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SIGNAL FLOW GRAPHS AND STRUCTURAL PROPERTIES OF 
LINEAR SYSTEMS 

1. INTRODUCTION AND PROBLEM STATEMENT 

Let us consider a dynamie, continuous, linear, time-invariant, n-dimensional 
system: 

i= Ax+Bu 
(1) 

y=Cx 

with nb inputs u, and nc outputs Y;. 
Assuming u, = O for t < O, i= 1, 2 , . .. n, we can apply the Laplace transfor­

mation to both sides of eq. (1) which yields: 

sX(s) = AX(s)+X0 +BU(s) 
(1') 

Y(s)=CX(s) 

where X(s)= .<l' [x(t)]; Y(s)=.<l'[y(t)] ; U(s) =.<l' [u(t)] ~and where X 0 is 
the initial state vector. 
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We can interpret X 0 as the 2"-transform of an n impulses input vector: 
LI; = xi(O)o(t) (dumny or fictitious inputs), so that the actual inputs u1 (acting 
via the transfer constants bj;) and the dummy inputs x,(O)o(t) (acting via 
unit transferences) constitute the so called generalized input. 

Once we have taken into account the dummy inputs, the system is represen­
ted by the signal flow graph in fig. 1 (the graph of the figure refers to only 
one state component; it has to be connected to other similar graphs correspon­
ding to other state components, in order to get the signal flow graph of the 
whole system). 

The system we consider can be characterized by means of the usual ioput-

-••:(•:) :•::::j:~:)) 8 ~ I~ (s)} = {:t~ y/2s'}. (2) 

det(sl-A) L hk ;.., , 

2., rx,s (rx" = 1) 
r = O 

where k is the input index (k = 1, 2, ... nb) and h is the output index (h­
= l, 2, ... nc)-

It is also convenient to define the input-state transfer matrix : 

1

11~1 (r) ,l 
[ad '(sł - A)] B L- Pu, s f 

Wb(s) = J = {f-Y;%(s)} = '-~-,0
- -

det(sl -A) ~ ,. ( 
2., a, s rx" = 1) 

r=O J 

ar,d the dumm)' input-output transfer matrix: 

1

1J - l ·, 
,.--,. (r) r 

C ad· si A 2., ,1J.; s 
Wc(s) = [ J ( - )] = {W,~(s)} = r-o j 

det(sl-A) . ~ ,. 
.:.., a, s 

t_ , = O 

where i is the state index (i= I, 2, ... n). 

(rx" = J) 

The rnatriccs Wb and we are connected to the matrix W: 

IV (s) = CWb(s) = Wc(s) B 

(3) 

(4) 

(5) 

however, same advantages can be obtained by adopting the matrices Wb 
and we for the sludy of the system since they can be used for evaluating the 
controllability and the observability of the system. 

In this paper, controllability and observability criteria for multi input­
-multi output systems will be presented which generalize a controllability-
-criterion given by the authors [I, 2] for single input-single output systems. 
These criteria refer to the rank of suitable matrices formed with the coefficients 
p~',/ and qf.'? of the matrices W 0 and we_ Various signal flow graphs which 
correspond to the "canonical" structures of the system are then introduced 
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and their barnch-transferences are related to the numerator and denominator 
coefficients of the rational functions in Wb and WC, i.e. to the constants 
p~'i!, ąt> and a,. Sui table computation procedures will finally be suggcsted 
for evaluating the above mentioned coefficients starting from the ABC repre­
sentation of the system. 

2. CONTROLLAB1LITY AND OBSERVABILITY CONDITIONS 

Consider the system A, B, C and assume that x (O)= O. Let u (t) be an 
input function and denote by x(t) the corresponding trajectory in the state 
space for t ~ O. The system is not cornpletely controllable if and only if there 
exists a constant, nonzero vector K = (k 1 , k 2 ••• kn) such that for any input 
u(t): 

Kx(t) = O Vt > O (6) 

In terms of L-transforms, condition (6) can be set in the form: 

KX(s) = O Vs (6') 

Making use of (3), (6') can be rewritten in the form: 

(6") 

i = l k=l r =O 

lhat has to hold for any component Uh) of the input U(s). 
This condition can be easily restated in terms of the rank (which has to be 

< n) of the matrix: 

whose blocks P,, are n X n rnatrices defined as IIP k IIA" ~ p<,:- 1
l 

The complete controllability condition is therefore: 

ran.kP = n 

(7) 

(8) 

For the single input case, P is a square n x n matrix, whose elements are the 
coefficients of the numerator polynomials in the input-state transfer function 
W0(s). 

Fig. 2 and related formulae refer to the case of a 3rd order, 2 inputs sy­
stem. 

At this point, the observability condition could be obtained by resorting 
to the duality. If we are interested in a direct proof, we have to consider the 
transfer function w c(s), that connects the dummy inputs (or the initial values 
of the state components) to the outputs. Observability is equivaleni to the 
existence of an one-to-one correspondence between the points of the state 
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Fig. 2 

space (the set of impulsive dummy inputs) and the consequent free evolutions 
of the outputs (forced evolution due to the dummy inputs). A matrix: 

(9) 

has therefore to be considered, formed by n x n blocks Qh defined as [iQh !I;." = 
= qt,- 1 > and the complete observability condition is stated as: 

rankQ = n (10) 

For the scalar output case, Q is a square n X n matrix whose elements are 
the coefficients of the numerator polynomials in the dummy input-output 
transfer function. 
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a--11 C·· 
I J 

{

sX = AX +X0 

Y=CX 

Fig. 3 and related formulae refer to the case of a 3rd order, 2 outputs sy­
stem. 

The adopted approach presents some advantages we will focus below: 
l. Controllability and observability analysis is performed by using rnatrices 

P and Q whose elements are coefficients of "meaningful" transfer functions. 
2. The suggested criteria are useful from a clidactic point of view, because 

they are based on the intuitive notions of controllability and observability 
and on well known techniques of 2-transform. 

3. When each state component exhibits an intrinsic meaning (e.g. a physical 
rneaning or an economical rneaning and a transforrnation into physically or 
economically rneaningless state components can be unconvenient) the sugge­
sted approach allows us to distinguish very easily between the controllability 
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of the single state component and the controllability of the whole state space. 
ff a single state component is not controllable, the numerator of the correspon­
ding input-state transfer function is zero and P has a null row. Ir a single 
state component can be controlled but not independently by other compo­
nents, the corresponding row of P is nonzero, cven if it is not linearly inde­
pendent on the other rows. Such ditferencc is very important in many "a 
priori" problerns (structural identifiability, identification experiment design, 
selection among mo<lels of different complexity etc.). As is well known, these 
problems arise if the model structure is given, i.e. whcn it is known if an 
element of A, B or C matrices is equal to O or not, but its value, if differing 
from O, is not yct known or it is not explicitely takcn into account. Similar 
considerations can be made with reference to the observability problem. 

4. It is easily evaluated the dimension of the subspace controllablc by 
each input (from the rank of P 1, P1 , ... P0 b) and of the subspacc observable 
from each output (from the rank of Q,, Q2 ••. Q»J-

J. THE ELEMENTS OF P AND Q AS RRANCH TRANSFERENCES 
OF SIGNAL FLOW GRAPHS 

For the sake of simplicity (in particular for' graphical representation pro­
blems) only single input-single output systems will be considered in this 
section. The specification h ~ I and k = I will be thereforc omitted. 

l,et u~ consider the structure of the input-state tramfer functions (right 
hand mem ber in (3)). The i-th component of the state vector, X;, can be ob­
tained as a Jinear combination with coefficients 1f> (r=O, I, ... n- I) of 
a function obtained from the input via the transfer function: 

de1(sl-A) I cl.,.s"" 

(a.,= I) ( I I) 

r~o 

and its first n-1 derivatives. The combination is graphically represente<l in 
fig. 4 for the case n= 3 (with x = O for I= O). 

The system corresponding to the signal flow graph in fig. 4, which has 
the state vector z = (z 1 , z1 , z3)T as phase variables vector, is certainly control­
lable. 

On the other hand the initially considered system, having x = (x, , .,;2 , x 3)r 
as its state vector, is controllable if and only if the z • X transformation, 
represented by the matrix P, is a bijection: in such a case x can be considercd 
as a state vcctor also for the system in fig. 4. 

Let S be the system assigned via matrices A, B and C; the grapb in fig. 4, 
having vector z as state vector, will be called controllable associated structure 
S,". Clearly, S„ is equivalent to S if and only if S is ocntrollable too. Anyhow, 
a one-to-one correspondence can be set up between eac h S and i ts S ca. 
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Since matrices P and C and vector a formed by the ocefficients a 0 •• • an- i 

supply the same information about the dynamics of S supplied by matrices 
A, B and C, Sca can be therefore considered as an equivalent description 
of S. 

The consideration of S ca be ars the following features: 
l. The information about the structural properties of the system, is disag­

gregated. In fact the information about stability of S is contained in a vector 
(a) instead that in a matrix (A) and it is completely separated from the in­
formation about controllability, that is supplied by matrix P (instead than 
by a matrix formed by manipulating A and B). 

2. On the other hand, computing a and P from A and B requests only arith­
metic operations (as for computing the usual controllability canonical repre­
sentation) but it bears the above mentioned disaggregation advantages which 
can be also obtained by computing the Jordan canonical form (that implies 
the evaluation of the eigenvalues of the system). 

3. The structure Sca is redundant (in fact it implies n2 +2n coefficients) 
but its redundancy is not greater than the one of the assigned representation 
of S via A , B and C. 

4. The usual controllability canonical form can be easily obtained from 
structure Sca as shown in fig. 5. The transfer constants connecting each zi 
to the corresponding addendum of y are the coefficients y, = y11 in formula 
(2). Vector y = (y,) (r = O, I ... n-1) is connected to Pand C via the relation: 

y=PTC (12) 

Obvious duality considerations suggest the definition of the observable 
associated structure S 00 , that is represented in fig. 6 for the case of a 3rd order 
one-input one-output system. Structure S00 is characterized by vector B, 
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Fig. 5 

matrix Q and vector a; its state variables z, (cf. fig. 6) cannot be considered 
as phase variables; S0 a is always observable and it is therefore equivalent to S 
if and only if S is observable too. The main features of S0 a are similar to the 
ones of Sca; in this case the information about observability is supplied in 
a direct way; the computation of the observability canonical form can be 

u 
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y 

1 

Fig. 6 
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implemented as shown in fig. 7. The input transference vector fJ of the obser­
vability canonical form is connected to B and Q via the relation: 

fJ = QB (13) 

Bath associated structures Sca and S 00 (cf. fig. 4 and fig. 6) can be consi­
dered as the cascade combination of a dynamie system and an instantaneous 
one. The dynamie system connects the input to the state z in S ca and the dummy 
inputs (acting on each ż;) to the output in Sca · The structure of said systems 
is very simple. In fact they are formed by n cascaded integrators, with feed­
back branches converging only to the input of the first integrator or diverging 
only from the output of the last one. Correspondingly the state matrix A" 
of S ca is a row companion matrix and the state matrix A O of S00 is a column 
companion matrix. 

The instantaneous system is formed by two parts, described by matrix P 
and vector C in S ca and by vector B and matrix Q in Soa · 

Computation methods for evaluating o: and P from A and B or o: and Q 
from A and C will be presented in section 4. 
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In the following part of this section further considerations will be developed 
about the possibility of disaggregating information regarding controllability 
and observability in the associated structures Sca and S 00 • 

Let us refer to formulae (3) and (4) and in particular to the numerators of 
Wb and W c. As is well known, ad j (si - A) can be set in the form: 

n-1 

adj(s1-A)= I MJ (]4) 
,~o 

where: 

M 11 _ 1 = 1 ; M 11 _ 2 = A + a11 _ 1 1 ; M 11 _ 3 = A 2 + a11 _ 1 A + a11 _ 2 1 ; ... M O = 

(15) 

(the a; being the coefficients of det (sł -A) accordingly to the previously 
used notation). 

By equating the numerators on left and right hand sides of (3) and making 
use of (14) and (15), we obtain : 

p\~ 

M,B= r=0,1 ... n-1 (16) 

P
(r) 
Il 

In the same way, by equating left and right hand sides of eq. (8) we obtain: 

CM _ [ (r) (r) (r)J ,.- q\q2 ... q,, r=O , l ... n-1 (17) 

Equation (16) all o ws us to su bstitute each p~'> branch in the signal flow 
graph of Sca by means of a suitable combination of b; and mf;> branches. 
The corresponding manipulation of the graph is represented in fig . 8 for 
a second order system (the branch transferences p;'> are indicated as p;,, + 1) . 

Fig. 8a) corresponds to the structure of fig. 4; after the sim ple manipulation 
of fig. Sb), each p~'> branch is decomposed according to eq. (16) and fig. Sc) 
is obtained. Finally, m;'/ and C; branches are combined into the q5'> branches 
of fig. 8d) according to eq. (17) (ąT are indicated in the figure as q,+1. ;), 

The four signal flow graphs of fig. 8 are clearly equivalent; the graphs of 
fig. 8a) and Sb) exhibit in a direct way the information concerning the controlla­
bility (because each elerr.ent of P corresponds to the transference of a branch); 
the graph of fig . Sc) exhibit directly the information concerning observability 
(via the branch transferences qf'>); in the graph of fig. Sc) the controllability 
analysis can be performed with reference to the subgraph formed by b; and 
ml'/ branches and the observability analysis can be performed with reference 
to the subgraph formed by the same m\'./ branches and by the c; branches. 

The corresponding manipulations for the signal flow graph of S00 are 
represented in fig. 9 for the same second order system. 
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4. COMPUTATION PROCEDURES FOR P AND Q 

4.1 GENERAL CONSIDERATIONS 

This section will be dcvoted to computation procedures for Lhe matrices P 
and Q slarting by the given matrices A, B and C. The features of the described 
procedures will be compared to the cornputation methods usually adopted 
for evaluating the controllability matrix (A, AB, A2 B ... A"- 1 B) and the 
observability matrix (Cr, Arcr, (Ar)2cr ... (Ar)"- 1 cr). 

J\ first direct procedure for evaluating P and Q can make use of (15) for 
computing Mi from A and of (16) and (17) for computing P from M; and B 
and Q from M, and C. 

Tbis procedure can practically be considered so cumbersome as the one 
for computing the usual controllability and observability matrices. In both 
cases the powers of A are to be computecl and multiplied by B or C. The 
computation of P and Q requests also a !inear combination of the powers 
of A, in order to compute M;. This addilional compulation is not very heavy 
but it bears the advantage that P and Q can be used also for evaluating the 
system transference. 

On the cther hand it can be noted that the analytical structure of P and Q 
is not necessarily more complex than the cne of usual controllability and 
observability matrices, as eą. (15), (16) and (17) could suggest. 

Let us consider, for in stance, the system in fig. 1 O. The analytical structure 
of P can be considered simpler tban the one of (B, AB ... A - ł B) because 
its elernents are connected in a rnore direct way to the system paramcters. 
This situation can not be considercd as dcpending on a parfa;ular feature 
of the graph of fig. 10; in fact the corresponding scheme is a very common 
one and it is not of a canonical type (it does not corrcspcnd to the structures 
of fig. 4 or of figure 6). 

lt has to be noted, however, that the above considerations refcr to the 
finał structure of Pand of the contro!lability 1natrix but not to the computation 
procedurc. ln fact the elements of P can be easily evaluated by direct inspection 
or by using Mason's formula that can be compnted in a very simple way for 
the graph of fig. 10. The use of eq. (15) and (16) can result more tedious. 

Therefore alternative computation methods have been studied and will be. 
presented in 4.2 and 4.3. The first method preser.ts the cornputation of the 
input-state and state-output transfer functions via the r,Jason's formula; 
the second one is based on the direct evaluation of the transfo, i11ation frorn 
the assigned state variables to the ones of the associated structure. 

4.2 METHOD BASED ON MASON'S FORMULA 

Several implementation procedures of Mason's formula have been pro­
posed in the literaturc (cf. for instance [3], [4] and [5]). We sketch here briefl.y 
a method already published by the authors [6], which refers to the conenction 
matrix of the signal flow graph connecting a source i to another node o. 
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Recall that to any signal flow graph C with n nodes a n X n "connection 
matrix" C is associated, whose elements IIC 11,s are 1 if G contains a branch 
from the r-th node to the s-th node and O otherwise. 

C belongs to the lattice fL7 of n x n ma tri ces with elements in the boolean 
algebra {0,1}: obviously M ;;;; C, M in ftl, means that JIM 11,s;;;; IICll,s r, s = 
= 1, 2, ... n. 

Introduce now the subset Cf! of fL7 

c = { c~ , c~ , ... } 
whose elements meet the following conditions: 
i) C_; ;;;; C 
ii) each column and each row of c; contains at most one element equal to 1 
iii) if the k-th row (column) of q, k =I= i (k =I= O) is zero, then the k-th column 

(row) is also zero; if the i-th row is zero, the o-th column is zero and 
viceversa; the i-th column and the o-th row cannot be zero. 

Each C_; can be thought as the connection matrix of a suitable subgraph 
of G: such subgraph is formed, beside isolated nodes, by non touching loops 
and selfloops and by at most one, if any, i-o path that does not touch loops 
and selfloops of the subgraph. 

By neglecting isolated nodes, an one to one correspondence can be set up 
between the elements of <t and the numerator and denominator addenda 
of the Mason 's formula 

I (- lYPkLj, ... Ljp 

1+ I(-1/Lh ... Ljd 
(18) 

where Pk is the transference of the k-th path joining node i to node o, Li,, is 
the loop transference of the J„ loop, and summations are extended to the pro­
ducts PkLi1 ••• LiP and Li1 • • • Lią which do not contain transferences of touching 
or/and loops paths. 

Numerator and denominator addenda of Mason's formula are therefore 
obtained by multiplying transferences of arcs which correspond to 1-elements 
in each matrix q. The sign of each addendum can be evaluated from the 
structure of matrix O; , following procedures presented in [6]. 

lt is worthwile to observe that signal flow graph we are dealing with contain 
constant transference and l/s transference branchs, so that numerator and 
denominator addenda in (18) have Ks-1c structure, k is the number of interga­
tors and K is the product of constant transferences bi, uu, c1 the subgraph 
related to PkLi1 •• • Li,1 contains. 

By associating addenda with the sorne power s-", one gets the trasference as 

n 
(19) 

I K~i 
k=O 
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and by multiplying numerator and denominator by s" 
" I, Kksn-k 

k=l 
n (20) 
I, K~s•-k 

k=O 

Coefficients Kk are the elements of P matrix (Q matrix) if the signal flow 
graph corresponds to the input-state relations (dummy input-output rela­
tions)*. 

Starting from the graph of fig. 1, the detailed proccdure goes on as follows: 
1) delete the ci.i branchs, if input-state relations arc needed for getting P 

matrix; 
l ') delete the bii arcs, and introduce branchs and nodes for the dummy 

inputs, if dummy input-output relations are needed for getting Q matrix; 
2) for each single input-single output signal flow graph (in case I , the 

outputs are the state components; in case I', the inputs are the dummy inputs) 
construct the connection matrix C and matrices c;; 

3) select CJ matriccs corresponding to numerator addenda in Mason's 
formula and evaluate the number k of integrators 

4) obtain the numerator addenda in (18) (whosc sing can be determined 
following the procedures described in [6] and compute Kk coefficients, wich 
arc elements of P in case 1 and elcments of Q in case l '. 

4.2 METHOD FOR DTRECTLY DERlYING P MATRIX 

Consider the controllability structure S0 c of fig. 4, wich rcfers to a single 
input-single output system 

i=Ax+Bu (21) 

Let 

det(sl-A)="'o+a 1 s+ +ix11 _ 1 s" - 1 +s11 

and introduce the matrices 

A = C 

O 1 O 

O O 1 
o 
o 

1 

- "'o - a 1 · · · - a" - 1 

B = C 

o 
o 

o 
1 

*> The integrator number k can be evalnated by properly reordering the nodes. We suggest 
the following procedurc 
1 - stale variables and the•r firs t derivatives an: labeled hy even numbers (2, 4 .. . 211) and 

by odd numbers (1, 3 ... 211-J) resoectively (if ns::cessary, a node splitting has to be 
performed, as in fig. 6). 

2 - lnputs, outputs, dummy inputs are labeled by the numbcrs 211+1, 2n+2 .. . 
In sucha way in C and in C1 matrices, integrators corrcspond to upper diagonal element 
in 1st, 3rd, ... (211 , l)th rows. 
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Since the vector z satisfies the relations 

z=Acz+Bcu 

x= Pz 

we obtain 

(AP-PAc) z+(B-PBc) u= O 

(22) 

(23) 

Controllability of S0 c allows us to derive equations in the unknown matrix P 

AP-PAC= o 

B-PBc=O 
(24) 

Denoting by col1cM the k-th column of a matrix M, (24.2) and the structure 
of Be matrix imply 

col11 P = B 

On the other hand, by the structure of Ac matrix, we get 

col,,(PAJ = -0::11 _ 1 col„P+col,,_ 1 P 

col,,_ 1(PAJ = -a
11

_ 2 col
11

_ 1 P+col
11

_ 2 P 

coli(PAJ= -o: 1 col2 P+col 1 P 

coi 1(PAJ = -a0 col 1 P 

Since the relation 

colk(AP) = A coI1c P 

hold for k = l , 2, .. . n, equation (24.1) gives 

col,, _1 P = AB+a,,_ 1 B 

col
11

_ 2 P = A col,,_ 1 P+a,,_ 2 B 

col 1 P = A col 2 P+a1 B 

(25) 

(26) 

Since (26) is easily solved by recursion, (25) and (26) give the (unique) 
matrix P 'Ne are looking for. 

5. CONCLUSIONS 

The analysis of the dynamical proterties of a linear system described by 
the A, B, C matrices has been performed by resorting to the matrices P and 
Q such that: 
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l) the controllability condition is 

rank P = n 

2) the observability condition is 

rank Q=n 

3) the input output transfer matrix can be set in the form: 

CPK KQTB 
W(s) = - -- = - -­

det(s -A) det(s -A) 

where Kand K are nnb X nb and 
defined by: 

H o ... o 
o H o 

nc X nnc polynomial matrices 

HT o o 
o HT o 

respectively, 

K= K= H = li I s . . . s" - i li 

o o H o o HT 

The interpretation of the elements of P and Q as branch-transferences of 
signal flow graphs of suitable "canonical" structures associated to the system 
is then suggested. 

Finally some computation procedures are suggested for evaluating P and Q 
from the A, B, C representation of the given system. 

The advantages of the use of P and Q are underlined; in particular the 
consideration of P and Q has been proved very convenient for the analysis 
of some a priori identifiability problems (cf. e.g.[7]) previously studied by 
the same authors in a more cumbersome way [8]. 
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SUMMARY 

The paper deals with the cvaluation of structural propcrties of continuous, 
linear, time invariant systems by resorting to suitable matrices formed by 
the numerator coefficients of the transfer functions connecting the inputs 
to the state components and suitable dummy inputs to the outputs. Previous 
results obtained by the authors regarding controllability of single input-single 
output systems are extended to the observability analysis and to the case of 
multiinput-multioutput systems. 

The elements of the above mentioned matrices arc then interpreted in terms 
of branch transferences of signal flow graphs, corresponding to conveniently 
suggested "canonical" forms. 

Some methods are presented for the computation of the above mentioned 
matrices, with reference also to the signal flow graphs of the input-state-output 
relations. 
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