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I. OPTIMIZATION AND CONTROL THEORY 

C. Bonivento 
G. Capitani 
A. Tonielli 
University of Bolonia 

LINEAR DYNAMIC MODELLING FOR PROCESS CONTROL 
IN TECHNICAL AND ECONOMIC AREAS 

I. INTRODUCTION 

This paper will not propose completeiy new results but is an attempt to 
reconsider some methodological aspects of dynamie modelling for process 
control on the basis of a number of experiences carried out during the last 
five years at the Istituto di Automatica of the University of Bologna (ltaly). 
Such experiences cover applications from engineering systems, such as chemical 
and power plants, to economic systems, such as a national monetary sector. 
The purpose of the mathematical modelling and the authors' cultural extra
ction constitute obvious limitations to the choice of the arguments and their 
development. Anyway further propositions about similarities and differences 
in modelling problems arising from technical and economic areas can be 
found, for example in [I], [2], [3]. 

Models are generally constructed for forecasting, hypothesis verification, 
dimensional design, control or regulator synthesis. The first two uses are classi
cally emphasized in economic applications [4], while the latter ones are typical 
in engineering literature and practice [5]. 

But, as it is kno wn, recently this distinction seems to become more and 
more slight. In fact the necessity of researching more significant tools for 
designing and testing management and control policies, especially at the 
macroeconomic level, has motivated the beginning of a common work between 
control theorists and economists in various countries [6], [7], [18], [19], so that 
the implications and the use of modern control theory now can be found 
also in modelling economic systems. 

A model for control is quite different from a forecasting one. The latter 
should incorporate as many dynamie mechanisms of the reality as possible, 
so that it is usual to have very large and complex sets of nonlinear equations 
whose coeflicients are very often statistically poorly determined on the basiś 
of the available limited historical data. 

Moreover the outturn of such a kind of models heavily depends on the con
si deration of correct future behaviours of input . variables. 
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On the contrary, a model for control is preferably as simple as possible 
consistently with certain precision requirements. It is, for example linear 
because it must describe the behaviour of the reality only in the neighbour
hood of some predetermined (desired) trajectories of the input and output 
variables. In fact the purpose of the regulator to be designed from the know
ledge of such a model is to keep small the alwa ys present deviations f:i;om 
nominał paths. Moreover it is elear that only those endogenous _variables 
which appear in the performance criterium are to be related to the exogenous 
variables. 

Two important facts rise out from the previous considerations. Firstly, 
a model for control doesn't I).ecessarily requ_ire parameters with a direct 
physical or economic significance in that these-parameters will only be used 
for calculating the parameters of the regulator. Secondly the goodness of 
the model must be definitively decided on the basis of the success of the control 
policies eventually simulated on a larger theoretical model. 

One may conclude that if the design of a control system is the finał goal, 
rather simple empirical models can be obtained from i/o sequences (if available) : 
this approach is usually adopted in technical applications. But if a better 
insight and understanding of the system interna! properties is the aim, theore
tical models (i.e. obtained from available a-priori knowledge of behaviour 
principles) are required. 

In practice any modelling procedure is a blend of the two previous appro
aches and it can be schematically represented as in fig. I, where the connec
tions a, b, c are essentially inactive in classical economic applications, while 
connections d, e, f are not considered in black-box technical applications. 

In sections 2, 3, 4 we first describe a set of results on the relations between 
interna! models (i.e. state-space forms) and external models (i.e. input-output 
equations) which play a fundamental role for linear models building. In 
section 5 engineering examples are given to show the effectiveness of the re
sulting procedure starting from i/o experimental data. In section 6 the same 
results are applied to construct a model suitable for controlling the monetary 
sector from an a-priori available complex model of the italian economy [8], 
[9). 

2. SOME BASIC RESULTS AND STATEMENT 
OF THE IDENTIFICATION PROBLEM 

The situation considered in this section is represented in fig. 2. The system S 
is finite-dimensional time-invariant discrete and linear with input u(k) = 
=[u1(k) ... u,(k)FER' and output y(k)=[Yi(k) ... ym(k)FERm. The vectors 
v(k) and w(k) represent the additive zero-mean Gaussian noise affecting 
the available data u*(k), y*(k). The noise covariance matrix is 

cov ([~tl>]) = Ro ( k - i) (2.1) 

with R diagonal and J(k-j)= I for k=j and zero otherwise. 
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Without loss of generality, S is assumed to be completely observable and 
then [10] representable with the model 

x(k+l) = Ax(k)+Bu(k) 

y(k) = Cx(k) 

where 

A= {Aij} 

dimA = 11 

o 

A;;= 

o 
Jv, - 1 

O .... ,. , ... . .. O 

O .. , ... , ...... O 

(v; x vj) a;j,l ... a;j,vij O ... O 

v . . = {min(v;+ 1, vj) 
IJ 

min(v;, vj) 
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1 O ........................ O 

C= 0 .... 0 1 0 .... ... ......... 0 

0 .... . ........... 0 1 0 .... 0 

i i i (2.2.d) 

1 (v1+l) (v1+ ... +v111 -1+l) 

m 

n= L vi 
i= 1 

while B has no special structural properties and only for notational conve-
nience will be written in the following partitioned form 

B1 b{i bil ,1 •.. bil,r 

B= B2 wbere B;= 
b;z b;2,1 ... b;2,r (2.2.e) = 

Bm b[, biv;,l · ·· bivi,r 

The important features of the model (2.2) lie in the following basie results. 

Theorem 2.1. - For every i E {I, 2, .. . , m} the dimension vi of Au is equal 
to the minimum integer ni such that 

(2.3) 

where Ant(p, q) denotes the set of all the vectors preceding (FT)PhJ in the or
dered sequence hf, hI, ... , hJ, ... , h~, FThI, FThI, ... , FTh'J;, ... : hą is the ą-th row 
of the matrix H = cr- 1 and F = T AT- 1 for any nonsingular matrix T. <J 

Theo rem 2.2. - For any invariant index V;, the numbers {aii,k : j= I, ... , m, 
k = I, . . . , v;/vii~v;)}, associated with the linear dependence relationship 

(FTY,h; E span {Ant(vi, i) nReg} (2.4) 

where Reg denotes the set of all the vectors (FT)"hJ , k < vu, j = 1, ... , m, are 
equal to the corresponding parameters of A, i .e. aij , k = aii, 1<. <J 

The proof of these Theorems can be found in [11]. The number vi = mini { ni : 
: (2.3) holds} is called the i-th invariant index of the pair (A, C). A further 
result which plays a basie role both in the position of the realization-identifi
cation problem and in its solution is the following: 

Theorem 2.3. - The model (2.2) is equivalent to the input-output represen
tation: 

P(z)y(k) = Q(z)u(k) (2.5) 
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where P(z)=[pu(z)] (i,j= I, ... , m), Q(z)=[ąu(z)] (i= I, ... , m ; j = I, ... , r) 
are polynomial matrices in the operator z, where z- 1 is the unitary delay 
operator, with entries : 

() 
V/ v·-1 Pii z == z -aii,viz i - ••• -au,2z-aii,1 

( ) 
v,1- I Pii z = -aij,vuz - ... -uu,2 z-aij,1 (i# J) 

( ) I< v1- l [./ µ) 
ą;j Z = l'iv,,jz + ··· +l'i2,jz+ il , j 

where the coefficients /31 k,i ae the entries of the matrix B = MB in the same 
positions as the corresponding bu,,i in matrix B, and the (n X n) transforma
tion matrix M is the unitary-determinant matrix given by M = [Mu] (i, j = 
= 1, ... , m) where: 

-aii,z · · · · · · · · · · · · · · · · -au,vi 

-aii.3 · · · · · · · · 1 o 

( v, X v) 
1 O .................... o 

-a;j,2 ... . . . .... ...... -a;j,v,1 ... O 

o 

o ................. ... .... . .. o 
Outline of the proof 
Let us consider the canonical description (2.2). It can be noted that this repre

sentation partitions the system into m interconnected subsystems and that 
the j-th subsystem, because of the structure of the pair (A, C), is completely 
observable from the j-th component of the output vector. 

It is in fact possible to write the state of the j-th subsystem as 

X(v,+...+v1-1 +1/k) = y/k) 

x<v,+ ... +v1-,+2/k) = zyik)-bj1 u(k) (2.6) 

x<v,+ ... +v1_,+3i(k) = z2yik)-bj2 u (k)-bj1 zu(k) 
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Writing eq. (2.6) for j = 1, 2, ... , m the w hole state of the system can be 
written as 

x (k) = V (z) y (k)- WZ(z) u (k) 

where 
1 ....... . .... O 

z 

z•' -1 

V (z)= O o 

1 
z 

Q ............ zvm-1 

(2.7) 

l 
(2.8) 

Z(z)=[ ,: J (2.9) 

z•M -1 I 

vM = max;(v;) 

o ............................ o 

.. br1 O .... ..... O 
W= (2.10) 

o ............................ o 

_b~um-1 • • • • • · • • b~l O • • • • • • • • O 

The substitution of (2.7) in the equation (2.2a) leads to the input-output 
description 

[(zI -A) V (z)] y (k) = [(zł -A) WZ (z)+ BJ u (k) (2.11) 

In equation (2.11) only the vi-th, (v1 +v2)-th, ... , n-th equations are signi
ficant; the remaining ones are sim ple identities. By selecting the significant 
equations in (2.11) the relation (2.5) follows by means of simple algebra. 
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The presence of an algebraical link between the input and the output (D =I 
=f O) simply modifies the equation (2.5) as 

P(z) y (k) = (Q(z) + P(z) D) u (k) (2.12) 

where Q(z) is a polynomial matrix whose degree is less than the degree of 
P(z). 

Note that (2.7) allows for a simple calculation of the initial value of the state, 
given proper i/o sequences. It is useful to point out that the i-th equation from 
(2.5) can be written as 

m Vij r v, 
y;(k+v;) = }: }: aij ,1yj(k+l-l)+ L L /3il,juik+l-l) 

j=ll=l j=ll=l 
(2.13) 

6. 
On the basis of the introduced results and notations it is possible to for

malize the identification problem in the following way. 
Assume that the set of numbers {v;} is a priori known. This hypothesis is 

in practice very limiting but will be relaxed in the following when the structure 
identification problem will be considered. 

Given a noisy input-output sequence 

{u*(k), y*(k); k = 1, ... ,Ni} (2.14) 
Ili 

from S, let us consider the vector space R'; with dimension t; = 1 + L vii + 
j=l 

+ rv; (v;; ~ v;) associated with the equation (2.13), for i= 1, ... , m. The se
quence (2.14) defines in R11 the points 

l'/~(k) = [y1'(k) ... Yi(k+v;1-l); ... ; Yi(k) ... y;(k+v;); .. . 

;y!(k) ... Y!(k+v;,n-1); u':(k) ... u;(k+v;-l); .. . (2.15) 

*(k) *(·k 1· ]T ;u, · ... u, +v;- ) 

k = l, ... , N for a suitable N< N 1 

Problem - Determine the i-th equation (2.13) parameter vector 

(2.16) 

/3il,1• ··· ,J1;1,rl ··· J,Biv;,l> ··· ,/Jiv,,r)T 

which maximizes the limited information maximum likelihood (LIML) crite
rion 

N 

LJMLF = Jl[fJ-N
12 exp[- ~ I e;(k) l[f-

1e;(k)] 

k= 1 

where elk) is the disturbance affecting the exact point 

11;(k), i.e. 11t(k) = 11;(k) + e;(k), and l[f = E { e;(/c) e;(k)}. Ll 
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In the noisy-free case the problem reduces to the determination of the pa
rameter vectors 91 such that: 

r,;(k)9i=0 k=l, .. . , N. 

Note that the problem of the parameter identification of S has been de
composed into m independent problems, each supplying 9i. The set {9 1 , 

82 , ••• , 8m}, if the indexes {v,} are known, completely identifies { A, B, C}, 
as it will be shown in the following section. 

3. DETERMINISTIC CASE 

The resolution of the identification problem previously stated mainly 
relies on the following realization algorithm from input-output sequences. 

Given in R'1 the noise-free points r,,(k), k = l, 2, ... , N, let us construct the 
matrix sequence: 

R(µ1 ··· µmlµm+l ··· µm+r)~[R1(µ1), ··· ,Rm(µm), ··· ,Rm+,(µm+,)J ~ 

~ [Y1(l) ··· Y1(µ1)I ·· · IYm(l) · · · Ym(/lm)lu1(l) ··· U1(µm+1)I · ·· 

... !u,(1) ... u,(µm+,)J (3.1) 

where 

y,(k) = [Yi(k) , y;(k + 1), ... , Y;(k + N - l)Y 

u;(k) = [u;(k) , u;(k+ 1), ... , u;(k+N-l)Y 

and the indexes (µ 1 , ••• , µm+,) are increased as follows 
(1, 1, ... , 1), (2, 1, ... , 1) ... (2,2, ... , 2), (3, 2, ... , 2) . .. 

Notice that 

R(v, 1 , v,2 , ... ,µ; = v,+l, ... , V;mlv;, ... , v;) = 

11[(1) 

17i(2) 

1]i(N) 

(3 .2) 

(3.3) 

Because of the relation (2.13) the vector Yi(vi+ 1) is linearly dependent on 
the previously selected vectors and the dependence coeflicients vector is just 
8, given in (2.16) where the normalized -1 component is associated with 
Yhi + l). 

Therefore the determination of the invariant indexes {v1 , . .. , vm} and the pa
rameter set {91 , ••• , .9111 } can be performed by testing the linear dependence 
of the vectors (3.2) entering (3.1) in the following order: 

Y1(l), rz(l), ... , Ym(l), U1(l), uz(l), . .. , u,(l), Y1(2), .. . , Ym(2), u1(2), ... 
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For computational convenience, the dependence test can be carried out as 
a singularity test on the matrix sequence 

S(l,1, ... ,1), S(2,1, ... ,1), ... , S(2,2, ... ,2), S(3,2, .. . ,2) .. . (3.4) 

where 

S(µ1,µ2, ··· ,µm+r)~RT(µ1,µ2, ··· ,µm+,)R(µ1,µ2, ··· ,µm+r) (3 .5) 

Summarizing, the previous discussion proves the following results [12], [14] . 

Theorem 3.1. - The maxima! integers {µ 1 , µ 2 , ••• , µm}, obtained according 
to the growth rule (3.4) and such that S(µ1 , µ 2 , ••• , µm, ... , Jlm+r) is non-sin
gular, are the (A, C)-invariant indexes {v1 , ... , vm} of Theorem 2.1. <J 

Theorem 3.2. - The linear dependence coefficients between the vectors 
Y;(v;+ I) and the vectors in R(v; 1 , v;2 , ... , V;;g V;, ... , v; 111 lv;, ... , v;), or equiva
lently between the corresponding vectors in the matrix S, are the components 
of the parameter vector (2. I 6). <J 

The complete realization algorithm (fig. 3) can be therefore formalized as 
follows: 

input-output input-output state-space 
sequence - description i-- model 

x (k +1 )=Ax(k) + Bu(k 
P(z) y(k)=Q(z) u(k) y (k) ;;:; Cx (k)+ Du(k) 

Fig. 3. 

Step 1 (or structural determination): From {u(k), y(k), k= l, 2, .. . } com
pute the invariant indexes {v1 , .•. , vm} by testing the matrices (3.4). See fig . 4. 

input-output determination of 
- the invariant sequence 

indexes of (A, C) 
Fig. 4. 

Step 2 ( or parameters determination): From the knowledge of {v1 , ... , vm} 
compute the dependence coefficient vectors {.91 , ... , 9m}; i.e. the polynomial 
coefficients of P(z) and Q(z), by the formula: 

9; = [S(v;1' ... 'V;mlv;, ... 'V;)r
1 

RT(V;1' ... 'V;mlv;, ... 'V;)y;(v;+l) 

where 9;, i= 1, 2, ... , m, differs from 9; only for the elimination of the nor
malized component -1. See fig. 5. 
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input-output 
sequence determination of the coef

ficients of P(z) and Q (z), 
invariant 

jndexes of (A, C) 
1.e. the set (~,19-2 ..... ,~m) 

Fig. 5. 

Step 3 ( or state-space model construction): Directly write from P(z), Q(z) 
the ma tri ces A, C, M, B, D*). Then compute B = M- 1 B. See fig. 6. 

input-output determination of 
description - the matrices 

P(z) y(k)=Q(z) u(k) ( A ,B, C, D) 
Fig. 6. 

Step 4 ( or initial state reconstruction): Compute x (I) from (2. 7), for k = 1. 
A more efficient even if more involved to deduce algorithm for executing 

Steps 3 and 4, based on a state-space model with a dual structure w.r.t. (2.2), 
is reported in [15]. 

4. SOLUTION OF THE IDENTIFICATION PROBLEM 

In this section a computationa l solution to the Problem of Section 2 in the hy
pothesis of the presence of an equal amount of noise on the input and output 
components, i.e. 'I'= CJ2 l, is given. 

By virtue of the Koopmans-Levin theory [13] one has 

:Fs'!'":;.. 
LI\,1L

,, • I I ! 

max 1 1· = mm r , 
9; li; 8-; 'ff 9; 

where 

*1 If an algebraic link is present (D efa O), from (2.12) we have 
Q(z) = Q(z)+P(z) D 

so that 
p- 1 (z)Q(z) = D+P- 1 (z) Q(z) 

and 
D = lim p- 1 (z) Q(z). 

2 - Materiały . .. 

(4. l) 
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R; ~R*(µ1 = Vn, µ2 = Vi2, ···,µi= V1+l, ··· ,µ~ = V1.,,jµm+l = 

= Vi, ... ~+, = V1) 

and the star denotes quantities constructed with noisy data. 
As well known, the solution v1 of (4.1) can be obtained from the eigen

problem: 

(S1 -,łJ)v1 =0 (4.2) 

where ,ł 1 is the minimum eigenvalue of S1• 

An explicit solution of ( 4.2) is given by the following Theorem. 

[-n_l] Theorem 4.1. - The vector "' 

' where 

81 = [i,*Tiit-A1lT1R:T Yi (4.3) 

and Rf derives from Rf only by deleting the dependent vector yf ~yf(v1+ 1), 
is the solution of ( 4.2). 

Proof: By rewriting ( 4.2) as 

{[;2i·[ fi ]-,;1) [·:,'.]-o (4.4) 

it follows 

*T * , *TR-*l'i o 
{-Yt Yi+11,i+Y1 111-1= 

-ii:T Yi +(ii;"Tii;"-A1l)81 = o 
or 

{YiT[y;"-iĘ*B;] = A; 

:;i= (R;"TR;"-,ł,I)- 1ii:T Yi 
(4.5) 

Moreover, it can be noted that from the first relation of (4.5) it derives : 

1 2 
plim -A1 = u 
N• a:, N 

so that, when a2 is a priori known, (4.3) reduces to 
l, 

9. = [R~TR°'!' -Nu21]- 1R~Ty'!. <1 
J. I I J. J. 

(4.6) 

Remark - It can be interesting to note that it is possible to formulate the so
lution (4.3) in the following iterative way, starting from the simple ·1east
-squares solution quoted as 91 (O): 
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(4.7) 

This formulation does not require the a priori knowledge of a2 or, in any 
case, the computation of the eigenvalue A;. 

The derivation of the iterative formulas ( 4. 7), here omitted for a simple 
exposition, is based on some manipulations of (4.4) and on the fact, stated 
by the Koopmans-Lewin theory, that A.; is equal to the value of the right side 
of (4.1). 

The solution just described requires the a priori knowledge of the system 
structure {v1 , v2 , ••• vm}- The structural identification can be performed 
before the parametric identification on the basis of the results of Theorem 
(3 .1) and observing that asymptotically 

. 1 . 1 2 
pllm - S(µ 1 , . .. ,µm +,)= hm --;S(µ 1 , .. . ,µm +,)+a I 
N • oo N N • oo N 

(4.8) 

and 

det [S*(µ 1 , ... , µ,,,+,)-Jc;l] # O <c:- det S (µ 1 , ... , µ111 +,) # O 

det [S*(,1.i 1 , ... , µ 11,+,)- ,1,J] = O <c> detS (µ 1 , ... , µm+,) = O 

Hence it follows that the singularity test of Theorem 3.1 must be performed 
on the sequence analogous to (3.4) where S(µ 1 ... µm+,) is substituted by 
S*(µ1 •·· µm+r)-JcJ]. 

5. TECHNICAL APPLICATIONS 

This section is devoted to a brief review of two applications to industrial 
systems of the identification procedure described in previous sections. 

In these cases the technique was employed completely, i.e. models were 
directly developed from experimental i/o data. More detailed results can be 
found in [16] and [17]. 

CASE 1: A distillation column 

In the plant, schematically shown in fig. 7 the refinement of row benzol 
(benzene 87%, toluene 11,8%) into pure benzol (benzene 99,8%) is performed. 

The only column B, supplied from the bottom of the column A by a constant 
flow, was the object of the experiments. The finał goal was the dynamie regu
lation of the column behaviour by acting on the reboiler steam valve; as 
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STEAM 
SUPPLY 

Fig. 7 

controlled variables the top distillation flow and the bottom plate temperature 
were chosen. Starting from an equilibrium condition, an impulse-like pertur
bation (three minutes long) was given and output variables values were re
corded at a sampling interval of 30 sec. for a period of 20 minutes. 

Figures 8,9 show the drops for the structure determination (i.e. structural 
indexes) without and with eigenvalue compensation (see section 4). 

On the basis of the resulting structural indexes v 1 = v2 = 2 the parametric 
estimate gave the (A, B, C) state-space matrices. 

Figures 10, 11 show the output variables patterns from real system and model, 
respectively. 

CASE 2: A power station 

The application was concerned with the termie part of a thermoelectric 
power plant. The scheme is plotted in fig. 12. 
where 
1-2-3 
4 
5 

superheaters 6 condenser 
postheater 7 drum 
gas damper 8 burners 

In this case the controlled variables were 
T., P. superheat steam temperature and pressure 
Tr reheat steam temperature, 
and the input manipulated variables were 
qF fuel flow 
qA air flow 
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2 4 

qd super heater flow 
8r turbine valve opening 
YD dampers position. 

projection sequence of chain 1 

/top distillation flow/ 

-<>- w i thou t da ta com pensa tion 

~- with e ig envalu e compensa t 

6 8 cha in le ngth 

Fig. 8 

The original data records consisted of sequences of norma! operating 
values with a sampling period of IO sec. However, the identification procedure 
was performed on a reduced data set obtained by substituting every consecu
tive 12 values with their mean so that an equivalent sampling period of 120 
seconds was obtained ; thus the samples were reduced to 183. Four steps were 
performed on the data: 1) noise variance estimate, 2) model structure identifi
cation, 3) parametric estimation, 4) initial state and output sequences recon
struction according to the formulas given in sects. 3, 4. 
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2 4 

proj ection seque nce of cha in 2 

/bottom plate temperature/ 

--O-- without da ta compensation 

--c- with e igenvalu e compensat 

6 8 cha in length 
Fig. 9 

Since no a priori knowledge was available about the noise level on each 
variable, the assumption of the same amount of additive noise on each variable 
(i.e. the same standard deviation) was made. 

The model structure resulted in an interconnection of three 3rd order 
dynamie subsystems relative to P„ Ts and Tr . Moreover the data analysis 
suggested the introduction of an algebraic input-output link, so that the model 
outcame not purely dynamie. 

The results of the output sequences reconstruction (solid lines) are shown 
in figs. 13-14--15 in a normalized scale. 

6. AN ECONOMIC APPLICATION 

In macroeconomic applications the black-box identification approach 
suffers some difficulties and limitations fundamentally because the available 
records are extremely short if compared with the relative necessary detail 
of any model useful for a concrete policy implementation. 
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On the other hand, even if data sequences of remarkable length are dispo
sable, they are produced over such a number of years that one can't be sure 
about model structure and/or parameters durability (i.e. time invariance) 
because of possible institutional modifications. 

Consequently one is compelled to use carefully every a priori knowledge 
about the economic · system in order to come to a realistic model which justi
fies historical data. 

In the following application, a forecasting quarterly model of the Italian 
Economy (the LINK project model) was the starting point. Since our ultimate 
goal was an optima! tracking algorithm synthesis for same monetary varia
bles, the equations of the monetary sector were selected by means of a proper 
exogenization procedure. The form of such (nonlinear) equations is the follo
wing: 

Behaviour equations 
CIR=f1 (CIR_1, GNPP, Q1 , Qz, Q 3 ) 

RLTB =fz(RB_;, RLTB_;, DPOT/D_i) 
DCC = j 3(GNPP -i, RLTB _;) 
DCCCR=f4 (GNPP _i, RLTB_J 
DR =f5 (GNPP _i, RLTB_;) 
DRCR =f6 (GNPP _;, RLTB_;) 
RES =fiDCC, DCC_ 1 ) 

Definition equations 
D =DR+ DCC 
UR = UBAS- CIR 
RR = RR_ 1 + 0.225(DCC-DCC_ 1- DCCCR + DCCCR_ 1 )+ RES 
DPOT = DCC+ (l/0.225) (UR-RR) 
where subscripts are for time-lags. 

Endogenous variables are: 
CIR currency outside banks 
RL TB interest rate on long-term bonds 
DCC demand deposits with Commercial Banks 
DCCCR demand deposits with "Casse Risparmio" 
D total deposits 
RR required reserve of Commercial Banks 
DPOT potentia! deposits 
DRCR saving deposits with "Casse Risparmio" 
DR time deposits with Commercial Banks 
RES residua! required reserves over the sample period 
UR unborrowed reserves 

Exogenous variables are: 
GNPP inflated gross national product at market price 
RB discount rate 
UBAS unborrowed monetary base 
QI seasonal dummy for the 1st quarter 
Q2 seasonal dummy for the 2nd quarter 
Q3 seasonal dummy for the 3rd quarter. 
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In order to overcome the above mentioned di fficulties, a model sui table for 
control was obtained according to the following steps: 

1) original (nonlinear) model linearization, 
2) parameter estimation from historical quarterly data covering the period 

1962.1-1973.4. A first difference model was obtained, 
3) performance index and nominał paths (i.e. desired trajectories) choice, 
4) linear model re-ordering to obtain an "essential" input-output submodel, 
5) essential i/o submodel transformation into a state-space form. 
Steps 1 and 2 led to the usual structural equations: 

Qy (k) = I'w (k) (6.1) 

where y(k) is the vector of the endogenous variables first differences at time t 
and w(k) is the vector of the predetermined (lagged endogenous and current 
and lagged exogenous) variables first differences. Q and r are real matrices, 
Q being non singular. 

Step 3 is a very crucial one. From the economic point of view, since a qua
dratic function of a selection of exogenous and endogenous variables (i.e. 
instruments and intermediate objectives) was assumed as performance cri
terium, careful choice of the weighting matrices is to be done to take into 
account the policy-maker priorities. 

From the computational point of view, complexity was reduced keeping 
in mind that only the interconnected part of the model affected by variables 
appearing also in the performance index has to be considered for control 
implementation. This part is what we mean for "essential" submodel and, 
in our case, it was obtained by an ordering procedure (Step 4) of equations 
(6.1) which !cd to the scheme shown in fig. 16. 

u (k) y 1 (k) -- Sł • 

y2 (k) _ -
Sz --

Fig. 16 

where 

y 1 = [CIR, RLTB, DCC, DCCCR, D, RR, DPOTf 

Yz = [DRCR, DR, RES, U Rf 
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Since DCC (or D) and RLTB were chosen as controlled variables, the only 
essential part S 1 was considered in next steps. In particular step 5 reduces to 
the application of procedure of sect. 3 to a polynomial form 

P (z) y 1(k) = [P(z) D + Q (z)] u(k) (6.2) 

following from (6.1) by simple algebra. 
The finał state space model resulted in a 42th order quadruplet (A, B, C, D) 

with structural indexes v,=6, i= I, ... , 7. 
The variables UBAS and RB were considered as manipulated variables, 

i.e . as monetary instruments. Some computational results for different values 
of weighting matrices in the performance index 

N N 

J = I llz;-z;jlQ + I lls,-s;IIR, 
i= l i = O 

where 
Q ~ O, R > O, s = (RB, U BAS)T, z= (RLTB, D)T 
Z;, s, nominał values, 

are collected in the trade-off curve of fig. 17. 

RM S [D] 

Q=DIAG [10 8, q] 

IO 

Fig. 17 
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In figs. 18-19 nominał and optima! trajectories of instruments and target 
variables are reported for Q = diag(l0 8 , 10), R = diag(l0 8 , 1). 
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SUMMARY 

Mathematical system description has become a necessary tool for technicians 
and economists for developing efficient analysis criteria and designing suitable 
interventions. Because of the increasing complexity of the systems on which 
one must operate, methodological approach to model building, such as iden
tification techniques, are playing a fundamental role. 

Although the model purposes in technological and economic areas are essen
tially the same (i.e. simulation, forecasting and synthesis of control strategies), 
some important differences are present in the application of a given method. 
In particular the amount of available experimental data, the experiment 
design possibility, the easiness of specifying the correct control objectives 
are relevant elements for suggesting the way how a given set of theoretical 
results can be usefully applied. 

To contribute to focus this aspect, in the paper a unified identification 
technique for linear time-invariant systems is used for modelling both some 
chemical processes and a monetary sector of the Italian macroeconomic 
system. 

Some experimental results are evaluated and possible further developments 
are indicated. 
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