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ABSTRACT: We discuss the use of a quadratic norm for departures from the bliss value of a decision
problem under conflicting objectives. The use of a quadratic norm is, for example, of interest within the
dynamic framework of optimal control. The possibility of tailoring the quadratic objective function to
generate op i policies v 1 are acceptable to the policy maker is explored with two alternative
interactive aigurithms. One uv1 vhese is for objective functions with diagonal weighting matrices and uses
updates of the bliss values. The second algorithm proceeds by updating nen-diagonal weights, while
keeping the bliss values fixed. The equivalence of both algorithms are established.
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1 ~ TRODUCTION

Let B € RT be the bliss value of a multi-objective decision problem. Consider the
det¢ of relative importance of att 1g the different elem i of B. e attai ni of

different elements of B generally represent conflicting objectives.

We adopt a quadratic objective for measuring deviatic  from the bliss value. The quadratic

don is of interest, for example, within the framework of optimal control. In Section 2, we describe a

way of avoiding, if required. the symmetric nature of the quadratic function. We consider two
interactive methods for the specification of the quadratic objec‘tive..The purpose of both methods is to
tailor the objective function such that the optimally generated solution of the decision proble.m is also
politically acceptable to the decision maker. The first is a method for the specification of the quadratic
objective with a diagonal Hessian. The second method is for the specification of the weights and

generates a nondiagonal Hessian or weighting matrix.
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Consider the linear-quadratic optimal decision problem
min{ < x-3,D(x-%)> [NTx=b} 1y

where x € E®, b € E™ is a fixed vector, D is a diagonal matrix with nonnegative elements, B is the

bliss value of x or the unconstrained optimum of the quadratic objective. The cob of matrix N €
E®X™ are assumed, without loss of generality, to be linearly independent. The diagonal weighting
matrix in (1.1) occurs in economic decision making and in general in linear-quadratic optimal control
problems. In the latter case, (1.1) can be regarded as the transcription of the dynamic probiem into
static form (see e.g. Polak, 1971). We can thus state the problem as follows:

Let $& C E™ denote the set of policies acceptable to the decision maker. We assume that there
does not exist an analytical characterization of {1 and that  exists only in the mind of the decision
maker. If an explicit characterization of {} was possible, it could be used to angment the constraints of
(1.1} and the resultant problem could easily be solved. An analytical characterization is both inherently
difficult, or impossible, and sometimes also politically undesirable from the decision maker's point of
view. The problem is to tailor an objective‘ function for which the optimal solution of (1.1), x*, also
satisfies x* € Q.

We discuss two types of solutions to the above problem. The first involves modifications to B
and keeps D fixed as a disgonal matrix. The second invoives modifications to D and generates a
nondiagonal weighting matrix while keeping B fixed. We discuss the equivalence of both methods.

The desirability of a diagonal D is due to computational reasons as well as the intery if
the problem and +the optimal solution. Non-diagonal weighting matrices can be diagonalized by
appropriate transfuriuations of the variables. However, such transfortations lead te computational
complications, particularly in relat’ o constraints. A more important aspect is the difficulty of
assigning ap interpretation to the off-diagonal elements of a genefal symmetric weigh rix. Thcsé
elements are usually understood to represent trade-offs between achieving altermative objectives.
However, they are difficult to assign an interpretation as distinct from the diagonal elements, which
represent the relative importance of each objective. Also, for linear quadratic dynamic problem  ilved
via dynamic programming, maintaining the block diagonality of ™ in terms of the time structure, is
desirable at least for the physical interpretation of the resultan. .ptimal linear feedback laws. This
contrasts with the case when non-diagonal weighting matrices have to be factorized and the original
variables have to be transformed in order to obtain feedback laws which may only apply to the

transformed variables.

In most ecomomic decision making problems under conflicting objectives, the precise value of
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.\j:xj:—(xj—ﬁi)if X - B <o

Thus, either xi_ = Qor xi+ = 0 or both. In addition to the nonnegativity restrictions, we therefore
have to impose the constraint (x‘i_) (xj+) =0. Since in vector notation we have, x = x, — x_ + B,

we can express the above minimisation problem as

T PTE TR £2 EN R
i=1 i=1

where p > 0 is a sufficiently large pemalty parameter chosen to ensure that, in view of the
nonnegativity constraints, the minimum value of (xi_) (x";{_) is realised at either xi_= 0 or x"+= 0.
We have thus reduced the nonsymmetric problem te a symmetric problem. The extension of the
methods discussed below to inequality constraints are discussed in Rustem md Velupillai (1988, b).

3. DIAGONAL QUADRATIC OBJECTIVE FUNCTIONS

We consider a solution to Problem 1. An alternative solution and the equivalence of both
solutions are discussed in the next section. Let (1.1} be solved for a given weighting matrix D and a

given initial vector of bliss values B;. The solution is denoted by

-NTx:b}.

xo:ugmin.{ <x-—By, D(x-%y) >

The solution is presented to the decision maker who is required to respond by either declaring that

Xq €9, or if xg € Q, the decision maker is required to specify the modified form of x, that is in Q.

The decision problem we wish to consider can now be form'lated as the computation of the
policy, optimally determined via {1.1), but which also is acceptable to the policy maker and is hence in
the set (2. We assume that { x iNT x=b } N 1 # A The decision maker’s preferred alternative to x,
is denoted by Xp- By deﬂnitiuul, we have xp € Q but not necessanly Xp € {x iNT x=b}nNnQIn
cayee the laller is Lrue, such a preferred alternalive would conceptually solve the decision problem. Let
by = Xp = Xgy where 8, is the correction vector that needs to be added to x; in order to ensure that x,
+ &y € (1 Using 6y, we can revise the bliss value as B, = B, + ay 6, where oy > 0 15 a scalar. Using

this new bliss value. problem (1.1) is solved once again to vield a new optimal solution. x,. This
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m is shown below to have desirable characteristics. However, as there is no guarantee that Xy €
: above proced: may need to be repeated. The resulting algorithm is summarized below. We
8 the complexity and termination properties of the algorithm in Rustem {1990} and Rustem and
itlai (1988, b).

Algorithm : Updates of Bliss Values with a Fixed Diagonal Weighting Matrix

Given D, 30, the sequence {a»k} and the constraints, set k = 0.

Compute the solution of the optimization probiem:
xkzargmin{<x—$k,D(x—T'k)>lNTx:b} 31

Interact with the decision maker. If x) € {, stop. Otherwise, the decision maker is required

to specify the preferred value *ps and hence,

& = Xp — Xy (3.2)
Update the bliss values .

B =B oy by (33)

set k =k + 1 and go to Step 1.

The relationship of Xy 410 Xk and ay, b is summarized in the following resuits. The choice of
jective function may also be based on criteria other than Xy € Q. For example, in the linear
stic dynamical systems, the weighting matrices might be chosen to yield a stable minimum
ce controller (see Engwerda and Otter, 1989). However, in the present study we consider the
lence properties of the approach adopted in this section to respecification, discussed in Section 4,
diagonal weighting matrices while ket . B fixed. This equivalence also provides the key to the
:xity and convergence of the policy design process. In addition, as it is possible to decompose a
stric matrix into a sequence of rank one updates (see Fiacco and McCormick, 1968), the method
i section and the equiv  ice result allow the possibility of expressing non diagonal weighting

es in terms of diagonalized objective functions.

An alternative characterization of the problem would be in terms of finding a solution that
satisfies the constraints and , without any optimality requirement. One difficulty of this
«ch is that {} needs to be explicitly specified. Let us assume that this was possible and that 2 was
terized by the intersection of a finite number of énear inequaiities. 1t can then be shown that both
wve algorithm and the Alg;lrithm in the mext section are related to Khachian's (1979, 1980)
hm for computing a feasible solution to a system of linear inequalities. In this framework, the

6 is determined by one of the {linear) constraints bounding the set (2. 1o particular, 8 is related
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to the gradient of a constraint characterizing €2, violated at Xy {Rustem and Velupillai, 1988,b; Rustem,
1989). By invoking Khachian's result, we can thereby obtain a polynomial time complexity for beth
algorithms. The added advantage of the two algorithms in this paper is that they relate each iteration
with an objective function and optimality that is useful to the decision maker. Since the set of
acceptable policies, £, does not exist anywhere except in the mind of the decision maker, the
interpretation and specification of & is aided by the optimality, at each iteration, of the quadratic
objective function.

Propesition 1

Assume that D is positive semi-definite, the optimal solution and Lagrange multipliers can be

written as

=%+ 2(2TD2) 2T D5, ‘ {3.4)

where Z € €2 X (=) 44 4 orthogonal matrix! such that ZT N = 0, and
My - (NTNYINTD{1- 2(2'DZ)y 27D Js,. (3.5)

Proof (Rustem, 1991)

To establish (3.4), we note that x, ; — % € {x ]NT x=0}and, as NT ; ), any such

vector can be written as a lincar bination of the col of Z. Thus, we have Xppq— X = Z w, for

s vector w € E™™ and from the first order optimality condition of (3.1) we can write
D[Zwtx-B ~aq 8 |=2TNN, )
and thus

Ny - =Iw= UZTDZPZTD[x - 3y - oy & ] (38)

Fr the optimality condition at iteration k, we have ZT D x - B 1= TN A = 0. Thus,

The choice of the orthogonal matrix 2 is discussed further in Rusten  1d Velupillai {1988, a).
TI'he' numerically stable way of generating Z is by considering the QR decomposition of N. The matrix Z
is given by the last n-m columns of the matrix Q of this decomposition (see, Gill, Murray and Wright,
1981).
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expression {3.4} follows from (3.6},

For {3.5), we use the optimality condition at k+1 to yield
T 1T
M1 S(NTNJINTD [ g —x + 3~ By ~ay 6y | (€k]

Using (3.4) and the optimality condition at k, D { x, - x: )= N X, leads to expression (3.5). a

4. THE DIAGONAL VERSION OF NON-DIAGONAL QUADRATIC FORMS

We consider the equivalence of the algorithm in Section 3 with a method generating nondiagonal
weighting matrices, discussed in Rustem, Velupillai, Westcott (1978) and Rustem and Velupillai (1988,
a). The complexity of forwner is discussed in Rustem {1989) and Rustem and Velupillai (1985, b}, by
exploiting this equivalence . The following algorithm uses the same ék as in the algorithm in Section 4.

It keeps the bliss values fixed but updates the weighting matrix of the quadratic optimization problem .

Algorithm : Fixed Bliss Values and Non-diagonal Weighting Matrix

Step 0:  Given a positive semi-definite weighting matrix Qg, the sequence By the bliss values B¢ and
« s, set k = 0.

Step 1:  Compute the solution of the optimization problem
xk:argmin{<x—€Bd,Qk(x—‘Bd)> tNTx=b}, (4.1)

Step 2: Interact with the decision maker. If x, € (2, stop. Otherwise, the decision maker 1s required
k

to specify the preferred value x,,, and hence, 6‘, = Xp - X

T

Step 3:  Update the weighting matrix

T
Qb b

_— R (4.2)
< ék' Qk'ék >

Cp1 =+

Set k =k = 1 and go to Step 1.

The matrix Qk computed in the algorithm abeve 1s in general non-diagonal. It is shown below

that starting with an initial diagonal matrix, the above algorithm and the algorithin inn Section 1 are
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equivalent. At each stage, the non-diagonal version above has a constant diagonal equivalent in the
algorithm of Section 4. The jvalent results to Proposition 1 related to the above are

¥

discussed in Rustem and Velupillai (1988, a}. We summarize these results. When Qk is positive semi-

definite, each subsequent iterate of the above algorithm is given by

S =t e 2027 Q) et Q {43,)

M1 = - (NTNYINTQ (1-2(2Tq 2y 27 Q) 5 (43,b)

ay <6k,Qk(xk—'Bd)>

o =— 3
T by >t < QLB 7)1ZT Q6 > (#3)

(see, Rustem and Velupillai, 1988,a; Theorems 1, 2, Lemma 2}.

We now show the equivalence of the solution of the two quadratic optimization problems: one
with the diagonal Hessian fixed and only the bliss values modified, and the other with the bliss values
fixed and only the diagonal matrix modified to a nan-diagonal form.

Proposition 2
Let Qk be nonsinguiar. Then, there exist Hy, oy and °k such that for
Q b & Q

B =B topf Qi =t o C b 5 > (44)

we have

arg wminf < x-By ), Qulx-B 1) > }N&:b} = arg minf <x ~By, Q1(x- By) > !NTx =b}
(4.5)

Moreover, we have &k =ay. If ay , py are restricted such that ap, m 2 0, then the choice of Bk is

restricted by the inequality < &, Q) {x, ~ B, ) > < 0.

Proof?
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Consider the optimality conditions of the minimization problems on both sides of (4.5). With

the solution and the Lagrange multipliers denoted respectively by Xy 41 Ak +10 the left side yields

Qo ~ By ) - N gy =0

The right side yields

Qb e |
runr =l CWCEL VRS ENEE L)

g+ eida
[T < Q>
Equating both optimality conditions yields

Q 5 & Q
QB = Q% By - l:'"k e 0 skk,qu“—kﬁkk> ](xk+l -3y

and hence B, | = B, +ay b where

< b Oy Xy~ By ) >
ﬂk-—-‘ﬂk < Bk'g:lbk < (4-6)

It can be shown that o in (4.6) and &k in (4.3,c) are equivalent (see Rustem, 1990).

The inequality < &, Q@ (x, — Sk ) > < 0 ensuresthat oy, g > 0. To demonstrate this
when Qk+! is given as above, we see that @, given by (4.6) is equivalent to &k and this is nonnegative
if the above inequality and By 2 0 are satisfied. When the bliss value is being updated and an
equivalent update to Q!: is b ‘ uted, then for o 20 and

R e Q>
o Qp gy B>

*The above proposition clearly hoids for Q. = D and Qk+1‘ as given above, is D with a rank-
ane update and hence it is no longer, in general, diagonal.

(4.7)

When Q, is singuler, it can be shown that (4.4) can be written as Q,ka = Q. (‘Bk-f—a,é.)

i k k Tkl k il 5
from which the relevant parts of ‘Bk+ can be recovered. For example, when Qk = D, a diagonal
matrix, clearly only thos: clements of + cofresponding to nonzero diagonal clements of D can be
recovered. The correspondence of @), given by (4.3,c) and o) can be established in the same way as in
the following proof except that (4.3,a} is used for LRE
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We now show that < &, Qy x ~ By ) > < 0= <§,Q (g4, -~ B)> < 0. The inequality .
<Xypp < Xpr Qk-H (xk+1 - Sk) > < 0§ follows from the optimality of Xgp for the guadratic
optimization with @ , ;. Using the expression for Qx +10 e have

0 2 < ey =% Qg Dy~ H) >

m
= <o b > *zzﬁ;rk“; X1 e U > <O (B>

Sinece < Xepy % Q (xk - Sk) > > ¢ follows from the optimality of xp withQy,and < 6, Q)
X4y — xk)> > 0, holds if < & Qp (xk - $k ) > < 0 (see Rustem and Velupillai, 1988,b;
Lemma 2) shen we have < &, Qulxy g — B,) > < 0= > 0and the corresponding py, is given
by (£.7). o

The extension of the above result to nonlinear constraints is straightforward. The method can
be extended to the nonlinear constrained case when the diagonal equivalent of a non-diagenal quadratic
function is desired. The useful analytical equivalence of & and & cannot be established exactly in the
nonlinear case. Clearly, if the departure of x 41 from x, is sufficiently small, then this equivalence can
also be established by inveking a mean value theorem and thereby usug a local linear representation nf.
the constraints (sec e.g. Rustem and Velupillai, 1988, b; Theorem 5). The following corollary

summarizes the straightforward extension.

Corallary | The E jon to Nonlinear C aints |

Let $k+l and Qk+1 be defined by (4.4) and let the constraints be given by
G;{er“,g(x):o} (4.8)
where g is twice differentiable and g : £0— E™. Then the equivalence
argmin{<x—3k+1,Qk(x—Bk+l;> 5x & G}:a.rgmin{<x—3k, Q1B ) > 1x € G}

holds for o given by (4.6).
Proof

The proof follows from the equivalence of the first order optimality ronditions o]
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The extension to no  ear constraints is thus easily implementable as the basic ingredients
that enter ay are 6k and Xe 41 Both of these vectors are known when any one of the two quadratic
prablems have already been solved.

Proposition 2 relates the effect of a single update of Qk that yields Qk +pora single update of
Sk that yields $k 4+1- As a corollary, we consider the sequence {Qy} generated by the algorithm in this
section and the corresponding sequence {B, } generated by the algorithm in Section 1.

Th 1 [The Di lizibility of Quadratic Forms]

Let the sequence (Qk} be generated by (4.2) and {'.'Bk} be generated by (3.3), let Qg = D then
the equivalence between the diagonal and non-diagonal quadratic optimisations

Argmin{(x—ﬁk,D(x—’Bk)> ‘NTx=b}=u~gm'm{<x-3o,Qk(x—$°)> ‘NTx=b} :

(4.9,8)
holds if . s ) - 2,) )
= < 6, Q. (x, — >
DB, =D 3By - Z # 1<Q61"éi6‘ S Q 5 (4.9,b)
i=0 h 1
Proaf

(4.9, b) follows from the following equival of the optimality conditions of both problems

Dix, -B) = Q (% —%)
k-1 - 6. 61 Q.
- A LI T PR
D+ 3k Ty [tk %) o

The complexity the algorithm in Section 3 can be discussed, for §1 characterized by linear
inequalities, by invoking its equivalence to the algorithm in this section and the relation of the latter to
Khachian’s (1979, 1980) algorithm for linear programming. As Khachian’s algorithm is known to be
convergent in polynomial time, its equivalence to the present algorithm would ensure the same
convergence rate for the latter. It is shown in Rustem and Velupillai (1988, b, Theorems 1 and 7) that
the algorithm in this section is equivalent to Khachian’s algorithm provided that By on the right of the
equivalence (4.4.a) is shift ~ at every k. in a way that will oniy affect the stepsize &y or ak above (see

Rustem. 1690).
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CONCLUDING REMARKS

The possibility of constructing quadratic objective functions with diagonal weighting matrices,
or Hessians, is desirable both in terms of computational convenience and imterpretability. The extension
to nonlinear constraints permits the wider applicability of the results.
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