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Abstract 

This paper describes the slow learning algorithm of unsupervised adaptive 

resonance theory ART2 neural network. At first, the algorithm is presented 

step by step with formulas, and it is shown how an individual vector 

affects the network. At the end of the process, we have a learned network 

with stable recognition clusters according to the vectors. The process of 

the learning algorithm is presented by a generalized net model. 

Keywords: Generalized Nets, Neural Networks, Adaptive Resonance 

Theory. 

1 Introduction 

Adaptive resonance theory (ART) [3, 4] was introduced by Stephen Grossberg 

in 1976. In this work ART2 [2, 3, 4] neural network [8], slow learning algorithm 

[5, 6, 7] is taken into consideration. ART2 is designed to perform operation over 

continuous valued input vectors. It consists of two layers – the first one has 

complex units or neurons that support a combination of normalization and noise 

suppression. The second layer is a competitive one. Both of them are fully 

connected with bottom-up and top-down weights. In addition, the bottom-up and 
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top-down signals are needed for the reset mechanism that takes the design 

whether or not the input vector takes place in the winner cluster. The neural 

network is learned by modification of the bottom-up and top-down weights. The 

structure of the ART2 neural network is presented below: 

 

 
 

Fig. 1. Structure of the ART2 neural network 

The slow learning algorithm according to [6, 7] can be expressed by the 

following steps: 

Step 1. Initialize parameters: a, b, ϴ, c, d, e, α, , EP, l where: 

 a, b – fixed weights in the F1 layer; 

 ϴ - noise suppression parameter; 

 c – fixed weight used in testing for reset; 

 d – activation of  winning F2 unit; 

 e – small parameter using preventing division by zero; 

 S-matrix with input vectors (s1, s2, …, sn); 

 n – number of the neurons on the input layer; 

 m – number of the neurons in the second layer; 

 α – learning rate; 

  – vigilance threshold; 

 bj – initial bottom-up weights; 

 tj – initial top-down weights; 
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 EP – number of epochs; 

 l – number of loops in F1 layer. 

Step 2. For each input vector  s do Steps 3-11. 

Step 3. Update F1 unit activation: 
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Step 4. Compute the signals to F2 units: 


j

ijj p*by  

Step 5. While reset is true, do Steps 6-7 

Step 6. Find F2 unit with largest signal. (Define J such that yJ ≥ yj for j = 1, 2, 

…, m.) 

Step 7. Check for reset: 
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If epr      then  yJ = – 1 (inhibit J) 

(Reset is true; repeat Step 5 ) 

If epr   

Reset is false; proceed to Step 8 

Step 8. Update weights for winning unit J 

   JiiJi tdddut 11   

   iJiiJ bdddub 11 
 

Step 9. Test stopping condition for number of epochs.
 

2 GN-Model 

Initially the following tokens enter the generalized net [1]: In place L1 – α-token 

with initial characteristic κα = " < , , ,…, �,>", where k is the  number of 

input vectors. In place L2 – -token with initial characteristics 
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κ = " < , �, , , , , , �, �, , EP, l > ". 
Generalized net is presented by a set of transitions: 

А = {Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8}, 

where the  eight transitions describe the following processes: 

Z1 = “Extraction of a vector from the matrix”; 

Z2 = “Calculation values of the vector”; 

Z3 = “Normalization of the data”; 

Z4 = “Assignment of weights”; 

Z5 = “Calculation of resonance state”; 

Z6 = “Suppression of the noise”; 

Z7 = “Updating weights”; 

Z8 = “Determination of winning neuron”. 

 

 

 
Fig. 2. GN model of slow learning algorithm 

of unsupervised ART2 neural network 
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The constructed GN-Model consists of eight transitions with the following 

descriptions: 

Z1 = {L1, L2, L5, L16},{L3, L4, L5}, R1, (L1, L2, (L5, L16))  

,

16

4,53,55

2

1

543

1

TrueFalseFalseL

TrueWWL

TrueFalseFalseL

TrueFalseFalseL

LLL
R 

 

where W5,3 = W5,4 = “There is an active signal from place L16”. Token  that 

enters place L5 from place L2 unites with token �′(from place L1) in one -token 

with characteristic κcu =< "� κ ;�βδ� κ ;�βδ κ ;�βδ κ ;�βδ κ ;�βδ κ ;�βδ κ ;�βδ κ ; βδ κ ; βδ κ ;βδ κ ;�βδ κ ;�� κ,� κ ,…, � �κ">. 

Token   enters place L3 from place L5 with characteristic  κcu′ =< βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ; βδ κβ;�βδ κβ;βδ κβ;βδ κβ;�βδ κβ; βδiκ">, 
where i  [1; k] represents the current number of iteration. Token α enters place 

L4 from place L3 with characteristic κcu′ = "βδ�κα". 
Z2 = {L4, L9, L17, L18}, {L6, L7, L8}, R2, ((L4, L9), (L8, L17))  

,

17

7,86,88

9

4

876
2

TrueFalseFalseL

TrueWWL

TrueFalseFalseL

TrueFalseFalseL

LLL
R 

 

where: 

 W8,6 = “The values of p and w units are calculated and�βδ κcu = ”; 
 W8,7 = “The values of p units are calculated and βδ κcu > ”. 
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Token ′′enters place L8 from place L9 with characteristic κcu′′ =< βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;� βδ κβ;βδ κβ;βδ κβ;�βδ κβ;�βδiκ;κcu′ ;; ">, 
On the first activation on the transition token  enters place L6 with characteristic κcu = "κcu′ , , ", and  = 0 and  κcu="κcu′ + βδ �κ ′′ ∗ κcu′ ". 
On the second activation  = κcu′ + κ′ ∗ βδ �κ ′′

. The token that enters place L7 

from place L8 obtain characteristic 

�� = "βδ κ ′′; �βδ κ ′′; �βδ κ ′′; �βδ κ ′′; κcu′ ; κcu�′" 
Z3 = {L3, L6, L13, L19, L21},{L9, L10, L11, L12, L13 }, R3,  

(L3, L6, L13, L19, L21, L26)  

,

21

19

12,1311,1310,139,1313

6

3

131211109
3

TrueFalseFalseFalseFalseL

TrueFalseFalseFalseFalseL

TrueWWWWL

TrueFalseFalseFalseFalseL

TrueFalseFalseFalseFalseL

LLLLL
R 

 

where: 

 W13,9 = “The values of “u” units are calculated”; 

 W13,10 = “The values for resonance verification are calculated”; 
 W13,11 = “The value of resonance is normalized”; 
 W13,12 = “The values of “x” and “q” units are calculated”. 

 

Token  enters place L13 from place L3 united with one  – token and obtain 

characteristic κcu′′ =< βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ; �βδ κβ;βδ κβ;βδ κβ;�βδ κβ; �βδiκ;κcu′ ;; ">, 
where 
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κcu′ = κcuβδ �κ′′ + ||κcu|| 
Token ′ enters place L10 from place L13 with characteristic ���′ = "βδ κcu, ′, ′′, ′, βδ �κ′′ , βδ κ′′" 
where  

���′′ = √∑� + � +⋯���
�=  

and ����′ = √∑ � + � +⋯����= , 

where x are the different elements of the vector si. 

 

Token �′′ enters place L11 from place L13 with characteristic ����′′ = "�′, βδ �κ′′ ,�βδ �κ′′", 
where ����′ = √∑ � + � +⋯����= . 

Token ′′ enters place L12 from place L13 with characteristic ���′′ = ''', ',�βδ κ'' ,�βδ κ'' ,�βδ κ'' , 
where κcu′ = � ���βδ κ′′ + ||� ���|| 
and κcu′′′ = �� ���βδ x′′+||�� ���||. 

 

Z4 = {L7, L18, L23, L27},{L14, L15, L16, L17, L18}, R4,(L7, L18, L23, L27)  

,

27

23

17,1816,1815,1814,1818

7

1817161514

4

TrueFalseFalseFalseFalseL

TrueFalseFalseFalseFalseL

TrueWWWWL

TrueFalseFalseFalseFalseL

LLLLL
R 

 
where: 

 W18,14 = “i > m”; 
 W18,15 = “Bottom–up and top–down weights are determined”; 
 W18,16 = “Request for next input vector”; 



 

 

68 

 W18,17 = “Top–down weights are determined”. 

The token that enters place L18 obtain characteristics � = "βδ �� , βδ �� , βδ �� , βδ cu�� , κcu, κcu, κcu, κcu′ , κcu′ " 
where κcu = −pr �� ∗pr ��, κcu = "ζj" , 

κcu = ∑ βδ�κ�cu′pr �� ∗ κcu. κcu′ = maκ κcu ζj . 

The tokens  κcu, κcu  update their values from the tokens coming from the 

transition Z7. The tokens  κcu�obtain characteristic “next max value”. The token 

that enters place L15 from place L18 obtains the characteristic κcuρ = "κcu′ , κcu′ , βδ �� , βδ ��; �βδ cu��"; 
Tokens  enter place L16 from place L18 and obtain characteristic κcuς′ = "neκζ�θecζαδ"  

The token in L14 obtains characteristic βδ cu� = "δejecζ�εeζ". 
 

Z5 = {L10, L20}, {L19, L20}, R5, (L10, L20)  

,

19,2020

10

2019

5

TrueWL

TrueFalseL

LL
R 

 
where W20,19 = “Resonance state is calculated”. 

The tokens that enter place L20 obtain characteristics ���′′′ = "βδ κcu, ′, ′′, ′, βδ �κ′′ , βδ κ′′ , κcu�"; 
where κcu = βδ κcu′ + βδ �κ ′ ∗ βδ �κcu′βδ �κ ′ + βδ �κcu′ + βδ �κ ′ ∗ βδ �κcu′ ; 
The token that enters place L19 from place L20 obtain characteristic μ′ = βδ cu′′′ . 
 

Z6 = {L12, L22},{L21, L22}, R6, (L12, L22) 

,

21,2222

12

2221

6

TrueWL

TrueFalseL

LL
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 I 
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where W22,21 = “Noise suppression is determined”. 

The token that enters place L22 obtain characteristic κcuV = ���′′ , κcuε ;  where κcuε = f(βδ cu′′) + βδ �κ ′′ ∗ f βδ κcu′′ ; 
 

The token that enters place L21 from place L22 obtain characteristic κcu′ = "βδ cuV". 
 

Z7 = {L15, L24, L25}, {L23, L24}, R7, (L24, (L15, L25))  

,

25

23,2424

15

2423

7

TrueFalseL

TrueWL

TrueFalseL

LL
R 

 
where W24,23 = “The weights are updated”.  

The token that enters place L24 obtain characteristic κcu′′ = βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ;�βδ κβ; �βδ κβ;βδ κβ;βδ κβ;�βδ κβ κcuρ′ = κcuρ , κcu, κcu, κcu; 
where κcu = βδ �κ� ∗ βδ ρ ∗ βδ cuρ + ( + βδ ρ ∗ βδ ρ(βδ ρ − ) ∗ βδ κcuρ ); κcu = βδ �κ� ∗ βδ ρ ∗ βδ cuρ + ( + βδ ρ ∗ βδ ρ(βδ ρ − ) ∗ βδ κcuρ ); 
The token that enters place L23 from place L24 obtain characteristic κcuς = "κcu, κcu". 
 

Z8 = {L11, L27},{L25, L26, L27 } (L11, L27)  

,

26,2725,2727

11

272625

8

TrueWWL

TrueFalseFalseL

LLL
R 

 
where: 

 W27,25= “μ′ ≥�βδ �κ − βδ �κ ”; 
 W27,26 = „¬W27,25”; 

The token that enters place L27 obtains the characteristic ����′′′ = ����′′ , κcu, κcu; 
where κcuξ = "true"; κcu = "falεe". 
The token that enters place L25 from place L27 obtain characteristic κcu′ = βδ �κcu′′′; 
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The token that enters place L26 from place L27 obtain characteristic κcu′ = βδ �κcu′′′ . 
3 Conclusion 

The process of slow learning algorithm of ART2 neural network was presented 

with GN model. It was showed how an individual vector passes across the 

network and changes its activities of the neurons, in the end we have stable 

recognition clusters that have both “stability and plasticity” and also if there is  

noise, the network is able to suppress it according to the user’s choice of 

parameter.  

The algorithm might be of help for people who need to solve problems that 

cannot be solved with other networks. 
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