





" 2. The Model

Having in mind our example of union-firm's management negotiations we shall denote the two
parties in our game by U and F. Both players take into account their utilities over a time horizon t=
0, 1,..., T. Since U is not satisfied with the status quo situation, he wants to bargain over a cha—~~
of a vector v of decisions. Since F has the power to change v, then U can issue a threat (of st.....
action) in order to force F to make concessions. In general, various such actions are possible, which
are harmful to F to different extents. The normalized intensity of the threatened action will be
denoted by s € [0,1]. Then, U has the possibility of choosing s € [0,1], while F cor is the
decision vector v. We assume that other characteristics are constant over time, and that the parties’
utilities are additive over time. Thus, we can denote the utilities attained during a single time period
t by x,(v,s) and x(v,s). -

The point of departure in our model is characterized by a certain vector v° (and, of course, s =
0). U would like to attain an agreement which would change v° to a certain v* such that x,{v4,0) >
xy(¥°,0). Typically, however, such an agreement would be disadvantageous to F, i.e. x(v*,0) <
xg(v*,0), and that is why the use of a threat may be necessary. Usually an implementation of a threat

is costly to F as well as to U.
To solve the bargaining problems which arise in our model we shall use Nash's scheme applied,

in case the parties fail to agree, at successive stages of the game. The negotiations, however, need
not take place in each time period. We assume that U can choose periods in which talks could take
place. The set of such time periods will be denoted by B and called the bargaining schedule, The
threatener, U, announces also the possible length of action © € {0,1,...,T}. It is natural that B <
{0,1,...,7}. Moreover, we assume that the announced s is constant over the period 0 - <.

Then, we have introduced three parameters that characterize a threat, namely, the intensity of
the threatened action s, its possible length 1, and the bargaining schedule B. The question we shall
concentrate on is the role and the uptimal choice of the triple (s,7,B).

Let us denote the sct of all feasible agreement outcomes art by Z,:

Z={(Xu, Xp) : Xy = xu(v®, 8) + (T x(v,0),  Xp=txp(v®, 5) + (T-4) x;(v,0), v € V},
te {0,1,..,t1} (1)

The Nash bargaining solution at consecutive stages are computed through a backward analysis. Let
t; denote the last period at which the talks can take place, i.e. t = max {t: t € B}. Thus, if the
parties do not agree at t. then the final disagreement cutcome will be X%(s,%) = (X(.).X%()),
where

X0 = (v, ) + (T-h xi(v°0), i€ {UF}. @

Thus, at t, we have the bargaining problem (Z., X?) which can be solved according to Nash's
scheme. This solution, which we denote by N(Z,,,X?), is used as a disagrecment point (in the
sense of Nash (1953)) when solving the bargaining problem for the prior-to-t, time period t, at
which negotiations can take place (i.c. from B). And this process is repeated, yielding, finally, a
bargaining solution for t, = min {t: t € B} ( a similar sequential scheme has been discussed in-
Binmore (1987) and Livne (1987)).
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Note that the bargaining solutions depend on s, T, and B. Denoting the solution reached at t by
X(s,T,B,t), the process can be written as follows:

X(S,T9B)1L) = N(Z‘L’ xd(s,.r)) 1
X(s,TBytet) = N(Zy,,,, X(5,T,B 1))

: : Xe)
X(s,T,B,t1) =N(Zy,, X(s,T,B,t2)) ,

where N(G) denotes Nash's solution of a bargaining game G.

The sequence of events in our game is the following. At the very beginning U announces the
triple (s,7,B). Then, in case t, > 0 the threatened action is immediately on up to t,-1. At the
beginning of the first period of negotiations t,, the parties must decide whether to accept
X(s,t,B,;). In case of acceptance the strategic part ends - a decision vector corresponding to the
agreement v* is computed and implemented up to T. If X(s,1,B,t,) is not accepted, then the threat
action continues up to t,-1. At t, there is a chance of the agreement X(s,7,B.t,), etc. Eventuaily, if
the parties failed to agree even at t,, then the outcome would be given by (2).

3. Optimal Threats

We shall concentrate on the problem U faces, of how to determine the optimal flexible threat
described by a triple (s,t,B), where s € {0,1], T € {0,1,...,T}, and B < {0,1,..., T}. Because of the
lack of space only the main results will be presented. For details as well as the proofs of theorems
presented see (Pattanaik,Stefanski ,1991).

Consider first two bargaining schedules B and B suchthat B=B U {t} , where i <min {t: t
€B} =t . As it follows from (3) it can be proved that X(s,t,B,t) =2 X(s,7,B,t) . From this
inequality, in turn, it follows that the optimal bargaining schedule B should contain the time period
t= 0, i.e. the optimal B should have the form B = {0} U B', where B'c {1,2,....;1}.

Moreover, from (3) we have X(s,1,B,t") 2 X(s,1,B,t") if t' <t". Then, for a given s,1, and for B
of the above mentioned form, X(s,1.B,0) is the dominating solution, and thus the parties will
accept it, i.e. the agreement will be reached at the time t, = 0. This is, in fact, due to our implicit
assumption about complete information in the game.

This means that the U must consider the following problem when looking for an optimal threat:

(s*,7%,B*) =arg max Xy(s,1,8,0) , (4)
(s, TBQ

where Q={(s,7,B): se [0,1]; te {0,1,..T}; B={0}uUB’, B’ < {1,2,...,1}}
Problem (4) can be solved in three steps. First we shall consider the choice of the best

bargaining schedule B for given s and T, i.e. we shall be looking for a function B such that

B = arg max Xu(s, 1, é(s, 1),0) , (5)
BeB



where B:[0,1]x{0,1,..., T} = 2{% and B is the set of all such functions. In the second
step, we consider the choice of the length of the threatened action as a function of its intensity, s.
Lastly, we derive the optimal threat intensity. Given the optimal choice of s, and given the length of
action as a function of s, we get the optimal length of the threatened action. Further, the optimal
choice of the bargaining schedule is determined once we have the optimal intensity and length of
the threatened action.

It appears that the optimal bargaining schedule B(s, ) depends on the relative positions of the
points X(s,7) and X%s,T) (see (2)) within the set Z, (determined according to (1)).Consider the
possible positions of the point X{s,7). From (2) and the assumption that a threatened action is
costly to F as well as to U (like a strike) it follows that the set of possible positions of X%(s,7) can
be determined as follows:

Ds={(Xuv,Xr) € Zo: Xi>Txi(v%s), ie {U,F} or X;=Txi(v%s),ie {U,F}} (6)

Now, let us construct a line segment joining X'(s,T) with a given point X € Z,, This line will
be treated as a set and denoted by L(X). We shall consider a family of such lines: £ = {L(X): X
P(Z,)}, where P(Z,) denotes a Pareto frontier of Z,. A function describing P(Z,) will be denoted by
f,. From the family £ we shall distinguish a particular line L(X), X~(X, X} € P(Z,), such that its
slope M is equal to the negative slope of the Pareto frontier of Z, at X, i.e.

_ BXY-XEED _ dXy) ™
Xy XD Xy

This line will be used to divide Dy into three scts Ag, Cq, and Eg as indicated in Fig.1.

Xp
]
X(SI -{0]'0)
/ ZO - X(s,2,{0,t},0)
X(s,T,B%0)
Zt X(s%,{0,t},0
Frves) X6 Cy
v's) X
\0\__'—/ - )

Figure 1
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Now we are in a position to formulate a proposition which determines the optimal choice of B,
given s and T (see (Pattanaik,Stefanski, 1991) for the proof).
Proposition 1. For a given threatened action intensity s € [0,1] and length of action t e {0,1,...,T}

the optimal (for U) choice of a bargaining schedule B is B =B(s,T) , where the mapping B is
determined as follows:

R {0,1,....7} if XY5,0) € A,
B(s,t) =4 {0} uUB' if X's1) e C, 8)
{0} if X(st) € E,

where B' is any subset of {1,2,...,1}.

As it follows from Proposition 1, in certain situations, i.e. for certain s and 1, it is optimal to
declare that negotiations can go on at each time period during the strike action, while in others it is
optimal to announce that the talks could take place only once, at the very beginning. It can also
happen that it does not matter whether B includes later negotiation stages or not. Since the threat
with B = {0} seems to be the strongest (since it excludes the possibility of a later compromise) it is
interesting that sometimes it pays to declare weaker threats.

The next step in solving (4) is to find the optimal length T of an action, for given action intensity
s and with the optimal schedule chosen according to (8). In other words we are looking for a
mapping 1 such that:

© = arg max Xu(s, (s), B(s,%5).0) ©®

T8

where 7: [0,1} = {0, 1,..., T}, and © is the set of all such functions. The solution to (9) is given
by the following proposition.

Proposition 2. The mapping T which describes the optimal choice of the length of action as a
function of action intensity s is the following:

) T if X40,0)€ A,
s) = { any te {0,1,.,T} if X40,0)e C, (10)
0 if X40,0)€ E,

The third and last step in finding the optimal threat is to find the best action intensity in such a
way that

s* =argmax Xu(s, 4s), B(s, %(5)), 0) (11)
s€ (0,1 T

Letus denote Z = {X: X=x(v,0), v e V} and recall that N(G) denotes the U's compc _ _nt of

the Nash solution of a bargaining game G. The following proposition allows to simplify the way of
solving (11):
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Proposition 3. Problem (11) is equivalent to the one-stage problem,

s* =argmax Xu(s, ©(s), B(s, 1(s)), 0) = argmax Nu(Z, x(v*, 5)) - (12)
==[0,1]

s€ [0,1]

The one stage problem (12} is usually relatively easy to solve.
Thus, we can conclude by saying that the optimal flexible threat, as a solution to (4), is

characterized by the following action intensity, length of action, and bargaining schedule:

s*,
™= ';:(s') s
B* = l;(s‘,r*) ,
where s* is computed according to (12), and the mappings{' and l; are given, respectively, by (10)
and (8) .

4. Concluding Remark

In the paper, the notion of multi-dimentional, flexible threats been introduced. Threats of this
kind are facts of economic life, e.g. they are often used in negotiation processes such as
labor-management bargaining or in politics.

In general, our finding is that the three parameters characterizing the optimal threat are
interconnected, what means that they should be considered jointly. Although the propositions
presented suggest a way of deriving optimal threat pararaeters, the results of the analysis should be
treated as methodological rather then substantive.
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SUPPORT SY 'EMS FOR DECISION AND NEGOTIATION PROCESSES
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LOGICAL NEURAL NETWORKS IN PROBLEMS OF
CONCEPT ELICITATION AND VALIDATION

Witold Pedrycz
Electrical and Computer Engineering
Unjversity of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2
Abstract: We derive a distributed, neural network-oriented architecture of concept clicitation. The
propesed structure is divectly implied by logical constructs of fuzzy sets and reflects a logical nature
of the problem. The concepts are formally described by means of disjunctive forms of several
conjunctive terms defined in a space of features of the objects. The use of positive and negative
instances will give rise w two different distributed structures. They separately contribute to decisions
about the described concept and its counterconcept and allow to characterize a range of concept
descriptors provided by the network.

Keywords: concept clicitation, knowledge acquisition, distributed information processing, logic
processing, fuzzy sets, decision making.

1. Introduction

The problem of elicitation of concepts from a given collection of objects (such as e.g., patterns
or( sion situations) becomes an essential issue in many areas of applications, see Gilmore (1986),
Michalski (1983), Valiant (1985). The background requirement is that a concept should represent its
available objects (positi\"e instances) to the highest extent and exclude all objects viewed as its
negative ihstances.

The approach developed in this paper looks at this problem by describing a concept as & sort of
multivalued disjunctive form of conjunctive terms. In this wav we can directly cope with an undertying
logical framework of the concept elicitation. We will int....uce a distributed neural network-based
structure realizing this expression. Afterwards learning is worked out by changing parameters of the
conjunctive and disjunctive terms.

In compatison to a standard way in which onc attempts to handle the concept itself we will
propose an additional neural network. Its role is to form a model of 2 counterconceps using negative
instances. Combining the two neural networks (for the concept and the counterconcept) onc derives
an interesting and useful property of consistency of the concept actoss the objects of the domain.

In the remainder of the paper we will treat all objects as elements of a multidimensional unit
hypercube, say x € {0,1]". Furthermore logical operations will be realized by means of triangular
norms (t- and s-norms). We will start with basic functional components (Section 2). Logical
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processings\in neuri~  tworks leading to conjunctive and disjunctive concept descript s studied
in Section 3. The issue of concept clicitation completed with the aid of two dedicated n e o
is considered in Section 4. Finally: ierical experiments arc reported.

2. AND and OR Logical Neurons
The AND logical nexron with n inputs x,, X,, ..., X, realizes a function
y = (x, OR w,) AND (x, OR w,) AND ... AND (x, OR w,) I
An influence of each variable (x) is first modulated by a weight fact  v,. The higher the value
of w; the less evident impact of x,. In limit cascson gets: if w;:  x;ORw,=x, w;=]1 x;ORw,=
1 (the resuit docs not depend on x,). The global aggregation is carried out by ANDing successive
partial results. The neuron as described by (1) conveys only excitatory characteristics i.e., higher
values of input signals generate higher values of output y. On the other hand, an inhibitory performance
of the neuron is achieved by incorporating complements of x;, X; = 1 - x.. This extends the generic
equation into the form
y = (x, OR w;) AND (x, OR w;) AND ... AND (x, OR w,) AND
AND (%) or w,,,) AND (32 OR w,,,) AND ... AND (%, Or w,,)
The equation is rewritten in terms of triangular norms
Y=ii'l(xiswi)ti3'l('iiswim)
Setting o = 1, the AND neuron has two inputs
y=(& sw)tE sw,)
Let us illustrate its performance in this simple case. To accomplish it we first have to specify
triangular norms. Note that t- and s-norms implementing the neuron could be selected independently
(their duality is not necessary). Let us discuss s-norm as a probabilistic sum and treat the t-norm as a
product,
y =min{(x, + w, - x,w,), (X; + w, - Xyw)) =
=min (w, + (1 - w,))x,)
The output of the neuron for w, = 0.2 and w, = 0.7 is visualized in Fig. 1

S N +08x,

-03x,
0.3

| T
Fig. 1 AND ncuron with w, = 0.2 and w, = 0.7
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te that the neuron favors a: ain region of the input signal. The selectivity of the neuron for
a given region of input values can be achieved by setting up appropriate connectic  w, and w,.
The OR logical neuron is composed of input signals by camrying out OR operations. Its
equation reads as
y = (x, AND w,) OR (x, AND w,) OR ... OR (x, AND w,) - @

y=i§1(xitwl)

3. Logical Processing in Neural Network Structures

3.1 Conjunctive and disjunctive classes of concept description

The logical formulas expressed by (1) - (2) can be directly mapped onto a series of logical
clements realizing weighted AND and OR operations. They are structured as a three layer neural
network in which all nodes in the hidden layer are of the AND type while the output layer has a single

OR ncuron. Its topology clearly reveals that the network is fully connected. Furthermore, in

comparison to standard neural networks, the discussed network is composed of different processing

units (neurons). This type of heterogeneous topology enhar 5 representation capabilities of the
structure.
From a functional point of view cach layer complctes a distinct function:

- em:hncumnofthehiddcnlayafqmsaxegionofdnfeannspwebyAND—ing(andwdghﬁg)
x;’s and these compiements. The output z;, j = 1,2,...,h, describes then a singlé conjunction of
the features; refer also to the functions of the AND neuron described in Section 2. Denote the
regions formed by the hidden layer by Q,, Q,, ..., €,, respectively.

- the output layer describes the concept in disjunctive form (OR) of all the regions provided by
the hidden layer. Again their individual contribution is modified by connections v;, j = 1,2,...,h.

The network given above defines the concept in a disjunctive form of several conjunctive expression

in the feature space.

A dual structure describing the concept can be viewed as a product (conjunction) of disjunctive
forms. The resulting topology is characterized by a hidd« “ayer consisting of OR neurons and
followed by a singie AND processing uait at the output

3.2 Leamning in the network .

Leaming in the network can be accomplished with the aid of standard optimization techniques.
The idea introduced here follows basic concepts of the BP algarithm. The process of learning, as it is
obvious from the statement of the problem, if fully supervised. Given is a collection of positive and
negative instances. The performance index is defined as a sum of squared errors.
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N
Q=2 (t - N(xx, connections))?
k=1

Where N(+) denotes the output of the neural network for instance x,, while t, takes on two binary
values
1, for positive instances
&= ‘0, for negative instances
The connections are successively updated following the adjustment rule which is stated symbolically
as

Q

connections .

Detailed considerations, final numerical schemes as well as some learning suggestions in cases of
nondifferentiable trianguiar norms are well documented and can be found elsewhere, see Pedrycz
(1991, 1992).

adjustment-of-connections ~ -

4. Concept Elicitation Through Two Logical Neural Networks

The description of the concept is performed in a supervised mode applying positive and negative
instances (examples). These instances are used to guide leamning in the newral network. In comparison
to a common approach we take advantage of positive and negative instances constructing two separate
networks, .

() The first network is trained to build a descriptor of the concept. Its output denoted by y (=
N, (x)) characterizes a degree to which x can be viewed as compatible with this concept. The
values of y, close to 1 represent a high level of compatibility.

(ii) The second network is constructed to represent counterconcept. In its training the negative
instances are renamed and viewed as “positive” instances of the counterconcept (in other words
the membership values of the instances are flipped, 0 «>1). After raining the output of the
network y (= N,(x)) specifies a degree o which X is prototypical in the sense of the counterconcept.

Note that the constructions of the two networks (N (*), N,()) are carried out separately. Each object

X can be categorized as equivalent 1o the concept on the following rule of assignment,

if N (x) > N(x) then x is concept-consistent

From a structural point of view the two ncural 1 vorks N (*) and N (+) are put in parallel and

followed by a simple discriminator performing maximum over y, and y,.

Obviously, the way in which the networks have been designed does not impose any relationship
between y, and y, for a given object in the feature space. Generally speaking, the equality y +y, = 1
could not be satisfied, however for the zero performance index Q it holds for cach element of the
training set. The general property is that

464



Yo+ ¥a<1
which illusn-ates; lack of evidence when the concept is verfied with respect to all objects in the
iture space. This interesting observation has far reaching consequences on defining confidence
associated with the constructed concept. Formally we put it down accordingly:
the concept £ in [0,1]° elicited on the basis of the training set F is y-consistent, y € [0,1}, if it
consists of objects x satisfying the following consistency condition '
N (x)+N(x)>y and N,(x)>N,(x) 3)
Let
B(y) = {x € [0,1]°I(3) is satisfied)
denote all objects satisfying the condition of -consistency. An obvious relationship holds:
B(y)c Bty ify, 27,

5. Illustrative Studies

An example below will be used 1o illustrate the performance of the method and comment on
derived results of concept building. The training set consists of few positive and ncéativc examples
distributed in the corners of the unit square, see Fig. 2

10

8 g
L ]
6
-~ o posttve nstancet J =
' L_____' Mo o
2
. N [
i 2 i ) I} 10 0 & 8 1o
Fig. 2 Training set in the experiment Fig. 3 Objects consistent with the concept

at level 0.0, B(0)
The triangular norms used in the experiment were chosen as a probabilistic sum and a product.
The learning with the two nodes in the hidden layer produced good mapping results. The
formulas resulting from the networks are given below
y,=(0983 AND z)OR z,
z, = (0.988 OR x,) AND (0.992 OR x,) AND X, AND X3
z, = (0.011 OR x,) AND (0.004 OR x,)
v, =(0.996 AND z,) OR (0.99 AND z,)
< =(0.008 OR'x,) AND (0.997 OR X;) AND X,
z,=(0.011 OR x,) AND X,
One can recognize that the training examples can be structured into a concept of (multivalued)
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" equivalency, namely x, = x,
1heovmﬂdisuibuﬁouoﬁhevalmsofﬂwm(y,+y)faﬂnuniﬁrmlydisl aed  ments

of [0,1)%is given in Fig. 3. Subsequently Fig. 4 and 5 illustrate regions consistent with the concept

atthe level y= 0.95 and residual areas (the objects of which are neither acoepted nor rejected).

4 L] 8 19 2 4 [ 8

4 2
Fig. 4 Objects concept-consistent at Fig. 5y, +y,<090,y, >y,
¥y=095 BOS™

6. Conclusions

‘We have proposed logical neural networks to structure examples into concepts. The two-
separate networks are designed to handle descriptors of the concept and its associated counterconcept.
This information put together makes it possible to express consistency of any object with respect 10
the concept as well as to form subsets of objects bcihgmﬁallyconsistmtwim © concept.
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