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SIGNAL FLOW GRAPHS AND STRUCTURAL PROPERTIES OF
LINEAR SYSTEMS

I. INTRODUCTION AND PROBLEM STATEMENT

Let us consider a dynamic, continuous, linear, time-invariant, n-dimensional
system:

X =Ax+Bu
(D
y=Cx
with 7, inputs ; and n, outputs y,.
Assuming u1; =0 for t <0, i=1, 2, ... n, we can apply the Laplace transfor-
mation to both sides of eq. (1) which yields:

sX (s) = AX (s)+ X, +BU (s)
Y (s) = CX (s)

where X (5)=Z[x()]; Y(s)= ZLy()]; U(s)=Lu()] jand where X, is
the initial state vector.

(1)

A

from u; bi

(] “‘I»}nb)
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We can interpret X, as the ¥-transform of an » impuises input vector:
A; = x,(0)0(¢) (dumny or fictitious inputs), so that the actual inputs w; (acting
via the transfer constants b;;) and the dummy inputs x,(0)4(t) (acting via
unit transferences) constitute the so called generalized input.

Once we have taken into account the dummy inputs, the system is represen-
ted by the signal flow graph in fig. 1 (the graph of the figure refers to only
one state component; it has to be connected to other similar graphs correspon-
ding to other state components, in order to get the signal flow graph of the
whole system).

The systern we consider can be characterized by means of the usual input-
-output transfer matrix:

Cladi(s - )1 P
adj (s B B
T detGI—A) = W)} =y (2)

Z 'xrsr (Ot” = 1)
;)

W(s)=

r

where k is the input index (k=1,2,...n,) and A is the output index (h—
=1,2,... 8.
It is also convenient to define the input-state transfer matrix:

I P
= {Wi(»)} = ,’f— )
L ZO o, 5 [ (o, = 1)

4

B
Wi(s) = Lad i(sT—A)]
" det(sI - A)

and the duemmy input-gutput transfer mairix:
n—1i N

c C [adj (SI A)] [T LT lrgo t‘f}:)hr -
WO~ Tfair—ay T @
2 %" (o, = 1)

where 1 is the state index (i=1, 2, ... n).
The matrices W’ and W< are connected to the matrix W:

W (s) = CWs) = W(s)B (5)

however, some advantages can be obtained by adopting the matrices W?
and We for the study of the system since they can be used for evaluating the
contrcllability and the cbservability of the system.

In this paper, controllability and observability criteria for multi input-
-multi output systems will be presented which generalize a controilability-
-criterion given by the autliors [1, 2] for single input-single output systems.
These criteria refer to the rank of suitable matrices formed with the coefficients
P and g¢y of the matrices W* and W*. Various signal flow graphs which
correspond to the “canonical” structures of the system are then introduced
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and their barnch-transferences are related to the numerator and denominator
coefficients of the raticnal functions in W? and W¥¢, ie. to the constants
2%, g and «,. Suitable computation procedures will finally be suggested
for evaluating the above mentioned coefficients starting from the 4ABC repre-

sentation of the sysiem.

2. CONTROLLABILITY AND OBSERVABILITY CONDITIONS

Consider the system A, B, C and assume that x(0)=0. Let u(z) be an
input function and denote by x(¢#) the corresponding trajectory in the state
space for ¢ = 0. The system is not completely controllable if and only if there
exists a constant, nonzero vector K= (k,, k; ... k) such that for any input

u(t): )
Kx(t)=20 V>0 (6)
In terms of L-transforms, condition (6) can be set in the form:
KX(s)=0 Vs (6"

Making use of (3), (6") can be rewritten in the form:

n ny n—1
1
KW'(s)U(s)=- —— kipPsTUds) =0 6"
(5) U (s) det GT—A) % E E 1 Pic 8" Ui(s) (6")
i=1 k=1 r=0

that has to held for any compenent U(s) of the input U(s).
This condition can be easily restated in terms of the rank (which has to be
< n) of the matrix:

P={p|P,|..|P,} (7)

whose blocks P, are nxn matrices defined as [P/, 2p% "
The complete controllability condition is therefore:

rank P =n (8)

For the single input case, P is a square » X n matrix, whose elements are the
coefficients of the numerator polynomials in the input-state transfer function
WE(s).

Fig. 2 and related formulae refer to the case of a 3rd order, 2 inputs sy-
stem.

At this point, the observability condition could be obtained by resorting
to the duality. If we are interested in a direct proof, we have to consider the
iransfer function W€(s), that connects the dummy inputs (or the initial values
of the state components) to the outputs. Observability is equivalent to the
existence of an one-to-one correspondence between the points of the state
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sX =AX+BU

bl! alj
P+ s st o P el 4 piEs”
X)) =g ————— Ui+ 3 ) U,(s)
§ 4o, s oy s+ s 4oy sty stay
( 1
S Pl PusHpiyst o PR phIstpedst
| Xz(b) =73 2 L 1(5)+ 3 P UZ(‘S)
S5 “r”*lzs +OCIS+OCO 5 +0€25 +0t15+0c0
Koy = BEPNEDRS o PRERISEIES
) S3+oc25'2+cxls+cx0 ! ?

s3’—|-oc2 sz+ot1 s+ay
P =03 P:=PY pis=p" Pu=p7 pis= PYY s =pts
P=1p, = p(zolj P2z = Pg.lll Pzs = p(?,zl} Pra= pg,oz’ Pas = Pg,lz) Pz = ng‘a)
P3; = Pfsol] P32 = Pg? P33 = P.(xzt-) Pss = Pgoz) P3s = P(slz) Pis = szz)

Fig. 2

space (the set of impulsive dummy inputs) and the consequent free eveolutions
of the outputs (forced evolution due to the dummy inputs). A matrix:

Q = {QIIQZI Qm‘} (9)

has therefore to be considered, formed by n < n blocks @, defined as |Q, ], =
=g~V and the complete observability condition is stated as:

rank Q = n (10)

For the scalar output case, Q is a square n X n malrix whose elements are
the coefficients of the numerator polynomials in the dummy input-output
transfer function.
3*
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Fig. 3

Fig. 3 and related formulae refer to the case of a 3rd order, 2 outputs sy-
stem.

The adopted approach presents some advantages we will focus below:

1. Controllability and observability analysis is performed by using matrices
P and @ whose elements are coefficients of “meaningful” transfer functions.

2. The suggested criteria are useful from a didactic point of view, because
they are based on the intuitive notions of controllability and observability
and on well known techniques of #-transform.

3. When each state component exhibits an intrinsic meaning (e.g. a physical
meaning or an economical meaning and a transformation into physically or
economically meaningless state components can be unconvenient) the sugge-
sted approach allows us to distinguish very easily between the controllability
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of the single state component and the controllability of the whole stute space.
If a single state component is not controllable, the numerator of the correspon-
ding input-state transfer function is zero and P has a null row. Il a single
state component can be controlled but not independently by other compo-
nents, the corresponding row of P is nonzero, cven if it is not linearly inde-
pendent on the other rows, Such difference is very important in many “a
priori” problems (structural identifiability, identification experiment design,
selection among models of different complexity ete.). As is well known, these
problems arise if the model structure is given, ie. when it is known if an
clement of 4, B or € matrices is equal to 0 or not, but its value, if differing
from 0, is not vel known or it is not explicitely taken into account. Similar
considerations can be made with reference to the observability problem.

4. 11 is easily evaluated the dimension of the subspace controllablc by
gach input (from the rank of P,, P,, ... P,,} and of the subspuacc observable
from each output (from the runk of Q,, @, ... @, ).

3. THE ELEMENTS OF P AND @ AS BRANCH TRANSFERENCES
OF SIGNAL FLOW GRAPHS

For the sake of simplicity (in particular for graphical representation pro-
blems) only single input-single output systems will be considered in this
section. The specification #—1 and k=1 will be thereforc omitted.

Let us comsider the structure of the input-state transfer functions (righi
hand member in (3)). The i-th component of the state vector, x;, can be ob-
tained as a linear combination with coefficients pi” (r=0,1,...n- 1) of
a function obtained from the input via the transfer function:

i 1
= =1 11
detsl=4) & =1 ()

r=1{Q

and its Arst -1 derivatives. The combinatlion is graphically represenied in
fig. 4 for the case n=3 (with x=0 for +=0).

The system corresponding to the signal flow graph in fig. 4, which has
the state vector = (z,, %5, z5)7 as phase variables vector, is certainly control-
lable.

On the other hand the initially considered system, having x=(x,, x;, x3)7
as its state vector, is controllable if and only if the z—x transformation,
represented by the matrix P, is a bijection: in such a case x can be considercd
as a state veetor alse for the system in fig. 4.

Lel § be the system assigned via matrices A, B and €'; the graph in fig. 4,
having vector z as state vector, will be called controllable associated structure
8. Clearly, S, is equivalent to S if and only if S is ccntrollable too. Anyhow,
a one-to-one correspondence can be set up between each § and its 5.
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Fig. 4

Since matrices P and C and vector « formed by the ocefficients a4 ... o, _;
supply the same information about the dynamics of S supplied by matrices
A,B and C, S, can be therefore considered as an equivalent description
of S.

The consideration of S., bears the following features:

1. The information about the structural properties of the system, is disag-
gregated. In fact the information about stability of S is contained in a vector
(2) instead that in a matrix (4) and it is completely separated from the in-
formation about controllability, that is supplied by matrix P (instead than
by a matrix formed by manipulating 4 and B).

2. On the other hand, computing « and P from 4 and B requests only arith-
metic operations (as for computing the usual controllability canonical repre-
sentation) but it bears the above mentioned disaggregation advantages which
can be also obtained by computing the Jordan canonical form (that implies
the evaluation of the eigenvalues of the system).

3. The structure S,, is redundant (in fact it implies n2+2n coefficients)
but its redundancy is not greater than the one of the assigned representation
of Svia 4,B and C.

4. The usual controllability canonical form can be easily obtained from
structure S,, as shown in fig. 5. The transfer constants connecting each z;
to the corresponding addendum of y are the coefficients y,=1y;, in formula
(2). Vector y=(3,) (=0, 1 ... n—1) is connected to P and C via the relation:

y=PTC (12)

Obvious duality considerations suggest the definition of the observable
associated structure S,,, that is represented in fig. 6 for the case of a 3 order
one-input one-output system. Structure S,, is characterized by vector B,
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y y y y y :
i r/ %
=« i j of = «
z5 Z,4 z,

Fig. 5

matrix Q and vector «; its state variables z, (cf. fig. 6) cannot be considered
as phase variables; S,, is always observable and it is therefore equivalent to §
if and only if S is observable too. The main features of S,, are similar to the
ones of §.,; in this case the information about observability is supplied in
a direct way; the computation of the observability canonical form can be

u

Fiz. 6
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Fig. 7

implemented as shown in fig. 7. The input transference vector § of the obser-
vability canonical form is connected to B and @ via the relation:

B=0B 13)

Both associated structures S, and S,, (cf. fig. 4 and fig. 6) can be consi-
dered as the cascade combination of a dynamic system and an instantaneous
one. The dynamic system connects the input to the state zin S, and the dummy
inputs (acting on each z;) to the output in S,,. The structure of said systems
is very simple. In fact they are formed by » cascaded integrators, with feed-
back branches converging only to the input of the first integrator or diverging
only from the output of the last one. Correspondingly the state matrix 4,
of S., is a row companion matrix and the state matrix 4, of S,, is a column
companion matrix.

The instantaneous system is formed by two parts, described by matrix P
and vector C in S, and by vector B and matrix Q in S,,.

Computation methods for evaluating o and P from 4 and B or a« and Q
from A and C will be presented in section 4.
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In the following part of this section further considerations will be developed
about the possibility of disaggregating information regarding controllability
and observability in the associated structures S., and S,,.

Let us refer to formulae (3) and (4) and in particular to the numerators of
W?P and We. As is well known, adj (si — 4) can be set in the form:

n—1
adj(sI—A)= Y M,s (14
r=0
where:
M, =1, M,_;=A+0,_ 1; M, 5=A"+a,_ A+, ,1;.. M=
=A""" 4o A"+ L oyl (15

(the «; being the coefficients of det (s1—A4) accordingly to the previously
used notation).

By equating the numerators on left and right hand sides of (3) and making
use of (14) and (15), we obtain:

MB=|P2| r=0,1..n-1 (16)

p

In the same way, by equating left and right hand sides of eq. (8) we obtain:
CM,=[qVq¢y ...q"] r=0,1..n-1 17

Equation (16) allows us to substitute each p{” branch in the signal fiow
graph of S., by means of a suitable combination of b, and m{? branches.
The corresponding manipulation of the graph is represented in fig. 8 for
a second order system (the branch transferences p§” are indicated as p; .. ).
Fig. 8a) corresponds to the structure of fig. 4; after the simple manipulation
of fig. 8b), each p¢” branch is decomposed according to eq. (16) and fig. 8c)
is obtained. Finally, m{? and c; branches are combined into the ¢{” branches
of fig. 8d) according to eq. (17) (q¢” are indicated in the figure as q,,,_ ;).

The four signal flow graphs of fig. 8 are clearly equivalent; the graphs of
fig. 8a) and 8b) exhibit in a direct way the information concerning the controlla-
bility (because each elerent of P corresponds to the transference of a branch);
the graph of fig. 8c) exhibit directly the information concerning observability
(via the branch transferences ¢{); in the graph of fig. 8c) the controllability
analysis can be performed with reference to the subgraph formed by b, and
m{? branches and the observability analysis can be performed with reference
to the subgraph formed by the same m{} branches and by the ¢; branches.

The corresponding manipulations for the signal flow graph of S,, are
represented in fig. 9 for the same second order system.
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Fig. 9
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4. COMPUTATION PROCEDURES FOR P AND Q

4.1 GENERAL CONSIDERATIONS

This section will be devoted to computation procedures for the matrices P
and @ starting by the given matrices 4, B and C. The features of the described
procedures will be compared to the computation methods usually adopted
for evaluating the controllability matrix (4, AB, A?B ... A”~' B) and the
observability matrix (€T, ATCT, (AT*CT ... (ATYy—1C™).

A first direct procedure for evalvuating P and Q can make use of (15) for
computing M; from 4 and of (16) and (17) for computing P from M, and B
and @ from M, and C.

This procedure can practically be considered so cumbersome as the one
for computing the usual conirollability and observability matrices. In both
cases the powers of 4 are to be computed and multiplied by B or . The
computation of P and @ requests also a lincar combination of the powers
of A, in order to compute M;. This additional computation is not very heavy
but it bears the advantage that P and £ can be used also for evaluating the
system transference.

On the cther hand it can be noted that the analytical structure of P and O
is not necessarily more complex than the cne of usual contrellabitity and
cbservability matrices, as eq. (13), (16) and (i7) could suggest.

Let us comnsider, for instance, the system in fig. 10. The analytical structure
of P can be considered simpler than the one of (B, AB ... A ~! B) because
its elements are connected in 2 more direct way to the system paramcters.
This situation can not be considered as depending on a particular feature
of the graph of fig. 10; in fact the corresponding scheme is a very cormmmon
one and it is not of a canonical type (it does not correspend to the structures
of fig. 4 or of figure 6).

It has to be noted, however, that the above considerations refer o the
final structure of P and of the conirollability matrix but not to the compuiation
procedure, In {act the elements of P can be easily evalvated by direct inspection
or by using Mason’s formula that can be computed in a very simple way for
the graph of fig. 10. The use of eq. (15) and (16) can result more tedious.

Therefore alternative computation methods have been studied and will be.
presented in 4.2 and 4.3, The first method presents the computation of the
inpuat-state and state-oniput transfer functions via the Mason’s formula;
the second one is tased on the direct evaluation of the transforination from
the assigned state variables to the ones of the associated structure.

4.2 METHOD BASED ON MASON'S FORMULA

Several implementation procedures of Mason’s formuia have been pro-
posed in the literatare (cf. for instance [3], [4] and [5]). We skelch here briefly
a method already published by the authors [6], which refers to the conenction
matrix of the signal flow graph connecting a source i to another node o.
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Recall that to any signal flow graph C with » nodes a nXn “connection
matrix” C is associated, whose elements ||C||,s are 1 if G contains a branch
from the r-th node to the s-th node and 0 otherwise.

C belongs to the lattice % of nxn matrices with elements in the boolean
algebra {0, 1} obv1ously M <C, M in %, means that |{M|,; < ||Cll.s ¥, s
=1,2,

Introduce now the subset ¥ of ¥

Cc={C,,C,, ...}

whose elements meet the following conditions:

) C;<C

ii) each column and each row of C; contains at most one element equal to 1

iii) if the k-th row (column) of Cj, k #i (k #0) is zero, then the k-th column
(row) is also zero; if the i-th row is zero, the o-th column is zero and
viceversa; the i-th column and the o-th row cannot be zero.

Each Cj can be thought as the connection matrix of a suitable subgraph
of G: such subgraph is formed, beside isolated nodes, by non touching loops
and selfloops and by at most one, if any, /-0 path that does not touch loops
and selfloops of the subgraph.

By neglecting isolated nodes, an one to one correspondence can be set up
between the elements of ¥ and the numerator and denominator addenda
of the Mason’s formula

Z(_l)pPk _]p
1+ Z(—l)"le...Ljd

(18)

where P is the transference of the &-th path joining node i to node o, L, is
the loop transference of the Jj, loop, and summations are extended to the pro-
ducts P,Ly ... L;, and L ... L;, which do not contain transferences of touching
or/and loops paths

Numerator and denominator addenda of Mason’s formula are therefore
obtained by multiplying transferences of arcs which correspond to 1l-elements
in each matrix C;. The sign of each addendum can be evaluated from the
structure of matrix Cj, following procedures presented in [6].

It is worthwile to observe that signal flow graph we are dealing with contain
constant transference and I/s transference branchs, so that numerator and
denominator addenda in (18) have Ks~* structure, k is the number of interga-
tors and K is the product of constant transferences b;, a;;, ¢, the subgraph
related to P, L ... L;, contains.

By associating addenda with the some power s, one gets the trasference as

e (19)




and by multiplying numerator and denominator by s"

Z Kksn—k
k=1

1d
Z KLsn—k
k=0

Coecfficients K, are the elements of P matrix (@ matrix) if the signal flow
graph corresponds to the input-state relations (dummy input-output rela-
tions)*.

Starting from the graph of fig. 1, the detailed procedure goes on as follows:

1) delete the c;; branchs, if input-state relations arc needed for getting P
maitrix;

1’) delete the &;; arcs. and introduce branchs and nodes for the dummy
inputs, if dummy input-output relations are needed for getting @ matrix;

2) for each single input-single output signal flow graph (in case 1, the
outputs are the state components; in case /’, the inputs are the dummy inputs)
construct the connection matrix € and matrices C};

3) select C} matrices corresponding to numerator addenda in Mason’s
formula and evaluate the number & of integrators

4) obtain the numerator addenda in (18) (whosc sing can be determincd
following the procedures described in [6] and compute K, coefficients, wich
are elements of P in case 1 and elements of @ in case 1.

(20)

4.2 METHOD FOR DIRECTLY DERIVING P MATRIX

Consider the controllability structure S, of fig. 4, wich refers to a single
input-single output system

X = Ax+Bu 21
Let
det(sI—A) = g+, 5+ ... +a, 5" 1 +s

and introduce the matrices

010 .. 0] 0]
0o 0 1 .. 0 0
A, = ; B, =
1 0
| —Olp  — Oy ... O, Ll_,

* The inlegrator number & can be evaluvated by properly reordering the nodes. We suggest

the following procedure

1 — state variables and their first derivatives are labeled by even numbers (2, 4...2n) and
by odd numbers (1, 3...2u—1) resoectively (if nccessary, a node splitting has to be
performed, as in fig. 6).

2 — Inputs, outputs, dummy inputs are labeled by the numbers Zr-+1, Zn+2._.

In such a way in C and in C; matrices, integrators correspond fo upper diagonal element

in 1st, 3rd, ... (2n+1)th rows.
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Since the vector z satisfies the relations

z=A,z2+B.u (22)
x =Pz (23)
we obtain

(AP—PA)z+(B—PB)u=20

Controllability of S, allows us to derive equations in the unknown matrix P
AP—PA.=0
¢ (24)
B—PB.=0

Denoting by col, M the k-th column of a matrix M, (24.2) and the structure
of B, matrix imply

col,P =B (25)
On the other hand, by the structure of 4, matrix, we get

col(PA.)= —a,_,col,P+col,_; P

col,_,(PA)= —ua,_,col,_; P+col,_, P

col,(PA,) = —aycol, P+coly P
col (PA,) = —agcol P
Since the relation
col(AP) = Acol, P
hold for k=1, 2, ...n, equation (24.1) gives
col,_,P=AB+«,_ B
col,_,P=Acol,_,P+a, ,B (26)

coly P = dcol,P+o B
Since (26) is easily solved by recursion, (25) and (26) give the (unique)
matrix P we are looking for.
5. CONCLUSIONS
The analysis of the dynamical proterties of a linear system described by
the 4, B, C matrices has been performed by resorting to the matrices P and

Q such that:
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1) the controllability condition is
rank P=n
2) the observability condition is

rank @ =mn

3) the input output transfer matrix can be set in the form:
CPK KQ™B

Wis) Q

T det(s —A)  det(s —A4)

where K and K are nn,xn, and n,xXnn, polynomial matrices respectively,
defined by:

‘Homo HT 0 ... 0
P H .. 0 0 H' .. ©

K= : K=|. . - I3 H=||l s...s"'ln
0 0 ..H 0 0 .. HT

The interpretation of the elements of P and @ as branch-transferences of
signal flow graphs of suitable “canonical™ structures associated to the system
is then suggested.

Finally some computation procedures are suggested for evaluating P and Q
from the 4, B, C representation of the given system.

The advantages of the use of P and @ are underlined; in particular the
consideration of P and @ has been proved very convenient for the analysis
of some a priori identifiability problems (cf. e.g.[7]) previously studied by
the same authors in a more cumbersome way [8].
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SUMMARY

The paper deals with the evaluation of structural properties of continuons,
linear, time invariant systems by resorting to suitable maitrices formed by
the numerator coefficients of the transfer functions connecting the inputs
to the state components and suitable dummy inputs to the outputs. Previous
results obtained by the authors regarding controllability of single input-single
output systems are extended to the observability analysis and lo the case of
multiinput-multioutput systems.

The elements of the above mentioned matrices are then interpreted in terms
of branch transferences of signal flow graphs, corresponding to conveniently
suggested “canonical” forms.

Some methods are presented for the computation of the above mentioned
matrices, with reference also to the signal flow graphs of the input-state-output
relations.
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