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Abstract

In this paper, we propose a cohesion measure to select a cluster of expert

preferences in a group decision-making context. Through preference mod-

eling, membership functions are used to express opinions setting the level

of agreement over a specific criterion. Taking into account that it is possible

to gather a large number of opinions through social media (e.g., facebook,

twitter, linkedin, etc.) it is important to handle them properly. Thus, this

proposal uses a shape-similarity approach to cluster similar opinions, repre-

sents each cluster by means of an interval-valued fuzzy set and provides a

cohesion measure to calculate the level of togetherness among membership

functions that are present in a cluster. The cohesion measure allows us to

discriminate clusters that are relevant to represent expert preferences. An

example that illustrates the application of the cohesion measure for expert

preferences has been included.

Keywords: Cohesion measure, shape-symbolic notation, expert preference,

intuitionistic fuzzy set, group decision-making.
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1 Introduction

Nowadays, it is common to involve a large number of participants to express their

opinions by means of social media. Furthermore, several entities like governments

and businesses, are increasingly interested in extracting useful information from

it. Within this regard, opinions from different perspectives might be useful to

make a high impact decision in a decision-making context. Here, a large group of

people will be considered as experts. Furthermore, we consider that it is possible

to group similar opinions in order to take a final decision among a reduced amount

of them, i.e. groups of expert opinions considered as representative.

Using soft computing techniques, a person could express his/her preferences

over a specific criterion through membership functions assigning his/her prefer-

ences P(x) as a matter of degree, i.e. 0 ≤ P(x) ≤ 1, where 0 denotes the lowest

preference level on the value x and 1 denotes the highest level of preference. On

the assumption that similarly shaped membership functions reflect similar opin-

ions, a method based on shape-similarity for clustering similar opinions is used

[9].

Bearing in mind that it is possible to express a group of individual experts’

preferences by using the proper representation, this proposal uses an approximate

fuzzy set. Here, we will make use of an interval-valued fuzzy set and its mapping

to an intuitionistic fuzzy set [1] to depict each cluster of opinions. Considering

that several clusters might be obtained, it is necessary a measure that allows us to

discriminate clusters that are relevant to represent the expert preferences. Within

this paper, we propose a cohesion measure which takes into account the together-

ness of membership functions in a cluster. The main advantage of this proposal

lies in the fact that it is possible to obtain a representative cluster even in cases

where some of the contained membership functions do not overlap but are close

enough to be considered similar.

For the sake of illustration, let us consider the following example. A local gov-

ernment is wondering the proper locations of video cameras, for safety purposes,

taking into account the residents’ opinions. In this case, it is possible that some

residents consider that a small distance between cameras is desired, since this may

increase safety; while other residents might perceive small distances as an inva-

sion of privacy. Considering that different perspectives of the selected problem

deserve to be analyzed, the proposed cohesion measure allows us to discriminate

representative groups of opinions. Here, the representativeness of a group is given

by its trend and its cardinality. Afterwards, with representative opinions from dif-

ferent perspectives we could decide the suitability of locating the video cameras.

The remainder of this paper is structured as follows. Section 2 gives some pre-
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liminary concepts for clustering similar opinions. Section 3 defines our proposed

cohesion measure and describes some desired features of representativeness ac-

cording to the framework where these will be used. Section 4 shows an illustrative

example to follow this proposal while demonstrates its applicability in a decision-

making context. Section 5 concludes the paper and presents some opportunities

for future work.

2 Preliminaries

This section defines preliminary concepts to properly understand the remaining

sections. These include basic concepts on fuzzy sets, some definitions to cluster

similarly shaped membership functions and the general idea of aggregation.

2.1 Basic Concepts on Fuzzy Sets

In a decision-making context, from the preference point of view, a membership

function µA represents a set of more or less preferred values of a decision vari-

able x in a fuzzy set A. Hereby, µA(x) represents the intensity of preference or

preference level in favor of value x [2].

Without loss of generality, trapezoidal membership functions have been se-

lected in this paper to represent the expert preferences over criteria. These might

be convenient for experts due to the simplicity in selecting parameters a, b, c, and

d (Equation 1) to represent their preferences [3].

µA(x) =























0 , x ≤ a
x−a
b−a , a < x < b

1 , b ≤ x ≤ c
d−x
d−c , c < x < d

0 , x ≥ d

(1)

2.2 A Shape Based Approach

To make this paper self-contained, trough this section we will recall some defini-

tions used in [9].

Definition 1 A symbolic-character is a representation of a segment in a member-

ship function as a pair 〈t,r〉 with t ∈ T and r ∈ S; where t represents the category

of the segment and r depicts its relative length by means of a linguistic term.
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Within this paper, T = {+, −, 0, 1, L, I, H} and the linguistic term set S is

depicted in Figure 1. Hereby, each segment of the membership function uses a

sign {+,−} to represent its slope, a value {0, 1} to represent its preference level

on the criterion and a letter {L, I, H} to denote a low, intermediate or high point

(e.g., a peak in a triangular membership function corresponds to a high point anno-

tated as H). Moreover, linguistic terms express the relative length of the segment

on the X-axis compared to the sum of all segments’ lengths (e.g., the label ES

corresponds to an “extremely short” segment while label EL corresponds to an

“extremely long” segment).

0 10.17 0.33 0.830.670.5

Extremely Short Very Short Short Medium Long Extremely LongVery Long

ES VS S M L VL EL

Figure 1: Linguistic terms and its semantics represented by triangular membership

functions.

Figure 2 shows a trapezoidal membership function with five segments, each

of them represented by a shape-symbolic character.

Positive slope

<0,S> <1,S> <0,EL>

X

Negative slope 

High preference level

Low preference level

<+,VS> <-,ES>

+
_

0

1

0

f(x)

Figure 2: Segments of a trapezium and their corresponding shape-symbolic char-

acters.
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Definition 2 A shape-symbolic notation depicts a membership function trough a

sequence of shape-symbolic characters.

Thus, the shape-symbolic notation for Figure 2 could be expressed as:

〈0,S〉 〈+,VS〉 〈1,S〉 〈-,ES〉 〈0,EL〉

2.3 Clustering Similar Opinions

On the assumption that similarly shaped membership functions reflect similar

opinions, we use a shape similarity method proposed in [9]. The shape-similarity

method receives as inputs several membership functions, each of them represent-

ing the opinion of an expert over a specific criterion, and builds clusters of similar

opinions (Figure 3).

Phase 1

Symbolic Notation

Phase 2

 Calculation

of Similarity 

Phase 3

   Clustering by

Shape-Similarity 

MF1 MF2 MF3

MF4

a

a a
b

b

b=c

a=b

c

c

c

d

d

d d

MFK

a b

MF5

a dbc

Input OutputProcessing

MF4

a=b c d

Shape Similarity Method

a d

MF3

a

b=c

d

a b cd

MF1

MF5

MF2

a b c d

MFK

a b

Figure 3: General architecture of the shape-similarity method.

The shape-similarity method has three phases summarized as follows:

1. A shape-symbolic notation for each normalized membership function is

built.

2. A similarity measure in the unit interval among shape-symbolic notations

is obtained, where 0 denotes no similarity and 1 denotes full similarity be-

tween them.

3. A clustering step is performed based on the aforementioned similarity mea-

sure between notations. The clustering stops when the highest similarity is

considered too low according to a previously determined threshold.
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Hereafter we will consider that different clusters containing similarly shaped

membership functions were obtained and clusters that consist of a single member-

ship function might be present. Figure 4 shows a sample of the obtained clusters,

where it is feasible to identify different shapes for clusters 1, 29 and 30.

Figure 4: Sample of clusters containing similarly shaped membership functions.

According to the a, b, c and d values in Equation 1: Cluster 1 depicts the

highest preference for values “above b” and the lowest preference for values “be-

low a”; Cluster 29 depicts the highest preference for values “between b and c” and

the lowest preference for values “below a” and values “above d”; and, Cluster 30

depicts the highest preference for a specific value b=c and the lowest preference

for values “below a” and those “above d”.

Within the scope of this proposal, the main disadvantage on summarizing

expert preferences is that loss of information is possible. However, the use of

shape-symbolic notations and, as we will see in the next section, the use of ap-

proximate fuzzy sets tries to avoid information loss. This is due to the map-

ping between membership functions and shape-symbolic notations, and the use of

interval-valued fuzzy sets.
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2.4 IVFS and IFS

We can notice that each cluster allows us to obtain the closest approximation to

represent a group of expert opinions by means of its upper and lower bounds.

Here, we represent a group of expert opinions through an interval-valued fuzzy

set (IVFS) defined by Atanassov [1] as follows:

Definition 3 An interval valued fuzzy set A (over a basic set E) is given by a

function MA(x) where MA: E→INT([0, 1]), the set of all subintervals of the unit

interval, i.e. for every x ∈ E, MA(x) is an interval within [0, 1].

IVFSs allows us to keep as much information as possible because they assign

as membership an interval instead of a single number [8].

Furthermore an intuitionistic fuzzy set (IFS) [1] A in X is given by

A = {< x, µA(x), νA(x) > |x ∈ X}, (2)

where µA : X → [0, 1], represents the degree of membership of x in A; and

νA : X → [0, 1], represents the degree of nonmembership of x in A, such that

0<µA(x) + νA(x)<1. (3)

Notice that it is possible to create a mapping between the previously obtained

interval-valued fuzzy set (IVFS) and its corresponding intuitionistic fuzzy set

(IFS) [1] given by:

Definition 4 (a) The map f assigns to every IVFS A an IFS B = f(A) given by

µB(x)= inf MA(x), νB (x)= sup MA(x).

(b) The map g assigns to every IFS B an IVFS A = g(B) given by MA(x)=
[µB(x), 1− νB(x) ].

Lemma 1 (a) For every IVFS A, g(f(A)) = A.

(b) For every IFS B, f(g(B)) = B.

For the sake of illustration, let us consider Figure 5 which corresponds to

Cluster 29. Here, we could graphically observe the closest approximation to its

upper and lower bounds represented by a solid and a dashed blue line respectively.
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Figure 5: Cluster 29 and its corresponding upper and lower bounds.

2.5 Shape-Symbolic Notation for IVFS

Heretofore, the shape-symbolic notation for membership functions includes two

components: a first component to represent the category of a segment(i.e., slope,

point or level of preference), and a second component to represent its relative

length through linguistic terms (i.e., from “ES” to “EL” corresponding to “ex-

tremely short” and “extremely long” respectively). However, considering that an

IVFS provides a lower and an upper bound for each value, a third component to

represent the width of each segment as shown in Figure 6 is needed.

Figure 6: Shape-symbolic representation for IFS.

Although in the remainder of this paper we only consider the width component

represented by linguistic terms, several strategies can be used (e.g., the use of

interval values) and subject to further study. Linguistic terms have been selected

considering that they are used in the second component and that they allow us to

keep a simple notation. Considering that the width component could be associated

with two consecutive linguistic terms, for the sake of simplicity we will use the

linguistic term with the highest membership degree.

The linguistic term set U, representing the width component, includes the

labels, linguistic terms and semantics indicated in Table 1.
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Label Linguistic term Semantic value

EN extremely thin (0, 0, 0.17)

VN very thin (0, 0.17, 0.33)

N thin (0.17, 0.33, 0.5)

M medium (0.33, 0.5, 0.67)

K thick (0.5, 0.67, 0.83)

VK very thick (0.67, 0.83, 1)

EK extremely thick (0.83, 1, 1)

Table 1: Linguistic term set U and its semantics represented by triangular mem-

bership functions.

It is worth to mention that each segment might has a different width compo-

nent in order to obtain the best approximate membership function. The proposed

symbolic representation for IVFSs will facilitate the calculation of the cohesion

measure for expert preferences.

2.6 Aggregation

Aggregation is the process of combining several numerical values into a single

representative value [7]. Within this paper, some aggregation functions (i.e., ag-

gregation operators in the fuzzy set context) will be used to combine numerical

values that will allow us to discriminate a representative cluster among a group.

The definition of an aggregation function, taken from [7], has the domain I

which is a nonempty real interval while the integer n represents the number of its

variables as follows:

Definition 5 An aggregation function in I is a function A(n)(x) : In → I that

(i) is nondecreasing (in each variable)

(ii) fulfills the boundary conditions

inf
x∈In

A(n)(x) = inf I and sup
x∈In

A(n)(x) = sup I

Based on the aforementioned definition, there are several aggregation opera-

tors that might be used including the arithmetic mean, conjunctive and disjunctive

aggregators. The properties of each aggregation operator might be considered as
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a guide, for their proper selection, according to the context where the aggregators

will be used. Although the study of different aggregators and their properties are

out of the scope of this paper, within this section we will show the generalized

conjunction/disjunction (GDC) function that is used to illustrate our approach.

2.6.1 Generalized Conjunction/Disjunction

GDC is a continuous logic function that integrates conjunctive and disjunctive

properties in a single function [6], denoted as y = x1♦ . . .♦xn, xi ∈ I =
[0, 1], i = 1, . . . , n, and y ∈ I. GDC includes two parameters: the andness

and the orness. The andness, α ∈ I , expresses the conjunction degree while

the orness, ω ∈ I , expresses the disjunction degree [4]. These parameters are

complementary, i.e., α+ ω = 1.

In [4] the location of GDC with respect to conjunction and disjunction is de-

fined as follows:

x1♦ . . .♦xn = ω(x1 ∨ . . . ∨ xn) + (1− ω)(x1 ∧ . . . ∧ xn)
= (1− α)(x1 ∨ . . . ∨ xn) + α(x1 ∧ . . . ∧ xn)
= ω(x1 ∨ . . . ∨ xn) + α(x1 ∧ . . . ∧ xn)

If α > 0.5 > ω, the expression x1♦ . . .♦xn is called partial conjunction

and is denoted as x1∆ . . .∆xn. If α < 0.5 < ω, the expression x1♦ . . .♦xn is

called partial disjunction and is denoted as x1∇ . . .∇xn. If α = ω = 0.5, the

expression x1♦ . . .♦xn is called neutrality function, which is implemented as the

arithmetic mean and is denoted as x1 ⊖ . . .⊖ xn.

Although the GDC can be implemented in various ways, within this paper we

will only consider the multiplicative form (Equation 4). The multiplicative form

is primarily applied for estimating the level of satisfaction of requirements [6] as

follows:

x1♦x2 = (x1∇x2)
q(x1∆x2)

1−q, 0 ≤ q ≤ 1. (4)

Here q is used to adjust the level of orness and 1− q is used to adjust the level

of andness. The aforementioned expression will allow us to obtain high levels of

requirements x1 and x2.

3 A Cohesion Measure for Expert Preferences

The aim of this section is to provide a measure that allows us to discriminate clus-

ters that are relevant to represent expert preferences in a group decision-making
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context. Thus, on the assumption that similar opinions are clustered by a shape

based approach, a cohesion measure is defined as follows:

Definition 6 The shape-cohesion is a togetherness measure among membership

functions that are part of a cluster grouped by shape-similarity.

A first attempt to compute the shape-cohesion measure is a straightforward

geometrical approach. This geometrical approach takes into account the area con-

tained between the boundaries (dark gray) compared to the total available area

(light gray) as shown in Figure 7.

Figure 7: Present areas in a cluster grouped by shape-similarity.

The total available area is computed based on the domain of the membership

function, while the area between the upper and lower boundaries might be com-

puted using several strategies. Furthermore, different ways to compute the area

for the IVFS allows us to obtain the same value. One of the strategies is based on

the computation of a convex polygon area.

Equation 5 sets a general form to obtain the area between the upper and the

lower boundaries on cluster ci with threshold t given by:

area(ci, t) = 1−
AU −AL

AT
. (5)

Hereby, AU denotes the area under the upper bound, AL denotes the area under

the lower bound and AT corresponds to the total present area.

As an example, of this geometrical approach, let us consider Figure 8 which

illustrates the cohesion measure for cluster 30 with thresholds 0.94 and 0.95.

Bearing in mind that the aim of this proposal is to discriminate representative

clusters among a large group, it is useful to reduce the complexity of the afore-

mentioned calculation through an approximation. Thus, our next attempt to obtain

a cohesion measure takes into account that each segment of the membership func-

tion could be approximated to a rectangle as shown in Figure 9.
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Figure 8: Cluster 30 with two different thresholds and their corresponding cohe-

sion measures.

Figure 9: IVFS denoting segments by approximate rectangles.

Here, the rectangles are drawn around a solid line that represents the average

between the lower and upper bounds. Notice that each rectangle is represented by

its length and its width, and these values could be obtained through the symbolic-

notation for the interval-valued fuzzy set explained in Subsection 2.5.

It is important to remember that the second component of the symbolic-nota-

tion represents the length of the segment on the X-axis. Thus, the length value

could be directly used in segments expressing a specific preference level (i.e.,

segments without a slope). In the case that a rectangle with a slope (i.e., segments

with a sign on the first component of their symbolic-notation) is present, a small

computation is needed to obtain the length value properly. This additional com-

putation, based on the Pythagoras’ theorem, is feasible considering that we have

the length value on the X-axis, as well as the starting and ending coordinates of
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the segment representing the rectangle’s length. Regardless the category of the

segment, the rectangle’s width value corresponds to the third component of the

shape-symbolic notation.

The aforementioned led us to a cohesion measure computed by means of a

symbolic-notation, and that it is reduced to one minus the sum of all segment

areas as follows:

cohesion(nc) = 1−

N
∑

i=1

l(nc(i))× w(nc(i)). (6)

Hereby, nc denotes the symbolic-notation of cluster c, N is the number of seg-

ments that are present in symbolic-notation nc, l(nc(i)) corresponds to the length

component in notation nc of segment i and w(nc(i)) corresponds to the width com-

ponent in notation nc of segment i.

Figure 10: IVFS denoting its average and width for each segment.

In Cluster 30, we notice that the obtained cohesion value represents, to some

extent, what we expect. A higher value shows more togetherness among the mem-

bership functions that are present in the cluster, while a lower value shows less

togetherness. The main advantage of the proposed cohesion measure lies in that

it is possible to obtain a representative cluster where some of the contained mem-

bership functions do not overlap but are close enough to be considered similar.

Notwithstanding, any cluster with a single membership function will obtain

the highest cohesion value. Therefore, we consider that a representative cluster

should also take into account the relative number of membership functions rc.
Here, rc is given by the ratio between the number of membership functions in

cluster c and the total number of membership functions.

If we compare the number of membership functions that belongs to each clus-

ter, in a decision-making problem, we could evaluate if a specific cluster repre-

sents a majority, a minority or the same number of opinions expressed by the

membership functions present in other clusters. It is achievable to have a solution,
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for some problems, based on this number. However, in other problems could be

more important a reliable minority than a crowd.

Thus, any cluster might be categorized as representative based on a combi-

nation of the proposed cohesion measure and the relative number of membership

functions. There are several strategies to integrate these values in the same for-

mula. Let dsc be a discriminant of cluster c using strategy s. Therefore, if s1 is a

strategy using the α parameter denoting the importance of each component then

Equation 7 represents the discriminant of cluster c in strategy s1 as follows:

ds1c (α) = α · cohesion(nc) + (1− α) · rc. (7)

Another strategy, s2, could use more specialized aggregators based on the

Generalized Conjunction/Disjunction (GDC) which can be interpreted as a com-

bination of conjunction and disjunction [6]. GDC in addition to model the relative

importance of the criteria also satisfies an adjustable level of simultaneity among

them.

ds2c (q) = (cohesion(nc)∇rc)
q (cohesion(nc)∆rc)

1−q, 0 ≤ q ≤ 1. (8)

In this case, q is used to adjust the level of orness and 1 − q is used to adjust

the level of andness. The aforementioned expression will allow us to obtain high

levels of cohesion and the relative number of membership functions within the

cluster.

The presented approach has the advantage that the result will be obtained

based on the value of the selected parameters denoting the importance of each

component (i.e., the cohesion measure and the relative number of membership

functions). Moreover, more strategies might be considered according to the prob-

lem to be solved.

4 Illustrative Example

The cohesion measure for expert preferences presented in Section 3 is illustrated

in the following example. Consider a local government which encourages the

participation of all its residents. The local government has k=120 residents who

are considered as “experts”’by the mayor of the city. All the experts were asked

to supply their opinions over the “appropriate distance” (criterion) among video

cameras for safety purposes. Our proposal suggests that each expert expresses

what he/she understands to be the desired distance using parameters a, b, c and d

to represent a membership function limited to the domain [0,n].
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Since all opinions contribute to the final decision then different perspectives of

the selected problem deserve to be analyzed. In this example, 120 opinions were

randomly generated and different perspectives have been grouped by similarity as

explained in Section 2.3. There are groups of opinions where residents perceive

small distances between cameras as an increase of safety, groups representing the

opinion of residents that might perceive small distances as an invasion of privacy,

among others.

In order to select one or more representative clusters, within this example we

will consider that a representative group of opinions is “A cluster with a ‘high’

level of togetherness and a ‘high’ number of membership functions”. Notice that

this statement requires to satisfy simultaneously both components: the cohesion

measure, as the togetherness level, and the relative number of membership func-

tions.

For illustration purposes, let us consider cluster c=30 with threshold 0.95. The

symbolic-notation n30 of this cluster is given by:

n30 = 〈0, V L,EN〉〈+, ES,EN〉〈1, V S, V N〉〈−, ES,EN〉〈0, ES,EN〉.

Once we obtained different clusters of opinions, in order to categorize the

clusters as representative, we should obtain the cohesion measure cohesion(nc)
and the relative number of membership functions rc for each cluster. Thus, the

cohesion measure for cluster 30 using Equation 6 is:

cohesion(n30) = 1−
∑

5

i=1
l(n30(i))× w(n30(i))

= 1− (EN.V L+
√
2.ES + V N.V S +

√
3.ES + EN.ES)

= 1− [0(0.83) +
√
2(0) + 0.17(0.17) +

√
3(0) + 0(0)]

= 1− 0.0289
= 0.9711

It is worth to mention that segments i=2 and i=4 correspond to slopes in the

membership function. Thus, the length value should be calculated considering

that the length value represented in the symbolic-notation corresponds to the X-

axis as mentioned in Section 3.

Then, the relative number of membership functions for cluster 30 denoted as

r30 should be obtained. This value is obtained by the ratio between the num-

ber of membership functions in the cluster and the total number of member-

ship functions. Considering that cluster 30 contains seven membership functions

and the total number is 120, then the relative number of membership functions

r30 = 0.0583.

After that a strategy to discriminate representative clusters must be selected.

Within this paper, we proposed two strategies.

139



The strategy s1 which uses the α parameter denoting the importance for the

cohesion measure and the 1 − α value denoting the importance of the relative

number of membership functions within the analyzed cluster based on Equation

7. Let us consider that discriminant ds1
30

with α = 0.75 is obtained as follows:

ds1
30
(0.75) = 0.75 · cohesion(n30) + (1− 0.75) · r30

= 0.75(0.9711) + (0.25)(0.058)
= 0.7429

We can notice that the final values will depend directly on the selected α
parameter. Here the 0.75 value was selected for illustration purposes.

The strategy s2 uses a more specialized aggregator based on the Generalized

Conjunction/Disjunction (GDC) which uses a parameter that specifies the desired

level of conjunction (andness) or disjunction (orness).

Within this example a representative cluster is “A cluster with a ‘high’ level

of togetherness and a ‘high’ number of membership functions”. Thus, it is nec-

essary to satisfy the cohesion measure and the relative number of membership

functions as a partial conjunction. Furthermore, considering that this aggregator

must be implemented in several ways, it is possible to specify minimum and max-

imum values for each component. For example, consider that we would like to

take into account those clusters with a level of togetherness above 0.5 and those

with a minimun of five membership functions. Thus, let us tune up our example

considering:

• A level of conjunction or andness as low as possible.

• A cohesion measure above 0.5

• The number of membership functions in the range of [5,120].

• The cohesion measure two times more important than the relative number

of membership functions.

In this case the discriminant using strategy s2 is obtained as follows:

ds2
30
(0.67) = max(0, cohesion(n30)−0.5

1−0.5 )
0.67

max[0,min(1, 120−r30
r30−5

)]
0.33

= max(0, 0.9711−0.5
0.5 )

0.67
max[0,min(1, 120−7

120−5
)]
0.33

= max(0, 0.9422)0.67max[0,min(1, 0.9826)]0.33

= (0.9422)0.67(0.9826)0.33

= 0.95538
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Notice that the implementation of the aggregator is out of the scope of this

paper, but its use has been included for illustration purposes. More information of

the use of graded logic with a detailed example can be found in [5].

After obtaining the cohesion measures and relative number of membership

functions for all the clusters, a suitable strategy to discriminate representative ones

should be selected. Thus, it is possible to select one or more representative groups

of opinions based on the proposed cohesion measure. Afterwards, with repre-

sentative opinions from different perspectives we could decide the suitability of

locating the video cameras.

As expected, the proposed cohesion measure allows us to select a group with a

high level of togetherness among them combined with a desired number of mem-

bership functions.

5 Conclusions

In this paper, a large number of expert preferences, expressed as membership

functions, are gathered through social media. A shape-similarity approach is used

to cluster similar preferences and a mapping from interval-valued fuzzy sets to

intuitionistic fuzzy sets is used to represent a group of expert preferences over

a specific criterion. Furthermore, an extension of the shape-symbolic notation,

that includes a width component, expressing the hesitation margin of the group

is proposed. Here, our main contribution is the shape-cohesion as a togetherness

measure among membership functions that are part of a cluster grouped by shape-

similarity. The cohesion measure combined with the relative number of mem-

bership functions allows us to discriminate clusters that are relevant to represent

expert preferences in a group decision-making context.

Some crowdsource applications on different areas could be explored and they

might be considered as opportunities for future work. Different strategies to select

a representative cluster analyzing more cluster features, including an improvement

to the proposed cohesion measure, are subject to further study.
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