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A)>stract: We present a model of bargaining, in which one party issues threats characterized by a 
nl!IDher of patllil)eters. In real life ne_gotiation threats are often "flexible", i.e. they are not all or 
nothing affalrs. •ur model emphasizes such a nature of threat strategies, and explores possible 
implications of extending the notion of a threat along that line. 
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1. Introduction 

Let us ima~ne the following s.ituation. In a fum, a trade union wants to change the conditions of 
ep:iplo~t. }n negotiating for that the union may issue threats of strikes. In real life it often 
hąppens that the threatened strikes vary in their intensities (this can be done, for instance, by 
$t0Wtng worlć only In certain parts of the enterprise or by withdrawing labour for only a couple of 
hóllf.s). da_y). A choice of that intensity is an imponant union's decision. Our model takes this into 
aceóµrtt. Moreóver,' the µnion chooses not only the strike intensity but also decides the possible 
1,en,gtn of the tl)reatened strike. lt chooses, also, the points of time during the possible strike, at 
which it will be willing to negotiafe wi_th the firm's management. • 

lf an agt~t is r~łied during tbe strike, the action •is called off and employees go back to 
work urider the itewly .agteęd upon tenns of employment. If, however, an agreement is not achieved 
\llltif the end of strike, labor r..etums to work undet the old tertns. 

In this :paper W.e we interesied 'in situations analogical to the outlined above. We model the 
entire pi-ące_ss .as a_ 1\iulti-.stage ~- The ian1e is solved through the technique of solving 
~ąclctyąrds, ~e s..ąlutiJ~n co~t ~ at e_ach atęp of this backward procedure being the well known 
N~h (1950) solutfo,i (wh1ch Wąs quite often U$ed in describing labor-management bargaining, e.g. 
~ S.veJnlµ- (1980), Grout (191!4); McDonliJd 1\nd Solow (1981)). Threats of strikes have been also 
inn:od:ućed in ~v~ .Nlier 1:Q04.el~ (e.g. DeBrock and Roth (1981) and Barrett and Pattanaik 
(19~9)), bu.t ~ Jtrik,es ·mete wer:e aJµ1Óupced wmplete or not at all. We believe that allowing 
varl;ible tntettsitjc¼ of thi:eats as wen as introducing other parameters, takes into account important 
fa9W:s ąf real-li{e_$i~fions ai,d adds an interestit1g analytical feature. 
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2. The Model 

Having in mind our example ofunion-firm's management negotiations we shall denote the two 
parties in our game by U and F. Both players talce into account their utilities over a time hońzon t= 
O, 1, ... , T. Since U is not satisfied with the status quo situation, he wants to bargain over a change 
of a vector v of decisions. Since F has the power to change v, then U can issue a threat (of strike 
action) in order to force F to make concessiQns. In generał, various such actions are possible, which 
are harmful to F to different extents. The normalized intensity of the threatened action will be 
denoted by s e [0,1]. Then, U has the possibility of choosing se [0,1], while F controls the 
decision vector v. We assume that other characteristics are constant over time, and that the parties' 
utilities are additive over time. Tuus, we can denote the utilities attained during a· single time period 
t by xJv,s) and x~v,s). _ 

The point of departure in our model is characterized by a certain vector v0 (and, ·of course, s = 
O). U would like to attain an agreement which would change v0 to a certain ,ł- such that xJv\O) > 
x0 (v0,0). Typically, however, such an agreement would be disadvantageous to F, Le. ~./--,O) < 
x.{v°,O), and that is why the use of a threat may be necessary. Usually an implementation of a threat 
is costly to F as well as to U. · 

To solve the bargaining problems which arise in our model we shal1 use Nash's scheme applied, 
in case the parties fail to agree, at successive stages of the game. The negotiatlons, however, need 
not talce place in cach time period. We assume that U can choose periods in which talks C<>uld talce 
place. The set of such time pe:riods will be denoted by B and called the bargaining schedule. The 
threatener, U, announces also the possible /ength of action-re {0,1, ... ,T} . It is natural that B s: 
{ O, 1, ... , 't}. Moreover, we assume that the announced s is constant over the period b - 't. 

Then, we have introduced three parameters that characterize a threat, namely, the intensity of 
the threatened action s, its possible length 't, and tlie barg;iining schedule B. The question we shall 
concentrate on is the role and the uptimal choice of the triple ( s, -r,B). 

Let us denote the set of all feasib/e agreement outcomes at t by z. : 
Z,= {(Xu, Xy}: Xu = txu(v0 ,s) + (!'-t) x0 (v,O), XF = txy(v0 ,s) + (T-t) xy(v,0), v e V}. 

te {0,1 , ... ,-r} (1) 

The Nash bargaining solution at consecutive stages are computed through a backward analysis. Let 
tL denote the last period at which the talks can talce place, i.e. '1_ = max { t t e B} . Thus, if tl}e 

parties do not agree at '1; then the finał disagreement outcome will_ be X\s,'t) = (X\(.)_xJ ie-O), 
where 

Xt(s,-r)=n;(v0,s)+(T-t)x;(v0,0), ie {U,F} . (2) 

Thus, at tr, we have the bargaining problem (Z,L,Xd) which can be solved according to N8$h's 
scheme. This solution, which we denote by N(Z,uXd), is used as a disagreement point (in the 
sen_se of Nai:h _( 1953)) when solving the bargaining problem for the prior-to-tr_ time period ti,_1 11-t 
wh1ch negonanons can talce place (i.e. from B). And this process is repeated, yielding, 6naI1y, a 
bargaining solution for 11 = min { t: t e B} ( a similar sequential scheme has been discussed Ul -
Binmore (1987) and Livne (1987)). · 
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Note that the bargaining solutions depend on s, t, and B. Denoting the solution reached at t by 
X(s,t,B,t), the process can be wńtten as follows: 

X(s,t,B,tL) = N(Z,L, Xd(s,t)) , 

X(s,t,B,t1,1) = N(Z,1,-1 ,X(s,t,B,tL)), 

. . 
X(s,t,B,ti) = N(Z,,, X(s,t,B,t2)), 

where N(G) denotes Nash's solution of a bargaining game G. 

(3) 

The sequence of events in our game is the following. At the very beginning U announces the 
triple (s,t,B). Then, in case t1 > O the threatened action is immediately on up to t,-1. At the 
beginning of the first period of negotiations t1, the parties must decide whether to accept 
X(s,t,B,t1) . In case of acceptance the strategie part ends - a decision vector corresponding to the 
agreement,/' is computed and implemented up to T. If X(s,t,B,tl) is not accepted, then the threat 

action continues up to ti-1. At fi there is a chance of the agreement X(s,t,B,ti), etc. Eventually, if 
the parties failed to agree even at t1,, then the outcome would be given by (2). 

3. Optimal Threats 

We shall concentrate on the problem U faces, of how to determine the optima) jlexible threat 
described by a triple (s,t,B), where se [0,1], te {0,1, ... ,T}, and B s;; {0,1, ... , t}. Because of the 
Jack of space only the main results will be presented. For details as well as the proofs of theorems 
presented see (Pattanaik,Stefanski , 1991 ). 

Consider first two bargaining schedules B and B such that B = B v { t} , where i < min { t: t 
eB} = t1 • As it follows from (3) it can be proved that X(s,t,B,t)2:X{s,t,B,t) . From this 

inequality, in tum, it follows that the optima) bargaining schedule B should contain the time period 
t = O, i.e. the optima) B should have the form B = {O} v B', where B' s;; {1,2, ... ,t}. 

Moreover, from (3) we have X(s,t,B,t') 2: X(s,t,B,t") if t' < t". Then, for a given s,t, and for B 
of the above mentioned form, X(s,t,B,0) is the dominating solution, and thus the parties will 
accept it, i.e. the agreement will be reached at the time tA = O. This is, in fact, due to our implicit 
assumption about complete information in the game. 

This means that the U must consider the following problem when looking for an optima) threat: 

(s*,t*,B*)=argmaxXu(s,t,B,0), 
(1,t,B)Eil 

where O={(s,t,B): se [0,1); te {0,1, .. . T}; B={0}vB', B's;;{l,2, ... ,t}} 

(4) 

Problem (4) can be solved in three steps. First we shall consider the, choice of the best 

bargaining schedule B for given s and t, i.e. we shall be looking for a function B such that 

B = ar~max Xu(s, t, B(s, t), 0) 
BeB 
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wherc B: [O, I] x{O, I, ... , T} • 21°,1-~•> , and B is the set of all such functions. In the second 
step, we consider the choice of the length of the threatened action as a function of its intensity, s. 
Lastly, we deńve the optimal threat intensity. Given the optimal choice of s, and given the length of 
action as a function of s, we get the optimal length of the threatened action. Further, the optimal 
choice of the bargaining schedule is determined once we have the optimal intensity and length of 
the threatened action. 

lt appears that the optimal bargaining scbedule B(s, 't) depends on the relative positions of the 
points Xd(s,t) and Xd(s,T) (see (2)) within the set Z0 (determined according to (I)).Consider the 

possible positions of the point X\s,t). From (2) and the assumption that a threatened action is 
costly to Fas well as to U (like a stalce) it follows that the set of possible positions of X'1(s,t) can 
be determined as follows: 

Ds={(Xu,XF)EZo:X;>Tx;(v0,s),ie{U,F} or X;=Tx;(v°,s),ie{U, F}} (6) 

Now, Jet us construct a line segment joining X'(s,T) with a given point X e Zrr This line will 
be treated as a set and denoted by L(X). We shall consider a family of such lines: /, = {L(X): Xe 

P(Z.)}, where P(Z0) denotes a Pareto frontier ofZo. A function describing P(Z0) will be denoted by 
frr From the family /, we shall distinguish a particular line L(X), X=(Xi;,Xi,) e P(Zo), such that its 

slope M is equal to the negative slope of the Pareto frontier of Z0 at X, i.e. 

M = rotxu>-xica.n = _ clfo<Xul 
Xu'-Xt<a.n dXu 

This line will be used to divide Ds into three sets A;,, C'.s, and Es as indicated in Fig. I. 
Xp 

Figure I 
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Now we are in a position to formulate a proposition which determines the optima! choice of B, 
given s and 'C ( see (Pattanaik,Stefanski, 1991) for the proof). 
Proposition I. For a given threatened action intensity se [0,1] and Jength of action 'Ce {0,1, ... ,T} 

. A A 

the optima! (for U) choice of a bargaining schedule B is B = B(s, 'C) , where the mapping B is 
determined as follows: 

{
{0,1, ... ,'C} if JC{s,'C)E Ą 

B(s, 'C) = {O} u B' if X"(s,-c) e C, 
{O} if :,cl(s,-c) e E, 

(8) 

where B' is any subset of {1,2, ... ,'C}. 
As it follows from Proposition l, in certain situations, i.e. for certain s and 'C, it is optima! to 

declare that negotiations can go on at cach time period during the strike action, while in others it is 
optimal to announce that the talks could take place only once, at the very beginning. It can also 
happen that it does not matter whether B includes later negotiation stages or not. Since the1hreat 
with B = {O} seems to be the strongest ( since it excludes the possibility of a Jater compromise) it is 
interesting that sometimes it pays to declare weaker threats. 

The next step in solving ( 4) is to find the optima! Jength 'C of an action, for given action intensity 
s and with the optima! schedule chosen according to (8). In other words we are looking for a 
mapping t such that: 

t = arg max Xu(s, t(s), B(s, t(s)), O) , {9) 
iEfł 

where t: [O, l] • {O, l, ... , T}, and 8 is the set of all such functions. The solution to (9) is given 
by the following proposition. , 
Proposition 2. The mapping 'C which describes the optimal choice of the length of action as a 
function of action intensity s is the following: 

, { T if X"(O,O)e A, 
-c(s) = any 'Ce {0,1, ... ,T} if X"(O,O) e C, 

O if JC(O,O) e E, 
(10) 

The third and last step in finding the optima! threat is to find the best action intensity in such a 
waythat 

s • = argmax Xu(s, t(s),B(s, t(s)),0) (11) 
E.Q . 

Let us denote Z= {X: X= x(v,O), v e V} and recall that Nu(G) denotes the U's component of 
the Nash solution of a bargaining game G. The following proposition allows to simplify the way of 
solving ( 11 ): 
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· Proposition 3. Problem ( 11) is equivalent to. the one-stage problem, 

s * = argmax Xu(s, t(s), B(s, t(s)),0) = argmax Nu(Z,x(v 0 , s)) . 
,e(O,IJ "'(O,IJ 

The one stage problem ( 12) is usually relatively easy to solve. 
Tuus, we can conclude by saying that l'1e optimal flexible threat, as a solution to ( 4), is 

characterized by the following action intensity, length of action, and bargaining schedule: 

s•' 
t• = t(s*), 

B* = B(s*,t*), 

(12) 

where s• is computed according to (12), and the rnappings t and B arc givcm, respectively, by (10) 
and (8). 

4. Concluding Remark 

In the paper, the notion of multi-dimentional, flexible threats been introduced. Threats of this 
kind are facts of economic life, e.g. they are often nsed in negotiation processes such as 
labor-management bargaining or in politics. 

In generał, our finding is that the three parameters characterizing the optima! threat arc 
interconnected, what means that they should be considered jointly. Although the propositions 
presented suggest a way of deriving optimal threat -pararneters, the results of the analysis should be 
treated as methodological rather then substantive. 
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Abstract: We dcrivc a distributcd, neuml nctwork-ońentcd an:hitecturc of conccpt clicitation. The 

proposcd ~ is ~Y implied by Io~ ooosttucts of fuzzy sets and teflccts a logical ~ 

of the P19blc1IL Tbc C9!1CCpts are formally dcscńbcd by mcans of disjunctivc fonns of severa! 

CQlljllllCiivc tc:nns dcfined jn a space of f~ of the objccts. The usc of positivc and ncgative 

installćeS will givc ii.se to two diffcrent distributcd sttucturcs. Tbcy scparatcly contributc to dccisions 

abou.t tpc dci;cribcd conccpt and its countcrconcept and allow to characteriz.e a range of concept 

(\csctiptors proviikd by the network. 

Keywords: conccpt clicitation, knowlcdgc acquisition, distributcd infonnation Jl!'OCCSSing, logic 

proccssing, fużzy sets, dccision making. 

1. lntrocluction 
the problem of clicita!iQII of conccpts froin a givcn collcction of objccts (sucb as c.g., pattcms 

or (lccision sjtuątłpns) becomc$ /łil csscntial issuc in many areas of applications, sec Gilmore (1986), 

Michlllski (1983), ValiMt (1985). 1bc backgroond ffiłuircmcnt is that a conccpt should rcprcSeJtt its 

avaj4bic objC!:ts (positivc instanccs) to the highcst cxtcnt and cxcludc all objects viewcd as its 

~jątivc mś~s. · 
'łlle ~b qeveloped in ttiis paper looks at this problem ~ dcscńbing a conccpt as a son of 

tn$vąiµe4 QisjUllCtiye (Ońn (i COflj~vc tmns. In dlis way we can dim:tly cope with an underlying 

logical .fra#1Cworlc of die tQnccpt ~HcitatiOJt. We will introdlice a distributcd ncuml network-bascd 

śtrilCtQl'e ~g ~ cxpresśion. Afterwards learning is workcd out by changing parametcrs of the 

coojuoctive ąnd disJunctivc tc:tms. 

In ~~n to a sl&ft4atd way in whl:ch one attempts to handle the conccpt itself we will 

pro~ an ~tional l)eural network. lts role is to form a model of a countcrconcepJ using negative 

insumces. ComJjining the two nęUtal nctworks (for the conccpt and the countcrconccpt) one derivcs 

an interestin,g aild µscful ~ of con~tcncy f!{ the cooccpt across the objccts of the domain. 

{n the rcmąindcr of the paper we will ttcat llll objccts as clemcnts of a multidimensional unit 

hypercube, ~Y x E [0,lJ". futthcnnorc logical opcrations will be realizcd by means of triangular 

OQl'QlS (t- ~a s_.n.ortns). \Vc will start with bą.sic functional componcnts (Section 2). Logical 
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proccssings\in neural networb leading 1D coojunctivc and disjunctivc concc:pt dcscriptions is studicd 

in Scction 3. The issuc of concept elicitation c:cmpletcd with the aid of two dedicałcd neural netWOtts 

is considen:d in Scction 4. Finally numerical expmmcnts are rq,oncd. 

2. AND and OR Logial N~ 

The AND logical neuron with n inputs x1, ~ •• ., x,. realiza a functioo 

y"" (x1 OR w1) AND (Xi OR w~ AND ·- AND (x,. OR wJ (1) 

An influence of cach variable (x;) is fu-st rnoduJ11rm by a wcight factor w1• The hig!lc:r the value 

of w1 the less evident impact of Xi• In limit cascs oo gcts: if w1 = O x1 OR w1 = Xi, w1 = 1 Xi OR w. -= 
1 (the result does not depend on xi). The global aggregalion is Clinied out by ANDinJ s~si!e 

partial results. The neuron as describcd by (1) conveys onJy. excita~ ~stics ie., higher 

values of input signals generale higher values cL ourpur y. On 1he odier hand, an inhibitmy performance 
of the neuron is achievcxl by incorporating complemeots of Xi, i:; = 1 - Xi· This extends the generic 
cąuation in1D the fCl'Dl 

y = (x1 OR w1) AND (Xi OR w~ AND ••. AND (x,. OR wJ AND 

AND Cit or w„1) AND (i2 OR W2,a) AND -- AND Cin Or w:i,,) 
The cąuation is rewritten in tcnns of triangular norms 

y = T (x· s w;) t 1t (i· s w·..,.) 
i=l l i:l I l 

Setting n = 1, the AND neuron has two inputs 

y = (x1 s w1) t Cit s w2) 

Let us illustrate its peńormance in this simp)e case. To accomplish it we first havć tO specify 

triangu)ar norms. Note that t- and s-norms implementing the neuron could be selected indąlendently 
(their duality is not necessary). Let us discuss s-n<rm as a probabilistic sum and treat the t-nOIID as a 

product, 

y = min((x1 + w1 - x1 w1), Cit + w2 - x1w;a)) = 
= min (w1 + (1 - w1)x1) 

The output of the neuron for w1 = 0.2 and w2 • 0.7 is visualizJcd in Fig. I 
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N01e tbat the neuron favors a ccrtain region of the input signal. The selcctivity of the neuron for 

a given region of input values can be achievcd by setting up appropiate coonectioos w, and w2-

'lbe OR logical neuroo is composed of input signals by carrying out OR operations. Its 

cquation rcads as 

. y = (x, AND wJ OR (Xi AND wJ OR_ OR (x,, AND wJ (2) 

Y = § (Xi tw-J 
i-1 

3. Logical Processing in Neural Network Stnactures 
3.1 Conjunctive and disjunctive classes of coocept descripcion 
The logical formulas exprcssed by (1) - (2) can be dircctly mappcd onto a series of logical 

elemcnts ~g weighted AND and OR operatioos. They are structurcd as a thrce layer neural 

network in which all nodes in the hiddcn layer arc of the AND type while the output layer has a single 

OR neuron. Its topology clearly rcveals that the network is fully connected. Furthermore, in 

comparison to standard neural netwcrks. the discusscd network is composed of different processing 

units (neurons). 'Ibis type of heterogeneous topology enhances reprcsenuuion capabilities of the 

structurc. 

mm a functional point of view each laya- ccmpleles a distinct function: 

each neuron of the hiddcn layc:r forms a region d the featurc space by AND-ing (and wcighting) 

X;'s and these complements. The output 71, j = 1,2. ... ,h, describes then a single conjunction of 

the features; rcfer a1so to the functioos of the AND neuron descńbed in Scction 2. Denorc the 

rcgions formcd by the hidden laya-by Oi, ~ ... , O., respcctivcly. 

the output layer descńbes the concept in disjunctive form (OR) of all the rcgioos provided by 

the hidden laya-. Again their individual contribution is modified by coonectiODS vi, j = 1,2, ... ,h. 

The network given above defines the concept in a disjunctive form of several conjunctive exprcssion 

in the featurc space. 

A dual structure descńbing the concept can be viewed as a product (conjunction) of disjunctive 

fonns. The resulting topology is characterized by a hidden layer consisting of OR neurons and 

followed by a single AND proccssing unit at the outpuL 

3.2 Learning in the netwoJk 

Learning in the networli: can be aa:omplished with the aid of standard optinli7.ation techniques. 

The idea introduced herc follows basie concepts of the BP algorithm. The process of learning, as it is . 

obvious from the statcment of the problem, if fully supcrvised. Given is a collection of positive and 

negative inslllllCCS. The performance index is dcfined as a sum of squarcd cm:,rs. • 
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N 
Q = L (t11: - N(x1:, connections))2 

1:-1 

Where N(•} denotcs the output of the neural network for instance xt, while ~ takes on two binary 

values 

-11, for positive insJanCeS 
lt - O, for negative inslllnCcS 

The connections arc successively updated following the adjusnnent rule which is stated symbolically 

as 

adjustment-of-connections -- ~-connec 100s 
Detailed considerations, finał numerical schemes as well as somc learning suggestions in cases of 

nondifferentiable triangular norms are well documented and can be found elsewhere, see Pedrycz 

(1991, 1992). 

4. Concept Elicitation Tbrougb Two Logical Neural Networks 
The description of the concept is perfonned in a supervised mode applying positive and negative 

instances (examples). These instances arc used to guide learning in the neural network. In compańson 

to a common approach we take advantage of positive and negative instances constructing two separate 

networks. 

(i} The first network is trained to build a descńptor of the concepŁ Its output denoted by y pC = 
NP(x)) charactemes a degree to which x can be viewed as compatible with this concepŁ The 

values of y P close to 1 represent a high level of compatibility. 
(ii} The second network is constructed to represent counterconcepŁ In its training the negative 

instances are renamed and viewcó as "positive" instances of the counterconcept (in other words 

the membership values of the instances arc flipped, O H 1). After training the output of the 

netw<xk y .( = N .(x}) specifies a degn,e 10 which x is prototypical in the sense of the COWlterconcept 

Note that the constructions of the two networks (NP(•), N.(•)) arc carried out separately. Each object 

x can be categoriz.ed as equivalent 10 the concept oo the following rule of assignment, 

if NpCx} > N0(x) then x is concept~sistent 

From a structural point of view the two neural networks NP(•} and N.(•) are put in parallel and 

followed by a simple discriminator performing maximum over y, and Y.-

Obviously, the way in which the networks have been designed does not impose any relationship 

between yP and y. for a given object in the feature space. Generally speaking. the equality y P + Y. = 1 

could not be satisfied, however for the l.CI'O performance index Q it holds for cach element of the 

training seŁ The generał propeny is that 
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Yp + Y. < 1 
which illustrates a lack of evidence when the conccpt is verficd with respcct to all objccts in the 

feature space. This intcresting obscrvation has far reaching conscquenccs on dcfining confidence 

associatcd with the constructcd conccpL Formally we put it down accordingly: 

the conccpt n in [0,11• elicitcd on the basis of the training set 3' is y-consistcnt, y e [O, 1 ], if it 

consists of objc...--.s x satisfying the following coosistency condition 

NP(x) + N.(x) > y and N,(x) > N.(x) (3) 

B(y) = {x e [0,1]"1(3) is satisficd} 

denotc all objects satisfying the condition of y-consistcncy. An obvious rclationship holds: 

B(y1) c B(yJ ify1 :2: Y2 

S. Dlustrative Studies 
An example bclow will be uscd to illustratc the performance of the mcthod and comment on 

dcrivcd results of conccpt building. The training set consists of fcw positive and negative examples 

distributcd in the comcrs of the unit squarc, sec Fig. 2 
10 r--------------, o I 

.- I o 
-· nstlnces I • negatJvenstarces 

2 

i o I 

o~--- - ----~- ~ o 2 • • ~ m 
Fig. 2 Training set uscd in the cxpc:rimcnt 

.-

10 

.. 
. 6 

.. 
2 

Fig. 3 Objccts consistcnt with the conccpt 

at level O.O, B(O) 

1bc niangular norms uscd in the expcriment werc choscn as a probabilistic sum and a producL 

The learning with the two nodes in the hidden layer produccd good mapping results. The 

formulas rcsulting from the nctworks arc givcn below 

Yp = (0.983 AND Z1) OR Zz 
z, = (0.988 OR x1) AND (0.992 OR "2) AND x1 AND x2 

Zz = (0.Ql 1 OR x1) AND (0.004 OR "2) 

Y. = (0.996 AND z1) OR (0.99 AND Z-i) 

z, = (0.008 OR·x1) AND (0.997 OR x1) AND x2 

Zz = (0.011 OR xJ AND x1 

One can rccognizc that the training examples can be structurcd into a concept of (multivalued) 
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equivalcncy, mmely x, - ~ 
The overall distributim of the valucs of the sum (.y, + y) for the unifm:nly distributed elcments 

of (0.1 J 2 il given in FiJ. 3. Sut,.,quently Fil- 4 and S ~ ~giom consisłent ~ the concept 

at the ~ T • 0.95 and mddual mas (the objecls ol wmch me ncilhcr accq,ted nor rą:cted). 
• 

-· 
• 

•• -· 
.4 

0 o 2 4 O J W 
22 • • 

Fig. 4 Objccls conccpt-roosisteoł ~ Fig. 5 y, + Y. < 0.90, Y, > Y. 

T „ 0.95, B(0.95) 

6. Conclusion1 
We have propoSC(! logical neural networks to strueture examples into concepts. The two• 

separate netwcns aJC designed ID handle desaiplOrs of the coocept and its associated'COUJUffl:OIICąt. 

This infonnation put together makes it possible ID express consistency of any object with respcct to 

the conccpt as well as to form subsets of objccls being esseotially consislCllt with the coocept. 
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