

IFAC/IFORS/IIASA/TIMS
The International Federation of Automatic Control The International federation of Operational Research Societies The International Institute for Applied Systems Analysis, The Institute of Management Sciences

SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES

Prefints of the IFACIIFORS/IIASATIMS Workshop
Warsaw: Poland
June 24-26, 1992

Editors:
Roman Kulikowsk:
Zbigniew Nalhorski
Jan:W.Ówsiniski
Andraje Straszak
Systems Research histitute
Polish Academy of Sciences
Warsaw, Poland

VOLUME 2 :
Names of first authors: $\mathrm{L}-\mathrm{Z}$

$$
2+3,4+\frac{2}{2}=
$$

SUPPORT SYSTEMS FOR DECISION AND NEGOTIATION PROCESSES
 Preprints, IFAC/IFORS/IIASA/TIMS Workshop, June 24-26, 1992, Warsaw, Poland

AN APPROACH TO GROUP DECISION MAKING UNDER UNCERTANTY ITH APPLICATION TO PROJECT SELECTION

G. R. Sotirov, E.B. Krasteva

Systems Optimization Laboratory. Pacully of Automatics
Technical Unwersily
Sofia 1156, Bulgaria
Abstract In this paper we present an interactive procedure for group decision making under imprecision of judgments applied to problems containing explicitly given resource constraints, such as project selection. Altematives (projects) are evaluated in a quantitative scale. Based on these estimates fuzzy group preferences are determined and projects are divided into domination levels. Necessary quantities of resources are given in the form of intervals. Projects from successive levels are selected until maximum resource utilization is achieved

Keywords strength of preference, fuzzy preference, aggregation, domination level, project selection.

INTRODUCTION AND PROBLEN STATENENT

Decision making problems solved now usually require knowiedge and experience of a group of experts. This is caused by necessity to consider possible influence of a lot of nonmeasurable factors which cannot be judged by a single person. Expert estimates are often imprecise due to insufficiency of information and verbal way of expression. That is why ordinal judgments are usually preferred or fuzzy set theory is applied to handle uncertainty.

Group decision making problem is stated as follows. Let \AA be a finite non-empty set of alternatives. They are evaluated by each member of a group of experts for a set of criteria. Based on these estimates an alternative is chosen or all alternatives are ranked. We assume that an expert may evaluate alternatives for all criteria or only for some of them.

A good example of decision making problem whose solution is usually based on expert judgments is project selection: out of a set of projects (alternatives) a subset must be chosen in such a way that best results for a set of criteria to be achieved and projects to be realized with available resources, i.e. explicilly given constraints are included in the model. It can be solved through
mathematical programming or specific multiattribute decision making procedures. Project selection is usually modelled as 0-1 linear programming problem, either deterministic (Ringuest and Graves, 1989; Stewart. 1991), or fuzzy (Dias, 1988), which can be solved using available techniques and software. But, on the other hand, in case of project interactions the model is nonlinear and it is difficult to specify its parameters (Pox. Baker and Bryant. 1984). That is why multiattribute decision making methods handling explicilly given constraints are advantageous because of simple and psychologically appealing data they require.

GROUP DECISION NAKING NETHODS AND THEIR APPLLCATION TO PROJECT SELECTION

Group decision making methods differ according to the kind of expert estimates and presence of uncertainty. The latter usually stems from insufficiency of available information and yerbal way of stating judgments. Estimates can be ordinal or cardinal. Ordinal ones inelude ranking alternatives and pairwise comparisons. Individual estimates are aggregated to form a group one through social choice functions (Hwang and Lin. 1987).

Since an alternative is usually preferred to another not absolutely but to a certain degree. it is better to model estimates with fuzzy preferences and to apply fuzzy social choice functions (Montero. 1987: Tanino, 1990).

When estimates are cardinal. utility functions can be used. A problem associated with this type of evaluation is that it is difficult to specify exact numerical estimates, especialiy when criteria are qualitative. An expert can usually give only verbal judgments. ln this case fuzzy multiattribute utility functions (Seo and Sakawa, 1985), or ranking fuzzy numbers (Buckley, 1985) are used.

To solve project selection problems group decision making methods must be modified to handle expliciliy given resource constraints. Por cardinal estimates usually utility functions are applied (Ahmed and Gupta. 1987). Nethods based on ordinal data are less investigated. Such methods are proposed by Cook and Seiford (1982), Brans, Yincke and Mareschal (1986).

PROPOSED APPROACH

The proposed approach is based on converting quantitative level estimates of projects into fuzzy group preferences. Resource requirements are presented in interval form.

The following notation is used: m - number of projects (alternatives); p - number of criteria: $\mathrm{n}_{\mathbf{k}}$ - number of criteria for which expert k evaluates projects; $\left(-\right.$ number of resources; n_{s} - number of experts evaluating requirements for resource s. ligk - level assigned by expert k to project i for criterion $q ; w_{q} k$ - level assigned to criterion q by expert k : $s_{n k}(i, j)$ - expert $k ' s$ strength of preference of project i to project j for criterion q : $r_{q k}(i, j)$ - expert k's fuzzy preference of project ito project j for criterion $\mathrm{q}_{;} \mathrm{r}_{\mathrm{k}}(\mathrm{i}, \mathrm{j})$ - expert k 's fuzzy preference of project i to project j; r(i,j) - fuzzy group proference of project i to project j; G_{S} total amount of resource $s,\left[g_{i k s} L^{L} \cdot\right.$ giks $\left.^{U}\right]$ - lower and upper bound of amount of resource s necessary for realization of project i according to expert $\mathrm{k} ;\left[\mathrm{g}_{\mathrm{is}}{ }^{\mathrm{L}} \mathrm{gis}_{\mathrm{is}} \mathrm{U}\right]$ - lower and upper bound of amount of resource s necessary for realization of project i according to the group. In all notations $\mathrm{i} . \mathrm{j}=1 \ldots$. m. $\mathrm{k}=1 \ldots, \mathrm{n}, \mathrm{q}=1 \ldots, \mathrm{n}_{\mathrm{k}}, \mathrm{s}=1 \ldots . \mathrm{n}_{\mathrm{k}}$.

A fuzzy preference on a sel of alternatives A is determined by a fuzzy set on the product set $A x$ A, i.e. by a membership function $\mu \mathrm{R}: \mathrm{A} \geq \mathrm{A}-$ $\{0.1$] over the set $A \times A$. We consider a finite set A. In this case fuzzy preference can be represented by
a mxm matrix R with elements $r(i, j) \in[0.1]$ defined from the membership function μ_{R} :

$$
\begin{equation*}
r(i, j)=\mu_{\mathbb{R}}(i, j), i, j=1, \ldots, m \tag{1}
\end{equation*}
$$

Element r(i.j) represents the degree of preference of alternative i to alternative $j ; r(i, j)=0.5$ means indifference between the two alternatives, $n(i, j)=0$ means definite preference of alternative j to atternative i , and $\mathrm{r}(\mathrm{i}, \mathrm{j})=1$ means definite preference of alternative i to alternative j. It is assumed that

$$
\begin{equation*}
r(i, j)+r(j, i)=1, i, j=1 \ldots, m \tag{2}
\end{equation*}
$$

Fuzzy preferences model real opinions better than crisp ones but it is not easy for an expert to define exact numeric values for them. That is thy we propose to obtain fuzzy preferences from evaluations in a quantitative scule which is widely used.

A scale with a finite number of levels L is introduced. Levels are numbered from the best to the worst, $L-1$ corresponding to the best and 0 corresponding to worst. Bach expert assigns a level to each alternative for each criterion. Strength of preference is detarmined for each pair of altemalives using the idea described by Cook and Kress (1985):
$s_{a k}(i, j)=l_{\text {iak }}-l_{\text {iak }}$
Positive values of $\mathrm{s}_{\mathrm{qk}}(\mathrm{i}, \mathrm{j})$ show that expert k prefers alternative ito alternative j and vice versa.

Krasteva, Narula and Sotirov (1982) propose to determine fuzzy preference of expert k for each pair of alternatives (i, j) with respect to criterion q as follows :

$r_{a k}(\mathrm{i}, \mathrm{j})=0.5$ if $\mathrm{s}_{\mathrm{ak}}{ }^{*}=0$
where $\mathrm{s}_{\mathrm{qk}}{ }^{*}=\max \mathrm{s}_{\mathrm{qk}}(\mathrm{i}, \mathrm{j})$
Aggregation by criteria is done using weighting technique:

where w_{qk} - weight of criterion q assigned by expert k. Criterion weights are defined as levels in the same scale.

Aggregation by experts is done using the function proposed by Tanino (1984):

$$
\sum_{k=1}^{n} \max \left(r_{k}(i, j)-0.5,0\right)
$$

$r(i, j)=$

$$
\sum_{k=1}\left|r_{k}(i, j)-0.5\right|
$$

$r(i, j)=0.5$.
$i=j$
Estimates $r(i, j)$ are not defined if $r_{k}(i, j)=0.5$. $i, j=1 \ldots, m$, for all $k=1, \ldots, n$, i.e. if both alternatives are equally preferred by all experts. In this a case $r(i, j)$ is assigned a value of 0.5 .

It follows from (8),(9) that $r(i, j) \in[0,1], r(i, j)=1$. $\mathrm{i}, \mathrm{j}=1$....m. iff $\mathrm{r}_{\mathrm{k}}(\mathrm{i}, \mathrm{j}) \geq 0.5$ for each $\mathrm{k}, \mathrm{k}=1 \ldots, \mathrm{n}$ and $r(i, j)=0, \quad i, j=1, \ldots, m$, iff $r_{k}(i, j)<0.5$ for each k. $k=1$,....n.

If $r(i, j)=1$, then alternative j is dominated by alternative i. We propose a way to divide alternatives into domination levels applying domination degrees $0.5 \lll 1$ chosen by decision maker (DM).

Definition: Alternative j belongs to domination level d. $0.5 \lll 1$, iff:

$$
\begin{align*}
& \text { (i) } \alpha \geq r(i, j), i \in\left\{1,2_{1}, \ldots, n\right\} \text {, and } \tag{10}\\
& k_{+} \tag{11}\\
& \text {(ii) }--\ldots \geq \alpha, \\
& k_{+}+k_{-}
\end{align*}
$$

where k_{+}- number of experts for whom $\left.r_{\mathbf{k}}(i, j)\right\rangle$ 0.5 ; k_{\sim} - number of experts for whom $r_{k}(i, j)<0.5$.

The second condition reflects the principle of nondictatorship stated by Arrow (1951).

Division of alternatives is done until there remains small number of alternatives in each level, e.g. no more than 3.

To solve project selection problem required amounts of resources for the altematives (projects) must be known. We assume that an expert may evaluate necessary quantities of all resources or only some of them. Since an expert usually can judge only minimurn and maximum possible amount of resource, estimates are presented in interval form. Bounds of group intervals are
formed from individual as follows (Krasteva, Sotirov and Dobrev, 1992):

$$
\begin{align*}
& \mathrm{g}_{\mathrm{is}}{ }^{\mathrm{L}}=\min _{\mathrm{k}} \operatorname{giks}_{\mathrm{k}}^{\mathrm{L}}, \mathrm{k}=1 \ldots, \ldots, \mathrm{n}_{\mathrm{s}} \\
& \mathrm{gis}^{\mathrm{U}}=\max \mathrm{Biks}^{\mathrm{U}}, \mathrm{k}=1 \ldots \ldots . \mathrm{n}_{\mathrm{S}} \tag{13}\\
& \text { k }
\end{align*}
$$

Total requirements of resource s for a subset of projects (domination level) are defined after (Buckley and Chanas, 1989):

INTERACTIVE PROCEDURE
The proposed interactive procedure includes the following steps.

Step 1 . DN determines the number of quantitative scale levels.

Step 2 Experts specify levels of projects and crileria, $\mathrm{l}_{\mathrm{iqk}}$ and w_{qk} respectively, as well as upper and lower bounds of necessary quantities of resources [Eiks ${ }^{\prime}$ giks $^{\mathrm{U}}$]. $\quad i=1 \ldots, \mathrm{~m} . \quad \mathrm{k}=1$.....n. $\mathrm{q}=1, \ldots, \mathrm{n}_{\mathbf{k}}, \mathrm{s}=1, \ldots, \mathrm{n}_{\mathbf{k}}$.

Step 3 Strength of preference $\mathrm{sqk}_{\mathrm{qk}}(\mathrm{i}, \mathrm{j})$, $\mathrm{q}=1 \ldots, \mathrm{n}_{\mathrm{k}}, \mathrm{k}=1_{\ldots} \ldots, \mathrm{n}$. is determined for each pair of projects $i, j=1, \ldots, m$, using (3).

Slep 4. Individual fuzzy preferences $r_{q k}(i, j)$. $\mathrm{q}=1, \ldots, \mathrm{n}_{\mathrm{k}}, \mathrm{k}=1, \ldots, \mathrm{n}$, are obtained for each pair of projects $i, j=1$.....m, using (4)-(6).

Step 5. Aggregation by criteria is performed using (7).

Step 6. Aggregation by experts is performed and projecis of domination level 1 are separated applying (8).

Step 7. If each domination level contains no more than 3 projects, then go to step 9 . Otherwise go to step 8.

Step 8. Degree of domination α is selected by DM and projects of domination level $\boldsymbol{\alpha}$ are determined using (10).(11). Go to step ?.

Slep 9. Lower and upper bounds of required amounts of resources for each project $\left[\mathrm{g}_{\mathrm{is}} \mathrm{L}_{\mathrm{E}} \mathrm{Gis} \mathrm{U}\right]$. $\mathrm{i}=1, \ldots, \mathrm{~m}, \mathrm{~s}=1, \ldots ., \mathrm{h}$, are determined using (12),(13,.

Step 10. Lower and upper bounds of required amounts of each resource for projects of each
 determined using (14).

Slep $/ 1$. The specified values of - are arranged in increasing order: $\alpha_{1}<\alpha_{2}<\alpha_{3}<\ldots<\alpha_{v}<1$. Let $)_{1}$ be the set of projects of domination level $\alpha_{2}, 2=1, \ldots, v, P-$ the set of selected projects, $\left[g_{S}{ }^{L_{4}} \mathrm{~g}_{S}{ }^{\mathrm{U}}\right]$ - lower and upper bound of necessary amount of resource s for selected projects sel P. Resources are arranged by DN in order of priority decrease. Let S_{h} be resource of priority $h, h=1 \ldots$.t. Set domination level counter $\mathrm{N}:=0$, resource counter $\mathrm{h}:=1$. $\mathrm{P}=\mathrm{PO}$, where PO^{0} - set of projects not belonging to any domination level.

Step 12 Resource ulilization check:

- if $\mathrm{G}_{\text {sh }}<\mathrm{g}_{\text {sh }} \mathrm{P}^{L}$. Then go to slep 13;
- if $G_{\text {sh }}-\left[g_{s h} P^{L}, g_{s h P}\right]$, then g_{n} to step 14;
- if $G_{s h}>g_{s h P}$. then go to step 15.

Step 13 Set $N: N+1,{ }^{\alpha}=\underline{\alpha}_{N}$. P - PUPaN. Go to step 12.

Step 14. Set $h:=i+1$. If $h>t$ or if $D M$ doesn't want to encounter the remaining resources. then stop. Otherwise go lo step 12 .

Step 15 Sel $P=P \mathrm{P} \alpha_{\mathrm{N}} . \mathrm{N}:=\mathrm{N}-1$. Go to step 12.

CONCLUSIONS

An approach and interactive procedure for solving group decision making problems of project selection under imprecision of judgments is proposed. It is based on expert estimales expressed in a convenient form: levels in a quantitative scale for the projects and inlervals for the resource requirements. Projects are divided into domination levels based on aggregated group fuzzy preference. Choice is done on the basis of resource utilization sheck. The procedure is compulationally simple and easy to apply.

REFERENCES

[1] Ahmed N.U., Gupta d.N.D. (1987). An efficient heuristic algorithm for selecting projects. Compulers and Industrial Engineering (12) 153-158.
[2] Arrow K. (1951). Social Choice and Individual Values Wiley, New York.
[3] Brans J.P.. Vincke P.. Marescha! B.
(1986). How to select and how to rank projects. The PRONETHEE method. Europesn loumza' of Oper. Res (24) 228-239.
[4] Buckley J.J. (1985). Ranking alternatives using fuzzy numbers. Ruzry Sets and Systuns(15) 21-31.
[5] Buckiey J.J., Chanas S. (1989). A fast method of ranking alternatives using iuzzy numbers. Auzy Seds and Systens. (30) 337-338.
(6) Cook K.D., Kress M. (1985). Ordinal ranking with intensily of preference. Nanagement Scieace(31) 26-32.
[7] Cook W.D., SeiIord, LN. (1982). R\&D project selection in a multidimensional environment. Journat of the Oper. Aes. Society (33) 397-405.
[0] Dias O.P. (1988). The R\&D project selection problem wilh fuzzy coefficients. Auray Sets and Systems (26) 299-316.
[9] Fox G.E., Baker N.P., Bryant J.L. (1984). Economic models for R\&D project selection in presence of project interactions. Hanagement Science(30) 890-902.
[10] Hwang C.L., Lin N.J. (1987). Group Deciston Haking Under Aulliple Crileria, Wethods and Applicotions Springer Verlag. Berlin.
[11] Krasteva E., Narula S., Sotirov G. (1992). An interactive procedure for aggregation of expert judgments based on strength :' preferences and fuzzy sels. Intemational Special Conference on WCDELC Cairo.
[12] Krasteva E.. Sotirov G., Dobrev M. (1992). Interactive project selection based on fuzzy group chrice. XI European Heeting on Cybernetics and Systenns fesearch Vienna.
[13] Móntero F.J. (1987). Social welfare functions in a fuzzy environment. STbernetes(16) 241-245.
[14] Ringuest J.L. Graves S.B. (1989). The Inear multiobjective R\&D project selection problem. /EEE Trans on

Engineering Nanagement(36) 54-56.
[15] Seo F., Sakawa M. (1985). Puzzy multiattribute utility analysis for collective choice. /EEE Trans on Systems Nan and Cybernetics(15) 45-53.
[16] Stewart T.J. (1991). A multi-criteria decision support system for Reb project selection. Joumal of the Oper. Res Society(42) 17-26.
[17] Tanino T. (1984). Puzzy preference orderings in group decision making. Muzzy Sets and Systems (12) 117-131.
[18] Tanino T. (1980). On group decision making under fuzzy preferences. In: Kacprzyk J., Pedrizzi M. (eds.). Nultiperson Decision Naking Using Fuzzy Sets and Passibility Theory. Kluwer Acad. Publ., Dordrecht.

