vecl.or notation we have, x = x+ - x _ + '3, 

we can expres• the &bove minimiątion problem u 

where p ~ O is a sufficiently large penalty parameter choaen to enśure that, in view of the 

nonnegativity cotutraints, the minimum value of (.! _ ) C.!+) is realised at either ,.i_ = O or ,.i+= O. 

We have thus reduced the nomymmetric problem to a symmetric problem. The exteiuion of the 

methods discussed below to inequality cotutraints are discussed inRustem and Velupillai (1988, b). 

3. DIAGONAL QUADRATIC OBJECTIVE FUNCTIONS 

We consider a solution to Problem l. · An alternative solution and the equivalence of both 

solutions are discu11ed in the next section. Let (1.1) be .solved for a given weighting matrix D and a 

given initial vector of blin values ~- The solution is denoted by 

The solution is presented to the decision maker who is reąuired to respond by either declaring that 

x9 E 11, or if "o I! 11, the decision maker is reąuired to specify the modified form of "o that is in 11. 

The decision problem we wi1h to conlider can now be form• ·lated as the computation ·of the 

polic;v, optim&QT determlned via (1.1), but which also is acceptable to the policy m&ker and is hence in 

the s,t 11. We assume that { x INT x = b} n 11 ,t. ~. The decision maker's preferr<d alternative to "o 

is denoted by Xp· By definitiou, we have Xp E 11 but not necesurily xp E { x j NT x = b } n 11. In 

,:ase the latter is Lrue, such a preferred alteruati,e would r.onceptual!J solve t.h• decision problem. Lei 

60 = xp - x0 , where 60 is the correcuon vedor that needs to be added to x0 in order to ensure that x0 

+ i 0 E 11. Using 60 , we can revise the blis, v&lu• a, ,i1 = :Il~ + o0 60 where o 0 ~ O is a scalar. U,ing 

this new bliss value. problem (1.1) is solved once a«aln to :vield a new optima! solution, x1. Thi, 
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,olution is 1hown below t.o have demable characteriltics. However, as there is no guarantee I.hat x1 E 

O, the &bove procedure may need t.o be repeated. The re,ulting algorithm is ,ummarized below. We 

discun the complexity and terminat.ion propertie, of the algorithm in Ru,tem (1990) and RUltem and 

Velupillai (1988, b) . 

Step O: 

Step 1: 

Step 2: 

Step 3: 

Algurit.hm Upda&a al Blia Value, wnh a Fixed Diagonal Weighting Matrix 

Given D, 'll0, the 1equence {O\:} and t.he con,traints, set k = O. 

Compute the oolution of the optimiz&tion problem 

XI<= arg min { < X - ~ . D ( X - ~ ) > I NT X= b }- (3.1) 

Interact with the decilion maker. If xk E O, ń@. Otherwise, the decision ma.ker is required 

to ,pecify the prefetnd value ;,, and hence, 

(3.2) 

Update the bliss . values 

(3 .3) 

.el k = k + 1 and go t.o Step l. 

The relatiombip of xk+l' ~ and "k• 6k is mmmarized in the following re,nlt, . The cboice of 

the objective function may abo be ba,ed on criteria other than ~ E O. For example, in the linear 

stochutic dynamical syltems, the weight.ing matrices might be cho,en to yield a ,table minimum 

variance controller (see Engwerda and Otter, 1989). However, in the present study we consider the 

equivalence properties of the approach adopted in tbi, 1ection to re,pecification, discu1Sed in Section 4, 

of nondiagonal weighting matrices while keeping 'li fixed . This equivalence also provides the key to the 

complexity and convergence of the policy design process. In addition, as it is possible to decompose a 

symmetric matrix into a sequence of rank one updates (see Fiacco and McCormick , 1968), the meihod 

in this section and the equivalence result allow the possibility of expNssing non diagonal weighting 

matrices in terms of diagonalized objective functions . 

An alternative characterization of the problem would be in terms of finding a solution that 

simply satisfies the constraints and O, witbout any optimality requirement . One difficulty of this 

approach is that O n<eds to be explicitly specified. Let us •ssume that this was possible and that O was 

characterized by the intersection of a finite number of łnur ineąualities. It can then be shown that both 

the above algorith!D and the algorithm in the ne>."t section are related to Khachian 's (1979, 1980) 

algorithm for computing a feasible solution to a system of linear inequalities. In this fra.mework, the 

vector ~ is determined by one of the (linear) constraints bounding the set O. In particular, 6 is related 
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to the grwenł of a constraint charact.erizing O, violated at xt (Rustem and Velupillai, 1988,b; Rustem, 

1989). By invokinc Khachian'• remlt, we can thereby obtain • polynomial time complexity for both 

algońthml. The added advantace of the two alcońthml in this paper il th&t they relate each iteration 

with an objective function and optimality that il uaeful to the decilion mali:er. Since the set of 

acceptable policies, O, dOff not exist anywhere except in the mind of the decilion maker, the 

interprelation and specification of 6 il aided by the optimality, at each it.eration, of the quadratic 

objective function . 

Propo,il.ion 1 

Asrume that D il pontive oemi-definite, the optimal solution and Lagrance multiplien can be 

wńtten as 

"k+l = xk + °t Z ( zT DZ T1 zT D 6t (3.4) 

where Z E E• x (••m) il an orthogonal matńx1 ruch that zT N= O, and 

(3.5) 

Proaf (Rustem, 1991) 

To establish (3.4), we note that xk+l - xk E { x I NT x = O } and, a, NT Z = O, any ruch 

vector can be wńtten a, a linear combination of the columns of Z. Thus, we have xk + 1 - xk = Z w, for 

some vector w E Ea-m and from the first order optimality condition of (3.1) we can wńte 

zT o [ z w + x1, - ~ - °k 6t] = zT N ~k+l = o 

and thus 

· .. (3 .6) 

From the optimality eoodition at iteration k, wo have zT D [ xk - ~ ] = zT N ~k = o. Thus, 

1The chok e of the orthogonal matrix Z is discussed further in Rustem and Velupillai (1988, a). 
The numerically stable way of gen.rating Z is by considering the QR decomposition of N. -The matrix z 
is given by the last n-m columns of the matrix Q of this decomposition ( see, Gill , Murray and Wright , 
1981). 
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expression (3.4) follows from (3.6) . 

For (3.6), we use the optimality condition at k+l to yield 

Using (3.4) and the optimality condition at k, D ( xk - x: ) = N >.k, leads to •xpreuion (3.5). O 

4. THE DIAGONAL VERSION OF NON-DIAGONAL QUADRATIC FORMS 

W• consider the equivalence of the algorithm in Section 3 with a method generating nondiagonal 

weighting matrices, discussed in Rustem, Velupillai, Westcott (1978) and Rustem and Velupillai (1988, 

a) . The complexity of fonner is discussed in Rustem (1989) and Rustem and Velupillai (1986, b), by 

exploiting this equivalence . The following algorithm we• the same ćk as in the algońthm in Section 4. 

It keep• the bliss va.lu,s fixed but updates the weighting matrix of the quadratic optimization problem . 

Step O: 

Step 1: 

Step 2: 

Step 3: 

Algońthm : Fixed Blia Values and Non-diagonal Weighting Matrix 

Given a positive semi-definite weighting matrix q 0 , the sequence µk, the bli•• values ':Bd and 

the constraints, set k = O. 

Compute .the solution of the optimization problem 

(4.1) 

Interact witb the decision mak er. If xk E n, ńJlp_. Otberwise, the decision maker is required 

to specify the preferred value xp, ·and hence , ćk = Xp - xl; . 

Update the weighting matrix 

(4.2) 

Set k = k -r I an<l go to Step l. 

The matrix Qk computed in the algorithm above is in generał non-diagonal. lt is shown below 

that- starting with an initłal diagonal n1atrix, the above algorithm and the algorithm in Set.:tion I art: 
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equivaleat. At- each ,uge, the aon-diagoaal venioa above hu a coaataat diagonal equivaleat in the 

algorithm of Sectioa 4. The equivaleat nsulu \o Prcpoail.ion 1 rel&ted \o the &bove algorithm are 

discun•d in Rustem and Velupillai (1988, a). We mmm&riu theoe remlts. Whea Qk is positiv• mai­

definite, each sub8equen\ iterate of the &bove alcorithm is givea by 

(4.3,a) 

(4.3,b) 

• "'k < '\, Qk (xk - '3d) > 
°I, = - < 6Jt, <¾: '\ > + l'Jt < <¾:'\,z ( zT Qk z Tl zT Qk 61, > 

(4.3,c) 

(see, Rustem and Velupillai, 1988,&; Theorems 1, 2, Lemma 2) . 

We aow show the equivaleace of the rolutioa of the two quadratic optimization problem.o: one 

with the diagonal Heni&n fixed and oa}y the blis1 vuue1 modified, and the other with the bliu values 

fixed and onJ;, the diagoau matrix modified \o a non-diagonal form. 

Let <¾: be aonsiagular. Then, t.here exist l'Jt, °t and 4k such I.hat for 

(U) 

we have 

arg mm{< x-~+l' Qk(x-~+l) > jNTx=b} = arg mm{< x -~. Qk+1cx- ~) > j NTx = b}. 

(4.5) 

Moreo,·er, we have °k = ok. If ok , l'k are restricted such that 01;: , l'k ~ O, thea the choice of 6k is 

restnci.d by the inequality < '\ , Qk (xk - ~ ) > S O. 
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Consider the optimality condit.ion, of the minimization problems on both ńdes of (4.5) . With 

the solut.ion and the Lagrange multipliers denoted respect.ively by xk+l' Ak+l' the left ńde yields 

~ ( xk+l -':Bi.:+t )-N Ak+l =O. 

The ńght ńde yields 

Equat.ing both optimality conditions yields 

and hence ~ + 1 = ~ + ok 61: wheN 

(4.6) 

It can he shown that ""kin (4.6) and °'kin (4.3,c) are equiva.lent (see Rustem, 1990). 

The inequalitJ < 61:, Qk (xk - ~ ) > $ O ensures tliat ok , µk ? O. To demonstrate this 

when Qk+l is gjven as above, w• see that "k gjven by (4.6) is equiva.lent to °'kand this is ńonnegative 

if the above inequality and µk ~ O are aatisfied. When the bliss va.lue is being updated and· an 

equiva.lent update to QI: is being computed, then for "k ? O, and 

"k = - "k < 6k, Qk (xk+l - ~)>• . 
(4.7) 

. 2Th, above proposition d,arly hold• for Qk = D and Qk+l• as given above, is D with a rank-
one update and henre it is no Jonga, in generał, diagonal . 

When Qk is singular, it can be shown that (4 .4) can be written as Qk~+l = Qk (~+okók) 
from which the re!evant parts of 'i\+ can be recovored. For example, w hen Qk = D, a diagonal 
matrix, dearly only those elements of ~+I corresponding to non.ero diagonal element, of D can Le 
recovered . The correspondence oi "k given by ( 4.3,c ) and "k can be estahlished in the same way as in 
the following proof except that (4.3.a) is U'td for xk+t · 
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We now 1how I.Iw < 61,, ~ ("t - ~ ) > 5 O => < 61,, Qk (xk+l - ~) > 5 O. The inequality 

< xk+l - x1,:, Qk+l (xk+l - ~) > 5 O foliowi from the optimality of xk+l for the quadratic 

optimiu.tion with ~+t · Ulling the expre11ion for Qk+l' we have 

Since < xk+l - "t• ~ (xk - ~) > ? O follows from the optimality of xk with Qk; and < 61,, Qk 

(xk+l - x1,:) > ? O, holds if < 61,, Qk {"t - ~ ) > 5 O {see Rustem and Velupillai, 1988,b; 

Lemma 1) then we have < 6i,, Qk(xk+l - :I\) > 5 ti => Ili,: ? O and the corre1p0nding µk i, given 

by (ł.7) . D 

The extension of the above result to nonlinear comtraintl i, st.raighUorward. The method can 

be extended to the nonlinear constrained cue when the diagonal equivalent of a non-diagonal quadratic 

function is demed. The useful ana!J"tical equivalence of o and a cannot be estabwhed exactly in the 

nonlinear case. Clearly, if the departure of xk+l from xk is mfficiently small, then thia equivalence c"". 

also be established by involting ,.· mean value theorem and thereby ulling a loca! linear repre,entation of 

the constrainu (aee e.g. R.ustem and Velupillai, 1988, b; Theorem 5) . The following corollary 

rummarize1 the ltraightforward extemion. 

Corollar,- [ The Ext.emion to Nonlinear Comtrainu ] 

Let ~+land Qk+l be defined by (4.4) and let the constraints be given by 

G~{ x E En I g(x)=O} (4 .8) 

where gu twice differentiable and g : En- Em. Then the equivalenc, 

bold, for ok given by (4.6) . 

Proof 

The proof follows from the equivalence of the first order optimality conditions . • 
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The extemion to nonlinear constrainu u thu1 easily implementable as the basie ingredients 

that enter "k are 6t and xk+l· Both of thes, vectors are known when any one of the two quadratic 

problem• have already been solved. 

Propo,ition 2 relates the effect of a single update of Qk that yields Qk + 1 or a single update of 

~ that yields ~+ 1. As a corollary, we consider the ,equence {Qk} generated by the algorithm in this _ 

section and the corresponding sequence {~} generated by the algorithm in Section 1. 

Theorem 1 [The Diagonalisibility of Qnadratic Fomu) 

Let the sequence {Qk} be generated by (4 .2) and{~} be generated by (3.3), Jet Q0 = D then 

the equivalence between the diagonal and non-diagonal quadratic optimiaations 

arg min { < x-~. D (x -~) > INTx = b} = arg min { < x-~0, Qk (x-~) > INT x =b} 
(4.9,a) 

holds if 

(<l.9,b) 

Proaf 

( 4.9, b) follows from the following equiv&lence of the optim&lity conditiom of both problenu 

• 

The complexity of the algorithm iii Section 3 can be discussed, for · n characterized by linear 

inequaliti .. , by invoking its equivalence to the algorithm in this 1ection and the relation of the latter to 

Khacbian's (1979 , 198ó) algorithm for linear programming. As Khachian's algorithm u known to be 

convergent in polynomial time, its equivalence to the present algorithm would ensure the same 

convergence rat_e for the latter. lt is shown in Rustem and Velupillai ( 1988, b; Theorem• 1 and 7) that 

the algorithm in this s<etion is equivalent to Khacbian's algorithm provided that ':110 on the right of the 

equivalence (4 .9.a) is sbifted. at every k. in a way that will onl;v affect the stepsize ok or¾ above (see 

Rustem. l !>iłOJ . 
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CONCLUDING REMARKS 

Tb~ ponibilit7 of const.ruding quadratic objective functi.ons with diagonal weighting matrices, 

or Heni .... , u desirable bot.h in terms of computational convenience and interpretabilit7 . The exterulion 

I.o nonlinear comtrainu permits the wider applicabilit7 of the results. 
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