PROCEEDINGS OF THE 3rd ITALIAN-POLISH CONFERENCE ON APPLICATIONS OF SYSTEMS THEORY TO ECONOMY, MANAGEMENT AND TECHNOLOGY

> Redaktor techniczny
> Iwona Dobrzyáska
> Korekta
> Halina Wołyniec

POLSKA AKADEMIA NAUK

 INSTYTUT BADAN SYSTEMOWYCH
PROCEEDINGS OF THE 3rd ITALIAN-POLISH CONFERENCE ON APPLICATIONS OF SYSTEMS THEORY TO ECONOMY, MANAGEMENT AND TECHNOLOGY

BIAŁOWIEŻA, POLAND
MAY 26-31, 1976

EDITED BY J. GUTENBAUM

Redaktor techniczny

Iwona Dobrzyñska
Korekta
Halina Wołyniec

Ir inw. IBS PAN
32959
-

 If sil itabilmes Luntellest

DESIGN OF LINEAR TIME-VARYING TRACKING SYSTEMS WITH STOCHASTIC DISTURBANCES

1. INTRODUCTION

Recently a number of papers $[1,5]$ have been published which are devoted to the design of linear time-invariant tracking systems for polynomial command inputs. In the papers [2, 3, 4] the method has been generalized for linear time-varying systems and for linear time-invariant systems with delays.

The purpose of this paper is to propose a new designing method of linear time-varying tracking systems with stochastic disturbances for polynomial command inputs.

The proposed method can be considered as a generalization (for systems with stochastic disturbances) of the method given in [2] or as a generalization (for time-varying systems) of the method given in [6].

2. STATEMENT OF THE PROBLEM

Consider a linear time-varying plant described by nth order differential equation of the form

$$
\begin{equation*}
\sum_{i=0}^{n} a_{i} \frac{d^{i} y}{d t^{i}}=u+\eta \quad\left(a_{n}=1\right) \tag{1}
\end{equation*}
$$

where $u=u(t) \in R^{1}$ is the input, $y=y(t) \in R^{1}$ is the output, $a_{i}=a_{i}(t)$ are the coefficients depending on time t and $\eta=\eta(t)$ is the disturbance. We assume that the disturbance is a stochastic process which fulfils the following conditions

$$
\begin{equation*}
\frac{d^{r} m_{\eta}}{d t^{r}}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\bar{\partial}^{2 r} R_{\eta}\left(t_{1}, t_{2}\right)}{\tilde{\partial} t_{1}^{r} \bar{\partial} t_{2}^{r}}=0 \tag{3a}
\end{equation*}
$$

$$
\begin{align*}
& E\left\{\left(\frac{d^{r}}{d t^{r}}\left[\frac{x}{z}\right]_{\mid t=0}\right)\left(\frac{d^{r} \eta(t)}{d t^{r}}\right)_{\mid t=t_{2}}^{T}\right\}=0, \tag{3b}\\
& E\left\{\left(\frac{d^{r} \eta(t)}{d t^{r}}{ }_{\mid t=t_{1}}\right)\left(\frac{d^{r}}{d t^{r}}\left[\frac{x}{z}\right]_{\mid t=0}\right)^{T}\right\}=0
\end{align*}
$$

where $m_{\eta}=m_{\eta}(t)$ is the mean of η and $R_{\eta}=R_{\eta}\left(t_{1}, t_{2}\right)$ is the second order joint moment of η.

Introducing the state vector

$$
\begin{equation*}
\boldsymbol{x}^{T}=\left[x_{1}, x_{2}, \ldots, x_{n}\right] \tag{4}
\end{equation*}
$$

where $x_{1}=y, x_{2}=\dot{y}, \ldots, x_{n}=\frac{d^{n-1} y}{d t^{n-1}}$, the equation (1) can be written as follows

$$
\begin{align*}
& \dot{\boldsymbol{x}}=\boldsymbol{A x}+\boldsymbol{B}(u+\eta) \tag{5}\\
& y=\boldsymbol{C x} \tag{6}
\end{align*}
$$

where

$$
\boldsymbol{A}=\boldsymbol{A}(t)=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \tag{7}\\
0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \ldots & -a_{n-1}
\end{array}\right], \quad \boldsymbol{B}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right], \quad \boldsymbol{C}^{T}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Let us consider the closed-loop tracking system (Fig.), which consists of the plant, r integrators described by the equations

$$
\begin{align*}
& \dot{z}_{1}=v-y \\
& \dot{z}_{2}=z_{1} \\
& \dot{z}_{3}=z_{2} \tag{8}
\end{align*}
$$

$$
\dot{z}_{r}=z_{r-1}
$$

and $r+1$ gain elements depending on time described by the matrix

$$
\begin{equation*}
k=\left[k_{0}, k_{1}, k_{2}, \ldots, k_{r}\right] \tag{9}
\end{equation*}
$$

The problem can be formulated as follows.
Choose the matrix (9) in such a way that the output y of the closed-loop system will track the command input of the form

$$
\begin{equation*}
v=v(t)=\sum_{i=0}^{r-1} \alpha_{i} t^{i} \tag{10}
\end{equation*}
$$

so that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} E\left\{[v(t)-y(t)]^{k}\right\}=0 \quad \text { for } \quad k=1,2 \tag{11}
\end{equation*}
$$

where E is the expectation operator.

3. SOLUTION OF THE PROBLEM

The system which consists of the plant and r integrators is described by the equation

$$
\left[\begin{array}{c}
\dot{x} \tag{12}\\
\dot{z}
\end{array}\right]=A_{0}\left[\begin{array}{l}
x \\
z
\end{array}\right]+B_{0}(u+\eta)+B_{C} v
$$

where

$$
\begin{align*}
& z^{T}=\left[z_{1}, z_{2}, \ldots, z_{r}\right] \tag{13}\\
& A_{0}=\left[\begin{array}{ccccc}
A & 0 & 0 & \ldots & 0 \\
\hline-C & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right], \quad \boldsymbol{B}_{0}=\left[\begin{array}{c}
\boldsymbol{B} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \boldsymbol{B}_{\boldsymbol{C}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \tag{14}
\end{align*}
$$

Substituting the relation

$$
u=k\left[\begin{array}{l}
x_{d} \tag{15}\\
z
\end{array}\right]=k_{0} x+\sum_{i=1}^{r} k_{i} z_{i}
$$

nto equation (12) we obtain

$$
\left[\begin{array}{l}
\dot{x} \tag{16}\\
\dot{z}
\end{array}\right]=A_{C}\left[\begin{array}{l}
x_{\mathrm{d}} \\
z
\end{array}\right]+\boldsymbol{B}_{C} v+\boldsymbol{B}_{0} \eta
$$

where

$$
\boldsymbol{A}_{C}=\boldsymbol{A}_{0}+\boldsymbol{B}_{0} \boldsymbol{k}=\left[\begin{array}{cccccc}
A+B \boldsymbol{k}_{0} & \boldsymbol{B} \boldsymbol{k}_{1} & \boldsymbol{B} \boldsymbol{k}_{2} & \ldots & \boldsymbol{B} \boldsymbol{k}_{r-1} & \boldsymbol{B} \boldsymbol{k}_{r} \tag{17}\\
-C & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

Equation (16) describes the closed-loop tracking system.
Theorem
The output y of closed-loop system tracks the command input (10) so that the condition (11) is satisfied, if the matrix (9) has the following form

$$
\begin{equation*}
\boldsymbol{k}=\left[a_{0}-b_{r}, a_{1}-b_{r+1}, \ldots, a_{n-1}-b_{n+r-1}, b_{r-1}, \ldots, b_{1}, b_{0}\right] \tag{18}
\end{equation*}
$$

where $b_{0}, b_{1}^{\prime}, \ldots, b_{n+r-1}$. are constant coefficients of the characteristic polynomial

$$
\begin{equation*}
\operatorname{det}\left[s I-A_{C}\right]=s^{n+r}+b_{n+r-1} s^{n+r-1}+\ldots+b_{1} s+b_{0} \tag{19}
\end{equation*}
$$

of the matrix (17) which has all eigenvalues in the open left-half plane.
Proof
Note that for

$$
\begin{equation*}
\boldsymbol{k}_{0}=\left[a_{0}-b_{r}, a_{1}-b_{r+1}, \ldots, a_{n-1}-b_{n+r-1}\right] \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{i}=b_{r-i} \quad \text { for } \quad i=1,2, \ldots, r \tag{21}
\end{equation*}
$$

we have

$$
\boldsymbol{B} \boldsymbol{k}_{0}=\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \tag{22}\\
0 & 0 & \cdots & 0 \\
\cdots \cdots & \ldots & \cdots & \cdots \\
0 & 0 & \cdots & 0 \\
a_{0}-b_{r} & a_{1}-b_{r+1} & \cdots & a_{n-1}-b_{n+r-1}
\end{array}\right]
$$

and

$$
\boldsymbol{B} \boldsymbol{k}_{i}=\left[\begin{array}{c}
0 \tag{23}\\
0 \\
\vdots \\
0 \\
b_{r-i}
\end{array}\right] \quad \text { for } \quad i=1,2, \ldots, r
$$

Therefore

$$
\begin{align*}
\boldsymbol{A}_{C} & =\left[\begin{array}{cccccc}
A+\boldsymbol{B} \boldsymbol{k}_{0} & \boldsymbol{B} \boldsymbol{k}_{1} & \boldsymbol{B} \boldsymbol{k}_{2} & \ldots & \boldsymbol{B} \boldsymbol{k}_{r-1} & \boldsymbol{B} \boldsymbol{k}_{r} \\
-C & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\ldots \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right]= \\
& =\left[\begin{array}{ccccccccccc}
0 & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 & 0 & 0 & \ldots & 0 & 0 \\
-b_{r} & -b_{r+1} & -b_{r+2} & \ldots & -b_{n+r-1} & b_{r-1} & b_{r-2} & \ldots & b_{1} & b_{0} \\
-1 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 0 \\
\ldots & c_{2} \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right] \tag{24}
\end{align*}
$$

By simple calculations can be verified that

$$
\begin{align*}
\operatorname{det}\left[s I-A_{C}\right] & =\left[\begin{array}{cccccccccc}
s & -1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & s & -1 & \ldots & 0 & 0 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & -1 & 0 & 0 & \ldots & 0 & 0 \\
b_{r} & b_{r+1} & b_{r+2} & \ldots & s+b_{n+r-1} & -b_{r-1} & -b_{r-2} & \ldots & -b_{1} & -b_{0} \\
1 & 0 & 0 & \ldots & 0 & s & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & -1 & s & \ldots & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & -1 & s
\end{array}\right] \\
& =s^{n+r}+b_{n+r-1} s^{n+r-1}+\ldots+b_{1} s+b_{0} \tag{25}
\end{align*}
$$

Note that the matrix (24) has constant elements. Therefore, differentiating equation (16) r times, for command inputs of the form (10), we obtain

$$
\frac{d^{r+1}}{d t^{r+1}}\left[\begin{array}{l}
x \tag{26}\\
z
\end{array}\right]=A_{C} \frac{d^{r}}{d t^{r}}\left[\begin{array}{l}
x \\
z
\end{array}\right]+B_{0} \frac{d^{r} \eta}{d t^{r}}
$$

and

$$
\frac{d^{r+1}}{d t^{r+1}} E\left[\begin{array}{l}
x \tag{27}\\
z
\end{array}\right]=\boldsymbol{A}_{C} \frac{d^{r}}{d t^{r}} E\left[\begin{array}{l}
x \\
z
\end{array}\right]+\boldsymbol{B}_{0} \frac{d^{r}}{d t^{r}} E[\eta]
$$

If all eigenvalues of the matrix (24) are located in the open left-half plane and the condition (2) is satisfied, it follows from equation (27) that

$$
\lim _{t \rightarrow \infty} \frac{d^{r} E\left[z_{r}\right]}{d t^{r}}=0
$$

From the equations (8) we have

$$
\begin{equation*}
\frac{d^{r} z_{r}}{d t^{r}}=v-y \tag{29}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{d^{r} E\left[z_{r}\right]}{d t^{r}}=\lim _{t \rightarrow \infty} E[v-y]=0 \tag{30}
\end{equation*}
$$

Taking into considerations the solution

$$
\frac{d^{r}}{d t^{r}}\left[\begin{array}{l}
x \tag{31}\\
z
\end{array}\right]=\mathrm{e}^{A_{C} t} \frac{d^{r}}{d t^{r}}\left[\begin{array}{l}
x \\
z
\end{array}\right]_{f t=0}+\int_{0}^{t} \mathrm{e}^{A_{C}(t-\tau)} \boldsymbol{B}_{0} \frac{d^{r} \eta(\tau)}{d \tau^{r}} d \tau
$$

of equation (26) and the conditions (3a), (3b) we can write

$$
\begin{align*}
& E\left\{\left(\frac{d^{r}}{d t^{r}}\left[\begin{array}{l}
x \\
z
\end{array}\right]_{\mid t=t_{1}}\right)\left(\frac{d^{r}}{d t^{r}}\left[\begin{array}{l}
x \\
z
\end{array}\right]_{\mid t=t_{2}}\right)^{T}\right\}=\mathrm{e}^{A C t_{1}} R_{0} \mathrm{e}^{A c t_{2}}+ \\
& +\int_{0}^{t_{1}} \int_{0}^{t_{2}} \mathrm{e}^{A C\left(t_{1}-\tau_{1}\right)} \boldsymbol{B}_{0} \frac{\bar{\partial}^{2 r} R_{\eta}\left(\tau_{1}, \tau_{2}\right)}{\bar{\partial} r_{1}^{r} \bar{\partial} \tau_{2}^{r}} \boldsymbol{B}_{0}^{T} \mathrm{e}^{A C\left(t_{2}-\tau_{2}\right)} d \tau_{1} d \tau_{2}=\mathrm{e}^{A c t_{1}} R_{0} \mathrm{e}^{A C t_{2}} \tag{32}
\end{align*}
$$

where

$$
R_{0}=E\left\{\left(\frac{d d^{r}}{d t^{r}}\left[\begin{array}{l}
x \tag{33}\\
z
\end{array}\right]_{\mid t=0}\right)\left(\frac{d^{r}}{d t^{r}}\left[\begin{array}{l}
x \\
z
\end{array}\right]_{\mid t=0}\right)^{T}\right\}
$$

If all eigenvalues of the matrix (24) are located in the open left-half plane, it follows from equations (32), (29) that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} E\left\{\left(\frac{d^{r} z_{r}}{d t^{r}}\right)^{2}\right\}=\lim _{t \rightarrow \infty} E\left\{(v-y)^{2}\right\}=0 \tag{34}
\end{equation*}
$$

This completes the proof.
From the above considerations the following designing procedure of the closed-loop tracking systems follows.

1. Choose the eigenvalues $s_{1}, s_{2}, \ldots, s_{n+r}$ of the matrix (24), which are located in the open left-half plane, so that the closed-loop tracking system will have prescribed dynamical characteristics.
2. For the given $s_{1}, s_{2}, \ldots, s_{n+r}$ calculate the coefficients $b_{0}, b_{1}, \ldots, b_{n+r-1}$ of the characteristic polynomial (19).
3. Using the formula (18) calculate the matrix k for the given coefficients $b_{0}, b_{1}, \ldots, b_{n+r-1}$ and $a_{0}, a_{1}, \ldots, a_{n-1}$.

These considerations can be generalized for higher order moments $(k \geqslant 3)$ and for multivariable systems.

4. EXAMPLE

Consider a linear plant described by the equations (5), (6) for

$$
A=\left[\begin{array}{cc}
0, & 1 \tag{35}\\
\mathrm{e}^{-t}, & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \boldsymbol{C}^{T}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

and $\eta(t)$ is a stochastic process with $m_{\eta}(t)=E[\eta(t)]=t, R_{\eta}\left(t_{1}, t_{2}\right)=E\left[\eta\left(t_{1}\right)\right.$ $\left.\eta\left(t_{2}\right)\right]=t_{1} t_{2}$ which fulfils the condition (3b).

Choose the matrix

$$
\begin{equation*}
k=\left[k_{1} k_{2} k_{3} k_{4}\right] \tag{36}
\end{equation*}
$$

so that the output y of the closed-loop system will track the command input of the form

$$
\begin{equation*}
v=v(t)=t \tag{37}
\end{equation*}
$$

with

$$
\begin{equation*}
\lim _{t \rightarrow \infty} E\left\{[v-y]^{k}\right\}=0 \quad \text { for } \quad k=1,2 \tag{38}
\end{equation*}
$$

In this case we have $r=2$ and it is easy to verify that the conditions (2), (3a) are satisfied.

Let the eigenvalues of the closed-loop matrix be $s_{1}=s_{2}=s_{3}=s_{4}=-2$. Therefore

$$
\begin{equation*}
\operatorname{det}\left[s I-\boldsymbol{A}_{C}\right]=(s+2)^{4}=s^{4}+8 s^{3}+24 s^{2}+32 s+16 \tag{39}
\end{equation*}
$$

and

$$
b_{0}=16, \quad b_{1}=32, \quad b_{2}=24, \quad b_{3}=8
$$

Using the formula (18) we obtain

$$
\begin{equation*}
k=\left[a_{0}-b_{2}, a_{1}-b_{3}, b_{1}, b_{0}\right]=\left[\mathrm{e}^{-t}-24,-9,32,16\right] \tag{40}
\end{equation*}
$$

REFERENCES

[1] Bradshaw A., Porter B., Design of linear multivariable discrete-time tracking systems. Intern. J. Systems Science. vol. 6 No 2 pp. 117-125 (1975).
[2] Kaczorek T., Design of linear time-varying tracking systems. Buill. Acad. Polon., Ser. Sci. Techn. vol. 24 No 4 (1976).
[3] Kaczorek T., Design of multivariable time-varying tracking systems. Bull. Acad. Polon., Ser. Polon., Ser. Sci. Techn. vol. 24 No 4 (1976).
[4] Kaczorek T., Kozera W., Projektowanie śledzących wielowymiarowych układów liniowych stacjonarnych z opóźnieniami. Archiwum Automatyki i Telemechaniki, vol. XX No 2 (1976).
[5] Porter B. Bradshaw A. Design of linear multivariable continuous-time tracking systems. Intern. J. Systems Science. vol. 5, No 12 pp. 1155--1164 (1974).
[6] Pusz J. Projektowanie śledzących wielowymiarowych układów liniowych stacjonarnych poddanych losowym zakłóceniom. Archiwum Automatyki i Telemechaniki, vol. XXI No 3 (1977).

SUMMARY

A new designing method of single-input single-output linear time-varying tracking systems with stochastic disturbances for polynomial command inputs is proposed. It has been shown that it is possible to choose the gain matrix k of the closed-loop system so that the output $y(t)$ tracks the command input $v(t)$ with $\lim E\left\{[v(t)-y(t)]^{k}\right\}=0$ for $k=1,2(E-$ expectation operator $)$.

. \therefore

Instytut Badań Systemowych PAN

Nakład 300 egz. Ark. wyd. 25,0. Ark. druk. 23,75. Papier druk. sat. kl. III $80 \mathrm{~g} \quad 61 \times 86$. Oddano do składania 8 X 1976 Podpisano do druku w sierpniu 1978 r. Druk ukończono w sierpniu 1978 roku

CDW - Zakład nr 5 w Bielsku-Białej zam. 62/K/77 J-124

$$
3: 959=
$$

