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Abstract: We develop a new approach to generate efficicnt solutions of the mulitcriteria 

optimization problem. The approach, specially designed for nonconvex problems, relates the 

gcneralizcd Lagrangian duality theory with rnulticriteria optirnization. Theoretical results illustrated 

by an example are presented. 
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1. Introduction 
Many methods for genmting and examining efficient solutions of mulitcriteria optimiution 

problems have been developed over the last two decades. Some of the rnethods are designed 

spccifically for linear problems and stili others work well only on problems which have convex 

objcctive functions and a convex feasible region. We are interested in consistently solving 

multicriteria optimiution problems which are not requried to satisfy any convexity assumptions. 

The weighting method (Geoffrion, 1968), perhaps the most commonly applied, identifies an 

efficient solution by utilizing a supporting hyperplane in the objective space. It can be easily shown 

that this rnethod may fai! to generate efficient solutions of a nonconvex problem. The E-constraint 

method developed by Haimcs (Haimes and Chankong, 1983) is more capable of generating efficient 

solutions of nonconvex problems than the weighting method. This method may, however, be una ble 

to generate every effic1ent solution if the efficient set is disconnected, a property naturally resulting 

from nonconvexity. The placeipent of the goal and weights given by the decision maker in the goal

attainment method (Gembicki, 1973) can affect the method's ability to generate efficient solutions. 

Similarly, in the Tchebyshev norm method (Zeleny, 1973) and Benson's method (Benson, 1978), 

the location of the reference point is crucial. While applying these rnethods to a nonconvex problem, 

m.iny reference points may generate the same efficient solution. Kostreva et al. (1991) developed a 

method for problems with polynomial objective and constraint functions which generates both locally 

and globally efficient solutions. · Bernau (1990) applied exact penalty functions to determine efficient 

solutions of nonlinear multicriteria optimization problerns. Khanh ( 1991) used penalty functions to 

fonnulate a dual pi:Oblem for a multicriteria nonconvex problem and obtained results relating duality 

573 



to cfficiency. 

The field of cnginccńng providcs examplcs of real life applications of noncovcx multicriteria 

optinńzation problems. Tabek et al. (1979) model aircraft control systems design with soch 

problcms. Osyczka (1984) uses a nonconvex muticritcria model in the area of machine gear design. 

In this papce we introducc a new approach to solving multicriteria nonconvcx optinńzation 

problcms. The approach applies generalimd Lagrangian duality theory devclopcd by Roode (1968), 

Nakayama et al. (1975), and others. 

In the ncxt section we formulate the multicriteria optimization problem and show how to relate 

the gcncralized Lagrangian dual problem to it In section 3 we present new theorctical foundations 

for gcncrating weakly efficicnt solutions. Section 4 includcs an example, and the pap,.:r is concluded 

in scction 5. 

2. Problem Formulation 

Consider the multicriteria optinńzation problem (MOP) formulated as 

MOP:" min {f1(x), f2(x), .. .-, fm(x)} 

s.t. xeX 

wherc· cach fi(x),j = 1, 2, ... ,mis a rcal-valued function defined on X~0 . A point x0ex is called 

an cfficient solution of MOP if thcrc is no other point XE X such that fi(x) S fj(x0), i = 1, 2, ... , m, 

with strict incquality holding for at least one i. A point x0e X is called a weakly efficient solution of 
MOP if therc is no other point xe X such that fi(x) < fi(x°), i= 1, 2, ... , m. The image of any 

(weakly) efficient solution undcr the vcctor-valued mapping (f1(x), f2(x), ... , fn:(x)) is called a 

(weakly) nondominated solution. 

Corrcsponding to MOP is the following E-consttaint problem (Haimes and Chankong, 1983) 

Pk(E): min fk(x) . 

s .t . f/x) S Ej 

xEX 

j = 1, 2, ... • m; j * k 

where E = (E1, ... , Ek-I• Ek+l• ... , Em)- Let the function f/x) - Ej be rlenoted by g/x) and 

g(x) := (g1(x), ... , gk_ 1(x), gk+t<x), ... , ~(x)). Let w(y) := inf (fk(x): g(x) S y, xEX) and 

B := ( y : there exists an xE X such that g(x) S y) . Then the epigraph of w(y) is defined as 

epi w(y) := { (y, z) : z~ w(y), yE B). 
The generalized Lagrangian function (Nakayama et al., 1975) corresponding to Pk(E) is 

A) = fk(x) + G[~(x), A] 
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wherc le Rm-l, A: :2: O, and G[g(x), A.] is a mapping from RnxRm-l to R 1, which is finite on X for 

cach A..? O and satisfies the following propenies: 

i.) G[0, A.] = O for all A..? O, 

ii.) G[g(x), Ol = O for all XE X such that g(x) ~ O, 

iii.) if g(x) > O, there exists a sequence (A. k}, IIA kii • 00, such that 
lim sup G[g(x), A.] = oo, 
A--

iv.) G[g(x), A.] is nondecreasing with respect to g(x). 

The genernlized Lagrangian dual (GLD) problem is given as 

GLD: max h(A.) 

s.t . A.EA 

where b(A.) = inf IJ,.x, A.), and A=( A. : A. .? O, A.ER m-l} . Associated with the generalized 
xeX 

(l) 

(2) 

(3) 

(4) 

Lagrangian function IJ,.x, A.) is the bypersuńace of the form z+ G[y, A.]= b(y, z), where b(y, z) is 

the z-intercept of the hypersuńace which passes through the point (y, z). Directly related to GLD 

problem is the following lemma (Nakayama et al, 1975). 

l..emma 1: i minimizes IJ,.x, A.) on X if and only if the hypersurface of the form z+ G[y, A.] = 
b(g(i), f1-;(i)) soppons epi w(y) at (g(i), f1,;(i)). 

This lemma relates the generalized Lagrangian function to a sopporting hypersuńace of the 

feasible set in the image space. 

3. Applying Generalized · Lagrangian Duality 

In this section we show how to generate weakly efficient solotions of MOP by applying 

gcneralized Lagrangian doali1y theory. 

Theorem 1: i minimi:zes IJ,.x, A.) if and only if i is a weakly efficienl solotion of MOP. 

lll2s!f; ( •) If i minimizes IJ,.x, A.), then by Lemma 1 there exists a pypersurface of the form 
z+ G[y, A.] = b(y, z) which supports epi w(y) at (y, z) := (g(i), fk(x)). 

If there does not exisl a point ie X soch that g(x) < g(x), then x is weakly efficient 

Now, assume thai there exisls an xeX soch thai 

y := g(x) < y := g(x) . (5) 

Since ie X, (y, z) := (g(x), fk(x)) e Y := { (g(x), fk(x)) : xe X} ,;;; epi w(y). Let (y, z) be a point in 

the hypersurface z+ G[y, A.] = b(y, z). Since z+ G[y, A.] = b(y, z) suppons epi w(y), 

z~ z. (6) 
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From (5) and the property of G[y, l] bcing nondecreasing with respect to y, we get 

z= -G[y, lJ + b(y, i) <!: i= -G[y, lJ + b(y, z). (7) 

From (5),.(6), and (7) there is z;;?; i if g(i) < g(i). Hence f1r(i);;?; f1r(i) if g(i) < g(i). Therefore, 

(y, i) is weakly nondominated. and i is weakly efficient 
(~) Since ie X is weakly efficient, (y, i):= (g(i), f1r(i)) is weakly nondominated. Therefore, if 

there exists an ie X such that f1r(i) < f1r(i) then g(i) <!: g(i). Similarly, if therc cxists an ie X such 

that g(i) < g(i) then f1r(i) ;;?; f1r(i). Hence, the hypersurface defined hy 

if g(x) S: g(t 

ifg(x) > g(t (8) 

suppoltS Y at<,, i). Using z= -G[y, l] + b(9, i), l <!: O, we get z= -G[g(x), l] + b(g(i), f1r(i)), 

where b(g(i), f1r(i)) = f1r(i) and 

G[g(x), l} = {O 
+ - if g(x) > g(~ 

if g(x) S: g(x) 

(9) 

Note that G[g(i), l] is nondecreasing with respect to g(x) and satisfies properties (1) - (4). · 

Therefore, the hypersurface of the form z+ G[y, l~ = b(y, i) given by (8) and (9) supports epi w(y) 

at (y, z). From Lemma 1, then, i minimizes L(x, l). • 
Having generated a weakly nondominated solution as above, any duality gap associated with it, 

which would be encountered with classical Lagrangian duality, is resolved with generalized 

Lagrangian duali ty theory. . . 
Theorem 2· lf i is a weakly efficient solution to MOP and lis a solution of GID, then f1r(i) = h(A.) 

for some k = 1, 2, ... , m. 

ftQQt Since i sol~es GID, h()..) ;;?; h(A.) for all l ;;?; O. From the definitions of h(l) and L(x, l), 
h(l) := inf { L<.x, l)} <!: L(i, l) := f1r(i) + G[g(i), lJ where the inequality follows from Theorem 1 ~x . 
and the fact that i is a weakly efficient solution of MOP. Therefore, h(l) ;;?; f1r(i) + G[g(i), l] for all 

l ~ O with g(i) S: O. In particular, h~) ;;?; f1r(i) + G[g(i), OJ. From (2), G[g(i), OJ = O, and · 

therefore 

h()..) ~ f1r(i). 

, Onthćotherhand,h~):= inf {L(_x,)..)} := inf {f1r(x)+G[g(x), )..J} S: 
xeX · xeX 

inf {f1r(x) + G[g(x), l] : g(x) S: O} S: inf (fk(x): g(x) ,S: O} := f .. (i), where the last inequality ~x ~x • 
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follows from the propeny that G[g(x), l] SO for g(x) SO because ofproperties (1) and (4). 

Therefore, 
h(l) s f1c(x). 

Inequalities (10) and (11) imply that hQ..) = ft.:(x). 

(li) 

• 
Theorems 1 and 2 guarantee that all wealdy efficient solutions, panicularly those in the duali ty 

gap, can be generated using the generalized Lagrangian duality approach. 

4. Example 
We now apply the results of the previous section to solving the following bi-criteria nonconvex 

optimization problem. 

MOP: min 
3 

{Tx+°T, 1 - X) 

S.t. 0 $X$ 7. 

The E-constraint problem is formulated as 

P1(E): min ~X + 1 

s.t. 1-xSE 

0 $X$ 7. 
P1(E) is feasible only for E ~ -6. In sucha case, 

w(y) = r✓2~ y 
ify S 1 

ify > 1 

A duality gap exists for any value of E such that -6 5: E 5: 1. For sirnplicity, assume E = O. 

The solution of P 1 (0) is x* = 1, and the objective value is ½ . The optima! value of the classical 

Lagrangian dual problem is l Clearly ½ > ł, and a duality gap exists for this problem with E = O. 

Now consider the function 

G[ (1-x), A] = { ~(1-x/ + A.( 1-x) 

The corresponding generalized Lagrangian function is 

if(l-x) > O 

if(l-x)5:0 

L( ') 3 ~l {"( 1-x) 2 + A.( 1-x) · X,11, = .JX+I + 
o 

ifx < I 

ifx ~ 1 

When ,._• = 1/(3¼), the optimai value of the generalized Lagrangian dual problem is½ which is 
equal to the value of P1 (O) at x* = 1. The duality gap is resolved, and the weakly efficient solution 
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x• = 1 is gene:ra!Cd. In addition, the function 

{ 
1 2 1 3C: 

-G(y, A.] + w(E) = - 3 r. y - 3 r. y + ,JL. 
z= 3v4 3v4 

w(E)) 

. 3r,; 
is a supporting bypersurfacc of cpi w(y) at (0, w(O)) = (O, -.i 2 ). 

5. Conclusions 

ify>O 

ifySO 

1bis short paper presents for the first time a thcomical development for applying the gencralized 

Lagrangian dual problem to solving a gencral class of nonlinear, possibly nonconvcx, mulńcrilCria 

optimiz.ation problems. The n:lationship between weak efficiency and generalized Lagrangian duality 

is shown. The illustrative example demonstrates how to generate_ an efficient solution located in the 

duality gap. 
The authors intend to continue further study in this area in order to develop new algorithmic 

procedures for generating efficient solutions. 
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