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A PRIMAL-DUAL LARGE SCALE OPTIMIZA TION METHOD BASED 
ON AUGMENTED LAGRANGE FUNCTIONS AND INTERACTION 

SHJFT PREDICTION 

1. VARIABLE METRIC ALGORITHMS FOR SADDLE-POINT 
DETERMINA TION 

A new class of saddle-point seeking and constrained optimization algorithms 
has been introduced in [1]. These algorithms combine many advantages and 
desired properties of various known optimization methods. They solve qua
dratic programming problems in a finite rnember of iterations, are directly 
applicable and effective for non-quadratic problems with nonlinear constraints, 
have a straightforward generalization to infinite-dimmensional (dynamie) 
optimization problems, and are single-loop iterative procedures, as opposed 
to many other multiplier or penalty-shift algorithms. They do not require 
the programming of second-order derivatives, nor the inversion of matrices, 
and are equally effective for linear and nonlinear constraints, as opposed to 
Newtonlike projection methods. These algorithms consist of double variable 
metric approximation for saddle-point seeking, applied to an augmented 
Lagrange function for constrained optimization. The main ideas of the saddle
-point seeking algorithms are reviewed here. 

Suppose there exists an unique saddle-point (y, u) of a function <p : R" X 
xR'" ..... R 1 

(y, u)= arg max min <p (y, v) = argmin sup <p (y, v) (1) 

and let the function <p be twice differentiable (in a neighbourhood of (P, u)) 
in both varia bies and posess a unią ue minim i zer in y for each v; the function <p 
need not be nonlinear in v. The necessary conditions of the saddle-point 

<p,(.9, v) = o 

(2a) 

(2b) 

can be approximated by severa! Newton-like procedures. The basie one was 
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used with severa! modifications by various authors and has the generał form 
of the following algorithm Al: 

i+l i ( -1 )-1 ( -1 ) 
V = V + fPvy fPyy fPyv - fPvv fPv- fPvy fPyy ((Jy 

i+ 1 i - 1 ( ( i+ 1 i)) 
y =y-((Jyy\((Jy+((Jvyv -v 

(3a) 

(3b) 

where all derivatives are evaluated at (yi, va. This algorithm has the usual 
adventages and disadvantages of Newton-like procedures: itc onverges quadra
tically under appropriate assumptions, but only in a close neighbourhood of 
the solution (y, fJ), and requires the programming of second-order derivatives 
and matrix inversion. 

In order to obtain a quasi-Newton, variable metric procedure it is useful 
to modify first the algorithm A 1, allowing for more gradient computations 
and obtaining the following algorithm A2: 

~i -1 i i 
dy= - fPyy rpy(y' V) 

b'., = <pu(/+J~, v;) 

i+l i ( -1 )-lbi 
V =V+ <fJvy <fJyy <fJyv- <fJvv ,. 

b~ = <py(/, vi+t); 

/+1 = /+r;d~ 

d
i -1, i 
y = - <fJyy Dy 

(4a) 

(4b) 

(4c) 

(4d) 

(4e) 

where ,i= arg min rp (/ + rd~, v;+ 1 
), but the directional minimisation need 

!E(0.1) 

not be very accurate; all seconcl-roder derivatives eyy, ey , , e"" are evaluated 
at (gi, v'). This algorithm requires actually more computations per iteration 
than the algorithm A I; but it has an interesting interpretation, useful for 
constructing varia ble metric algorithms. First, a Newton-type direction for 
changes of y to satisty (2a) is determined by (4a). Then the violation of the 
conclition (2b) is predicted by ( 4a). Then the violation of the condition (2b) 
is predicted by (4b) and compensated by the changes of v determined from (4c). 
This allows the determination of the modified Newton-type direction (4d) 
and the directional search (4e) iny; the step-size coefficient r converges to l 
in subsequent iterations. • 

The same algorithmic scheme can be applied when the second-order deri
vatives are not actually computed and inverted, but only approximated by 
a variable metric. Suppose the following re)ation holds for all yi, yi+ 1 , vi+ 1 

in a neighbourhood of (P, fJ): 

where 

i i+ 1 i 
Sy = y -y; 
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fi+l = (yi+1 i+l). 
y (f}y ' V ' 

(5a) 

b~ = <py(/, v;+1) 

(5b) 

I 
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Then it is possible to approximate A;1 by a variable metric v; + 1 with help 
of the data {r{, s{}~. The variable metric can have severa! forms - the known 
algorithm of Davidon, Fletcher and Powell [2], or the Fletcher-Convex algo
rithm can be used here. But the following rank-one formula with suitable 
well-conditioning checking is preferable, since it approximates A;1 indepen
dently of the step-size r 1

: 

(6a) 

where 

o, if < s!- v:r~, r~ > = o 

ai = or < s~-v;r~, r~ > < O and < s~- v:r~, b~ > < O 
(6b) 

1 
in other cases 

Other definitions of a1 are also possible. The symbol (, ') denotes here the 
scalar product and the symbol·)<· the outer product (a)(b(=a(b,y) for all 
a, b, yin a Hilbert space, in this case R"). If rp is quadratic iny and A , is constant 
and strictly positive, then either V 1 + 1 = A;1 or yi+ 1 minimizes rp iny (or both) 
after at most n iterations. 

The direction 

bi= (yi i+l) 
y ((Jy ' V (7) 

can be used in (4d) for the directional search (4e). However, the prediction 
(4a, b) and compensation (4c) of the violation of the necessary condition (2b) 
must be accordingly changed. It can be shown [I] that the compensating equa
tion ( 4c) takes the form: 

(8) 

where r; = 1 and the matrix ( rpvy V} ({Jyv- rp"")- 1 can be approximated by another 
variable metric vi+ 1 with help of the data {ri, s!}i, where 

and 

b-; ( ; ;d-; ;)· v=rpvy+r y,V, b' ( ; d-' ;) . V = (fJV y + y' V , 

(9a) 

(9b) 

The resulting variable metric procedure for saddle-point determination has 
the form of the following algorithm A3: 

r' = [!'-bi-1. 
y y y ' 

10 - Materiały . .. 

Vy' results from (6a,b) 

(10a) 

(10b) 
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b~ = (ll~(i, vi+1); 

i+I = i+/d~ 

(10c) 

(10d) 

(lOe) 

where ,;E (O; I] results from an approximate directional minimisation. The 
step ( I Oe) can be interpretcd as the prcdiction and compensation of the violation 
of the necessary condition (2b). However, this prediction and compensation 
is fairly accurate first when Vy approsirnates reasonably A- 1 and, therefore, 

0 ; is close to I. Hence, the following modification of the algorithm is prefer
ablc - algorithm A4: 

. . . 1 i ""i f"i+ 1. 
(ifi>l)s;,=y'-y'-; ry=by-oy , v; results from (6a,b) 

ĆJ.i=-V;b' y y y 

;+ 1 ;+ ;d-; 
y = y T Y' where r; ~ arg min (11(/+rd~, v) 

sc(O: l] 

ff i> N, i~ N+M go to A3(10a, ... c) 

( lla) 

(llb) 

(1 lc) 

(lld) 

(lle) 

(Optional reset) ff i> N+ M' set i= 1, v: = v/ = /,,Ził' v: = J1} = Imzm 
(llf) 

The numbers of iterations N, 1\1 are chosen according to the nature of the 
problem. For not very large problems without distinctivc structure, N;::: n, 
M;::: m are preferable. For very large problems with dynamie or decomposable 
structure, much smaller numbers N, M can be chosen. Similarly, the starting 
variable metrics Vv1 and v; can be chosen aceording to the information availa
ble and the unit matrices are assumed when no additional information is given. 

The algorithm A4 requires less computational effort than the algorithm A3. 
For N interations, one gradient b! per iteration is only computed, whereas 
in A3 four gradients b!, b!, b~, b~ are required per iteration. Although these 
algorithms are quite new and not fully verified in practical computation, 
they are expected to be ones of the most powerful tools for solving saddlc
-point problems and optimization problems with consiraints. If the function (li 

is quadratic in y, bilinear in y, v and linear or quadratic in v, the algotirhms 
A3, A4 find the saddle-point in at most n+m (or N-+-m) iterations. On the other 
hand, these algorithms are also discctly applicablc to non-quadratic functions 
lf : Ex F --> R1

, where E and F are arbitrary Hilbert spaces. 
In many applications, the function (li is linear in v, (O""= O and rp,,y is easy 

to determine computationally; this occurs, for example, when (li is norma! 
or augmented Lagrange fuction for an optimization problem with equality 
constraints and u ist the corresponding Lagrange multiplier. Following a 
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suggestion by Fletcher [3] for other multip]ier methods, the algotithms A3, A4 
can me modified in such a case to utilize the additional information. Namely, 
applying the Householder formuła, the inverse v- 1 

'i can be computed paralleły 
to V,. determined as in (6a, b). Since 'Pvv--' O and rp,., is known, the in verse 
( f/Jvy v; \OyJ - 1 required in the compensation equation (8), can be computed 
in each iteration. If 'Pv, is constant, as for Lagrange fundions for problcms 
with linear equality constraints, then this inverse is ałso easy to compute by 
the Householder formula. This leads to the following algorithm AS: 

(lf i> I) r~ = E~-b/1; V~ results from (6a,b); 

Vi = ( rpY}' v: <p}.J- 1 with all possible computalional 
simplifications 

Jt = -Vy;bi; b~ = rp,,(i+J;,); 

b_~ = 1py(/, vi+I); d; = -v:b\. 
/+ 1 = J,i + r;d!, where ri :-::o arg min \O (i+ rd!, vH· 1) 

ne(O:J] 

(J 2a) 

(12b) 

(12c) 

(12d) 

(12e) 

and to the algorithm A6 identical to A4 but for the step (1 le) where "go to 
/\5 (12a ... 12e)" is used. The algorithms A5, A6 can solve quadratic optimizat
ion problems wilh linear equalily constrainls in a smaller number of ilerations 
(n) than the algorithms A3, A4 (n+m). But the computational effort per 
iteration is increased, particularly if ,p"' is not constant, and the algorithms AS, 
A6 are less generał: their extension to optimization problems with inequality 
constraints or with a large number of constraints is more rnmplicatcd. 

2. A QUADRATIC PROGRAY1MING PROBLEM 

Consider the following optimization problem: 

1 
y = argminf(y); f(y) = -

2 
y*siy+ bi y+ C 0 

yeY" 

1·~ = {y E 1{" : g (y) = §iJ y = z E R"'}; m n 

(13) 

\vhere star der,otes transposition. The problem is strictly convex, if the ma
trix .# : R" -, Rn is strictly positive, y'·' .r# y > O for all y =I= O, y ER", and nor
ma!, if the matrix :fJ : W-, Rm has its full rank. lf these assumptions are sa
tisfied, then the solution y of the problem exists and corresponds to the uniąue 
saddle-point of the norma! Lagrange function: · 

l 
L(rr, y) = f(y)+,1*(g(y)-z) =-;:;- y*.<-ty+(hZ+11*,@') y + C0 - l'z (14a) 

'-
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(1 , y) = argmaxminL(11, y) = argmin sup L(17, y) (14b) 
r,ERm yeRn 

To find this saddle-point, one can use the algorithm A3 or A4 with v ~ Y/ 
and 

(fJy ~ LY = dy+b0 +[J?J*IJ 

(fJ 0 ~ L~ = [J?Jy-z 

(15a) 

(15b) 

where the prediction and cornpensation of the violation of LIJ (Y/, y) = O 
corresponds to the prediction and compensation of the violation of constraints. 
If N = n is used in the algorithm A4, then the solution (Y/, y) is found after at 
most n+m iterations. 

If the matrix :1J . has not its full nink, then the saddlepoint is not unique 
in v; this case shall not be considered i this paper. If the matrix d is not 
positive, then the saddle-point does not exist, though the problem (13) may 
still have a solution. It fact, a sufficient condition for the existence of the so
lution y is that the matrix d is strictly positive in the subopace Y

0 
= {y ER" : 

flJy =O}, y* dy> O for all y # O, y E Y0 . In this case, there exists a constant 
Qo > O such that for all (2 > Qo the solution y corresponds to the unique saddlle
-point (9, y) of the augmented Lagrange function - see [4], [5], [6] : 

A(Q, S, y) = f(y)+~ (2 ilg(y)-z+Sli 2
-~ (211 3 11 2 = 

2 2 

1 :: l 1 
= - y*(d + Q[J?J*flJ) y+(b;+ QS*[J?J) y-QS*z- - (2 llzll 2 + C0 

2 2 
(15a) 

(8, y) = argmaxminA(Q, 8, y) = argmin sup A(Q, S, y) (15b) 

It should be noted that 

P(y, Q, 8) = A(Q, 8, y)+ ~ l2 IISll 2 
= f(y)+} Q llg(y)-z+Sll 2 

(16) 

is a shifted penalty function as introduced in [7] and examined further in [8], 
[3] and by other authors. Therefore, the variable 8 E Rm has two interpreta-

1 
tions: first, it is a Lagrange multiplier, 9=-IJ; secondly, it is a penalty 

{! 

shift and penalty shifting algorithms [7], [8] could be used for finding the 
saddle-point (15b) . lt can be concluded from both of these interpretations that 

the gradient AS should be multiplied by a factor ~, if the algorithrns A3, A4 
Ą {! 

are applied in order to find the saddle-point (8, .P) with 9 ~ v and 
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((Jy ~ Ay = (d+Qgjj*&B)y+b0 +Q,14*3 

1 
rpv ~ -A/J = &By-z 

Q 

(17a) 

(17d) 

Again, the prediction and compensation of the violation of AlJ(Q , §., y) = O 
corresponds to the prediction and compensation of the violation of constraints. 
The compensation (JOc) in the first (or N+ 1) iteration, with V;; = l,,,x,.,, is ac
tually analogous to the penalty shift l).i+l = ,9.i+(&By-z/ as introduced in 
[7]; however, it is supplemented with the prediction and the varia ble metric 

approximation of A,;- 1 ~ _2._ (93'(d+Qg;f'g;J) - 193'"t 1 These improvernents 
{! 

al low for the usc of the algorithm A3 or A4 in a single-loop iterative procedure, 
whereas original penalty shift algorithms, though very effectivccomputationally, 
are double-loop iterative procedures and do not solve quadratic programming 
problcms in a finitc number of steps. The algorithrns A3 or A4 (with N= n) 
do find the solution (9, y) in n- 111 iterations, if (! is sufficiently large. lf (! 

is not large enough then the minimization with respect to Y is disturbcd; 
but this case can be recognized algorithmically and an automatic increase 
of Qin n+ mT I (or N+ M + I) iteration can supplement the original algorithm. 

Observe that the algorithm A4, when applied to a quadratic programming 
problem, theoretically does not make use of the prediction in (9c). After n 
iterations, the minimum of a Lagrange function in y for a give11 Lagrange 
multiplier is found, and a~= (f),,(/, i/)= o, b~ = o, b~ =a~= rpu(/, ul Since 
the matrix .s.1 - 1 or (d-1 Q!?ll'~fA)- 1 is determined by the varia ble metric V; """ 1 

hence, aftcr each change of v ~ 1/ or 9, the corresponding minimizing .P, 
is found in one iteration. But the prediction bt, originally devised for non-qua
dratic si tu r ::on, is also useful to suppress possible numerical errors in tl:e ąua
dratic case. 

There arc many other algorithms related to augmentcd Lagrangians, called 
generally multiplier algorithms - see [3], [9], [IO], [l l]. But these algorithms 
either do not solve a ąuadratic programming problem in a finite number of 
iterations, or do involve matrix inversions similar to Newton-type procedures 
or to gradient-projection techniques. Of course, a ąuadratic programming 
problem can be solved in a finite number of steps by linear programrning 
techniques, gradient projection techniąues or Newton-type methods, but 
each of these methods has disadvantages when generalized to nonlinear or 
higher-dimmensional problems, whereas the application of the algorithms 
A3, A4 to nonlinear optimization problems posed evcn in Hilbert space is 
straightforward. 
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3. A LARGE SCALE OPTIMIZATION PROBLEM 

Cansider again the problem (12), but with the additional assumption that 
n and m are large and the matrices si, :JJJ have a distinctive structure 

„J: ~ ~1; YJ:,l 
lo OR lw~ 

:1/J-[ A 
-MD O 

B 
( t8) 

where the matrices P, Q, R, A, B, C, D are also błock-diagonal and the 
matrix M consists only of zero and unit elements (though the latter do not 
occur on ist diagonal) . Suppose that the matrix :JJJ has its maxima] ranie (in 
particular, the matrix f!8 1 = [A B C) has its maxima) rank), and that dim x = = 
=17,: = dim Z1 , dim U= l1u, dim W=nw ~ l1x, n = nx+ n + nw, m=nx+ nw, 
The problem (12) can be written as 

1 
(x,ii,,:V)= argrnin -(x':'Px+u*Qu+w*Rw) 

(x,11,w)EY=1n Y0 2 2 

Yz
1 

= {(x, u, w) ER": !?i1 1 y = Ax+Bu+Cw = zJ} 

Y0 , = {(x, u, w) ER": f!8 2 y = w-MDx = O} 

(19a) 

(19b) 

(19c) 

Due to the special structure of the problem, it can be decomposed into 
severa] (say, k) subproblems: 

(x j, iij, wj) = argmin ~(xJPjxj+j/Qjuj+w/Rjw) 
(XJ,llj,Wj)EY:;::ij 2 

(20a) 

Y= ,
1 

= {(xj, uj, w) E R"i : A 1 xj+Bjui+Cjwj = z 1 j E R"""1
}, j = l , ... k 

(20b) 

provided the following global interaction constraints are satisfied 

Djxj = wij E R"wu, j = 1, ... k ---+ MDx = w (20c) 

The index ij denotes a variable of the i-th subproblem related to the j-th 
subproblem by the structural interaction matrix lvl. The vector DjxJ can be 
interpreted as the output variable of a subsystem j, where xj is determined 
by the interna] realtion Ajxj+Bjuj+Cjwj=zu of the subsystem (e.g. a state 
equation in a steady-state regime). The output variable D1xj is acting as 
an input variable to another subsystem ij, determined by the matrix M which 
represents the structure of output-input feedbacks. 

The following problems shall be considered here: 
- how to make use of the structure of the problem (20a, b, c) in order to 

diminish the computational effort when applying the algorithm A4; 
- w hat are the bounds of the computational effort; 
- how can the algorithm A4 be interpreted and modified for possible 
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applications in hierarchical control. The problem of the bounds of the compu
tational effort shall be considered briefly first. 

lf the problem (19a, b, c) is solved globally by the algorithm A4, then the 
necessary number of iterations is 

n + m = 2nx+n,,+2nw (21a) 

If there are no global interactions, nw = O or M = O, then all subproblems 
( 19a, b) can be solved parallely. The computational effort per interation is 
roughly the same for all subproblems solved parallely and for the global 
problem, but the necessary number of iterations drops to 

(21 b) 
j 

lf global interactions do exists, then the necessary number of iterations is 
contained somewhere between b an n+m. To get more close estimates, it is 
nccessary distinguish the folowing three cases: 

Case A. All matrices P1 , Q1 , Ri are strictly positive, d > O, so that the global 
problem is strictly convex and norma! and the saddle-point of the norma! 
Lagrange function corresponds to the optima! solution. In this case, all sub
problems are strictly convex, can be solved computationally by norma! La
grangian technique, and arc coordinable by norna! Lagrange multipliers for 
global interaction constraints. It will be shown that the necessary number 
of iterations of a modificd algorithm A4 to solve the problem is at most I+nw 
in this case. 

Case B. The matrices P1 , Q1 , Ri and .sd are not strictly positive, but d is 
strictly positive in the subspace Yoi ={(x, u, w) ER": Ax+Bu+Cw= O} , 
y* dy> O for all y fe O, y E Y01 . The solutions of the loca! problems cxist 
and can be determined computationally as saddle-points of corresponding 
augmented Lagrange functions. Since the matrix d + ef!J'-'f/J 1 is strictly posi
tive for sufficiently large (!, the augmented !ocal problems are coordinable 
by norma! Lagrange multipliers for global interaction constraints and thcre is 
(at least theoretically) no need to penalize for the global constraints. The ne
cessary member of iterations is l+nw, the same as in case A. 

Case C. The matrices P1 , Q1 , R1 and d are not strictly positive and .s;,/ is 
strictly positive only in the subspace Y01 n Y02 , with Y 02 defined by (19c). 
The solutions of the !ocal problems (20a, b) rnight not exist, although there 
cxist a unique solution of the global problem (20a, b , c) ( 19a, b, c). Since 
the global interaction constraints are responsible for the existence of the so
lution, ist is necessary to use an augmented Lagrange function for the global 
constraints (20c). Due to the particular nature of these constraints, the global 
augmented Lagrange function can be decomposed, into loca! goal functiorn;, 
but only if the minimization with respect to w is perforrned globally, on the 
coordination Jevel. Nevcrtheless, the algorithm A3 can be stili applied and 
the necessary number of iterations is l+2n,., where 

7 = max (2nxi + 11„i) 
j 

and l+2nw is only slightly greater than J + nw. 

(21 c) 
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4. CASE A: NORMAL LAGRANGE MULTIPLIER COORDINATION 

The normal Lagrange function for the problem (19a, b, c) is 

• 1 -~ ~- • * L(1o,r,,y)=-y·dy+1(·(.~1Y-z1)+A !YJ2Y (22a) 
2 . 

l 
L(A, YJ, x , u, w)= -(x*Px+u*Qu+w*Rw)+ 

" L, 

+YJ'\Ax+Bu + Cw-z 1)+1c*(w-MDx) (22b) 

and the solution of the problem can be found by determining the saddle-point 
(0:, q), (.x, a, 1v)) of this function. 

lf ). is considered to be a coordinating parameter, then the Lagrange function 
can be decomposed into rnodified, but norma! Lagrange functions for the 
subproblems (20a, b) with influence of the global constraints (20c) 

L ( , ) - l I ·*P . + *Q + *R ) ' j1, ,17j,xj , uj,wj - 2 \xj jxj uj .Juj wj juJ, 

+ 17J'(A j xj+ Bj u j+ ej Wj- Z1)+ 1c;wj-(1c* M)jD jxj (23) 

where (,1,* M)j = ),;j according to (20c). The saddle-points (l]j(),), (x;V), u;(),), 
1v;(}.))) of these local Lagrange functions can be found by the algoritlun A4 
in at most l = max ni+ mj , (where ni = nxi+ n„i+nwi, mj = n_,) iterations. 
The analytical expressions for these saddle-points are 

, (') p-1(A* ·' ( ' ) *1 ) xJ A = - j JY/j A -DjAij 

' ('.) Q- 1 B*Ą (') Uj A = - j j Y/j A 

wp) = -R11(Cj'fii).)+A) () 

where 

(24a) 

(24b) 

(24c) 

(24d) 

(24e) 

has its inverse approximated by a variable rnetric Vii in the algorithm A4. 
The violation of the global interatcion constraints has the form 

L..(1, f;(1c), .x(1), u(Jc), w(1)) = w(1)-MD.x(1) = -d;.,A-<tlndn- 1 z1 (25a) 

Jl1' =R- 1 +MDP- 1D*M*-<ę d- 1cę* ;., n n n 

where dn is defined by dropping out the indexes jin (24e), and 

<fl = MDP- 1A*+R - 1C* ,, 
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To determine A such that L,. = O, the inverse of the matrix s1;_ = R- 1 + 
+ MDP - 1 D* M* -<&~ .<:I,~ 1ct; must be approximated by another variable metric 
on the global level. The algorithm A4 must be accordingly modified. At the 
beginning, 1c and 'f/ are kept constant for max(nxi+n11i \ nwJ iterations (pre
cisely speaking, max (2nxi+ n11i + 11wi)-max nxi iterations are sutficient). 
Thereafter, the algorithm A3 with two variable metrics (one for 17 and one 
for y = (x, u, w)) is utilized for max nxi iterations. First after 1 = max (2nxJ+ 
+n„1-nwi) iterations, a third variable metric (for }/) is built up on the coor
dination level with help of the gradients L; and utilized parallelly to the other 
two. Since s1- 1 and s1,7 1 are already determined by the corresponding va
riable metrics, each change of }. results in the optima! (for subproblems) 
17(.l), x().), u(l), ~1•(}.). After at most n„ itcrations, dl is determined by the 
third variablc metric and the global solution is found. 

The above method is il.ctually a dual coordination technique, but with 
a special feature: there is no need for iterative optirnization of subproblerns 
aftcr each change of coordinating paraneter. 

5. CASE B: AUGMENTED LAGRANGIANS FOR sum)ROBLEM 
SOLYING, NORM AL LAGRANGE MUL TIPUER COORDINATION 

If the subproblems are not strictly convex, but can be convexified by penalty 
terms for loca! constraints, the corresponding partly augmented Lagrange 
function has the form: 

_ l j· l 11 2 1 ,2 ... _ 
A I ( A ' Q 1 , 9 I , y) = 2 y . s1 y + 2 Q 1 li f!lJ l y - z I + .9 I li - 2 QI 11 9 I 11 + }: %' 2 ·" 

(26) 
If Q1 is sufficiently large and 11 1 is strictly convex iny, then ;_ can be again 

used as a coordinating parameter. Due to the particular structure of the 
matrices s1, 861 , f!l1 2 , modified and augmcnted Lagrange functions for the 
subproblems (20a, b) with the influence of the global constraints (20c) can be 
defined 

} " _l * o.* Au(., !21, a-11, Y)- 2 Y1(·~1+1?1 -'¾l11&61j)yj+ 

9 * ( I 11 '! z ( '* ) + Q I I j §4 1 j y j - z I j) + 2 Q 1 li z I j li + /. f!lj 2 y j (27a) 

I 
A 1/A, Q1 , 911 , x1, u1, w)= 2 (x1P1x1+1:t;-Q1ui+w;-Riw)+ 

+ ½ 1?1 li Aj x1+ Bj u1+ ej Wj-z lj+ .9u\l 2 -

1 
li '1 2 '* * -- o1 .91 -1 +11.-w--k-D-x-2 ~ } } } I} } } 

(27b 
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The algorithm A4 can be used to determine the saddle-points (oij(A),J\(l)) 
of the functions A Jj. Since the penalty term for !ocal constraints contains 
bilinear forrns in xi, ui, wi, the analytical expressions for xil), iii },), (t,i).) 
are fairly complicated and it is more convenient to write down the joint expres
sion for .PP) 

91j(l) = -d9/(PJljd;/(:!JiAt+z 1J 
.P/l) = -dy11(1?1 ea;js1p,)+(@i',1)J 

where 

..A OJJ ..A- I o;,* 
.J6t3j=Q1VJ1j.J6tyj VJJj 

(28a) 

(28b) 

(28c) 

have their inverses approxirnated by two variable metrics in the algorithm A4. 
The violation of the global constraints has the form 

Au.(),, Q1 , .9 1(A), .PU))= PJ2.0(,1) = -d;_l+PJ2 d; 1.~;.w1,; 1z 1 (29a) 

where 
..A ul> ..A-1m,* m, _,1-lm,*..A-lm, ..A-Im,* 

.J6t;.=;;:,a2..l<Jty VJ2-/?1'-"dz<»'y "'11.¼<3 '7d J.J6ty "'1z (29b) 

and the matrices dy, d 0 are clefibed as in (28c) for global variables. The in
verse of the matrix d ,( rnust be approximated by a third varia ble rnetric on 
the global level in the algorithm A4 modified in the same way as in case A. 
The number of necessary iterations is also the same as in case A. The above 
method differs from the method applied in case A only by penalizing for the 
]ocal constraints. 

There are some reasons, however, for using the above metb.od as a universal 
one for both cases A and B. First, it is not allways a priori known, whether 
the matrix d is strictly positive or not. Secondly, by choosing the value of 
the penalty coefficient (li, one can influence the conditioning of matrices d_v, 
d.,, .si;_. The matrix d, = d+e 1 :?1Jf:!J1 becomes badly conditioned, if g 1 

is too large; but by increasing g1 one can only improve the conditioning of 
the matrix d.,. It can be proven (see e.g. [3]) that 

(30) 

where Qo is such that (d + Qo !!4~ f1J 1)-
1 exists. Hen ce, d; 1 

-> I if Q 1 -> = 
and the conditioning of the matrix d„ improves. Similarly, it can be shown 
that the matrix d !. is arbitrarily close to :!J 2 sit; 1 &J; for large Q 1 and d 1 

becomes badly conditioned if Q1 is too large. Therefore, there is a compormise 
betweeh the conditioning indices of d,, d „ and d,,. The experience in practi-

154 



cal applications of shiftcd penalty algorithms shows that, in most cases, one 
can choose a sufficiently large value of g 1 such that the matrices d),, .rd „ 
are reasonably well conditioned; however, lhe matrix d; can be badly condi
tioned and influence adversely the computations. 

6. CASE C: AUGMENTED LAGRANGJANS FOR SUBPROBLEM 
SOLVING AND COORDINATlON: A PRIMAL-DUAL METHOD 

if the subproblems cannot be convexified by penalty terms for loca! con
straints, the following fully augmented Lagrange function musl be used: 

I 
= 2 y*(d +Q1.18iB?l1 +Q29l'i,%'z) y+Qi 9;(.@1 y - z1H 

. I 

This function could be decornposed into [ocal Lagrangians but for the term 
l 

- Q2 /86!86' 2 y which - due to the assumption (20c) - can be expressed as: 
2 

The last term of this expression cannot be decornposed into loca] functions, 
if the minimization in respect to wj, xj is te be performed locally. Therefore, 
the vector w composed of wj or wu must be used as a coordinating parameter 
and the loca! minization can be performed in respect to Yi=(xj, ui) only. 
The following change of notation is needed: 

d = [: :1 f(y, w)=~ (y*dy+w*Rw) 

&81 = [A B]; 86'1 y+Cw = z1 

~ 2 =[- MD OJ; !?82 y + w=0 

(33a) 

(33b) 

(33c) 
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and the fully augmented Lagrange function (31) can be rewritten as 

J ;- a -
AiC1?2, 32, 1?1 , 31 , Y, w) = - Y ''sy'y Y + 1?1 3i'(.%' 1 Y + Cw- z 1)+ 

2 

where 
- - - *- -.,.-
dy= d+1?18B1.%'1 +1?2[!lJ;·.%'2 

The coordination method consists m seeking for the saddlepoint 

(34a) 

(34b) 

(92 , 91 , y, 1v) = arg max min max min Ai(g 2 , 92 , Q 1 , 91 y, w) (35a) 

on the gł obal level in 92 , w and on the loca! level in 91 , y. The saddle-point 
exists under the assumptions of case C, if Q2 , Q1 are sufficiently large. The felly 
augmented Lagrange functions can be decomposed into !ocal modified and 
augmented Lagrangians 

(35b) 

The remaining terms in (34a) do not depend on 91 , y. The saddle-points 
in 91j, Y; for subproblems can be determined by the algorit~m A4 in at most 
1 = max (2nx1+ n11J iterations. The analytical forms for P, 9 1 are: 

yj(.92, 3 1 , w)= -d;/(e 1 @'UC1 w1-z 11 +9d+o2.i~iwij+9;)) (36a) 

91i.92, w)= ,s,1;1~((J-ds1J) (C1 w1 -z1J)-Q2 8B 11 dy118B* (wij+3;)) (36b) 

where 

and 

fi92, w)= -d;/((I- Q1 8B7J d;/18B IJd;/) 1?2 ~ii wij+ 92)+ 

+ Q1 fi";_1 ii;/iC1 w1-z 1)) 

(36c) 

(36d) 

By omitting the indexes j or ij one obtains the global variables P(9 2 , w) 
and 91 (92 , w). The fully augmented Lagrange function (34a) takes the form 
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A 2(Q2 , 32 , Q 1 , w)= max mrn Ai(a2 , 9 2 , (2 1 , 91 , ji, w)= 
8'1tRnx ye R11

.JC" + nl;' 

where 
2 - - - 1 - - I -* - - l - - - 1 -* 

fJ=Q2f!JJz(dy - Qidy f)J1d9-1f!JJ1,9'y )f!l12 

_ - -_ laf* --1 
n - Q 1 l?2 f!lJ 2 d Y f!JJ 1 d.n 

si,.= Q2 l+R+Q1 C*(s/8/-I)C-Q-ITC-C* n* 

(37a) 

(37b) 

37(c) 

(37d) 

If Q2 is sufficiently large, then dw > O and there exists a saddle-point of 
the Lagrangian (37a). This saddle-point can be determined by the algorithm 
A4 applied to the global coordination level. More precisely, a suitable modi
fication of the algorithm A3 can be applied simulataneously to !ocal and global 
problems: first, the inverses of dy and d 9 ; are approximated by corresponding 
variable metric for -. iterations, then w is changed and the inversc of d„ is 
approximated by a third variable metric for n„ itcrations. Thus, the minimi
zing argument 1v(92 ) of /I 2 is determined 

w (82 ) = - si: 1((a2 J -Q- C'' n*) .92 -(a2 c*(.ii;/ - J)-TT) z 1) (38a) 

and the coordination of the global constraints can be started. The violation 
of these constraints takes the form 

where 

dn = Q+(Q21-Q-IJ C).si:,; 1(a2 J-Q-C* IT*) 

e = (Q21 -Q-TT C) si: 1(e1 c*csi;/-T)-IJ)+ n 

(38c) 

(38d) 

and si; 1 can be approximated by a fourth variablc metric in nw iterations, 
resulting in 

- --1 
92 =dn0z1 (38e) 

after a total number of -.+211,., iterations. 
As an example, consider a problem composed of k = 10 subproblems with 

equal dimmcnsions nxi = 5, nui = 3, nwi = I. The global <limmcnsion of va-
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riables is nx+ n11 + nw= 90, the dimmension of constraints is nx+nw == 60. 
Without decornposition, the problem can be solved in I 50 iterations. lf the 
subproblems are strictly convex or can be convexified by penalties for loca! 
constraints (cases A or B), then an application of the modified algorithm A4 
gives the solution in 1+ nw= max (2nxi + nui+ nwi) + nx = 24 iterations. If the 
global constraints must be penalized in order to convexify the subprob!ems 
(case C), the modified algorithm A4 finds the solution in 1 + 211" = max (2nxrf
+n,ti) + 2nw = 33 iterations. Thus, the number of necessary iterations slightly 
inereases. 

The coordination method used in (35a) is actually a primal-dual method, 
as opposed to dual methods used in cases A and B. The primal-dual method 
requires slightly more iterations, but there are reasons to use it as a universal 
method . The reasons are similar to those stated in the case B: it might be not 
apriori known, whether the subproblems can be convexified by penalizing 
loca! constraints only. Moreover, it can be proved (by arguments similar to 
(30) that the conditioning indices of d,,; and d„ 2 converge to one for suffi
ciently large (h, (h . It is expected that (h and (h can be chosen to guarantee 
a reasonable conditioning of dv and dw and a good conditioning of d 91 , d „2 . 

In fact, an automatical choice of Q, and (h can be incorporated into the modi
fied algorithm A4. Theorefore, the primal-dual coordination method based 
on augmented Lagrangians seems to overcome known difficulties with the 
conditioning of dual coordination. 

7. POSIBLE EXTENSIONS 

The main advantage of the algorithm A4 when modified for large scale 
problems is not that it solves a quadratic problem with linear constraints in 
substantially reduced number of iterations; this could be achieved also by 
other rnethods, for example, by typical quadratic programming methods 
with suitable decomposition. But the algorithm A4 .can be directly extended 
to applications for nonquadratic problems with nonlinear constraints. It is 
only required for large scale problems that the global constraints should have 
a sim ple structure such that a decomposition of the fully augmented Lagrange 
function is possible similarly, as in case C. In fact, consider the problem 

k 

(x , t1,1v) = argmin j(x,u,w); f( x ,u,w)= I Jj(xj,uj,wj) (39a) 
(x.u,w)EY=1nY0 2 j=l 

where 

Y2 1 = {(x , u, w) ER": g/xj , uj , w)= z 1j, j = 1, ... k} = 

= {(x, u, w) ER": g(x, u, w)= zi} (39b) 
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is the set of admissible solutions defined by !ocal constraints, and 

Y02 = {(x,u, w)E R": h/x) = w,j, j = 1 , ... k} = 

={(x,u,w)ER": Mh(x)=w} (39c) 

is the set of admissible solutions defined by global interaction consrraints 
(the structural matrix Mis composed of zero and unit elements). The generali
zation of the methods presented above to this problem is straightforward. 
For example, the fully augmcnted Lagrange function (as is case C) is 

Az(Qz, 82, l"h, 8 1 , x, u, w)= J(x, u, w)+~ l?illg (p, u, w)-z 1 +S1 ll 2
-

(40) 

and this function has a saddle-point in (82 , 8 1), (x, u, w), provided the second
-order sufficient condition for a solution of the problem (39a, b, c) are sati
sfied and Q1 , (h are sufficiently large - see [5]. Morcover, this function can be 
decomposed into !ocal Lagrangians similarly, as in case C. 

The algorithm A4 modified to solve large scale problems is fully utilized 
first for non-quadratic and non-linear problems. Consider as an example the 

l 
coordination in 91 on the global level. The gradient - A 292 is equal to the 

(h 
violation of the global constraints 

1 
-Aw2 = Mh(x)-w 
{lz 

(41) 

Since the Lagrange function is not quadratic in y = (x, u , w), its gradient 
with respect to y is not equal to zero after the given number (say, r+nw) of 
iterations. Since b~~O in (10a), the step (10b) is actually the prediction of the 
violation of global constraints after a quasi-Newton change of y, and the com
pensation of this predicted violation by a quasi-Newton change of the coordi
nating variable 1' = 8 2 . Superlinear convergence in all varia bies is expected in 
such a case. 

An interpretation of the algorithmic idea is important for possible extensions 
to on-line hierarchical control (as opposed to off-line multilevel optirnization). 
After initial, given number of optimization iterations for subproblems, an 
estimate of the solutions for subproblems is found together with an estimate 
of the second-order derivatives for subproblems. Once this information is 
known, it is not necessary to repeat many optimization iterations for subpro
blems after each change of coordinating variable. One quasi-Newton iteration 
gives a good estimate of the solutions for subproblems for any given value 
of coordinating variable. To speed up the coordination, a prediction and 
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compensation of the violation of the global constraints is used. This provides 
for a simultaneous coordination and loca! optimization which can be of great 
value for on-line hierarchical methods of control. 

Clearly, the possible extension of this algorithmic idea to on-line hierarchical 
control must be studied more deeply because of the known special features of 
such problems (hard constraints are automatically satisfied in a controlled 
plant and the violation of these constraints does not actually occur, but the 
coordination errors result in additional deviations from the optima! solution 
~ see [12)) . Other extensions are also possible. The augmented Lagrange fun
ctions can be defined for problems with inequality constraints [5] and even 
for equality and inequality constraints in a Hilbert space [6) (practically 
speaking, for discretized dynamie optimization problems with a very large 
dimmensionality of the equivalent equality and inequality constraints). More
over, these augmented Lagrange functions posses also saddle-points under 
appropriate, mild assumptions [5], [6]. For example, if the global constraints 
(39c) take the form 

Y02 = {(x, u, w)ER": hix) wij, j = l, .. . k1 ; h/x) = wij, j = k1 +1 , ... k} 
(42a) 

then the fully augmented Lagrange function is 

Tc, 

-½ e1ll.91ll2+½ ei(L limax(O , hix)-wij+S2Jll2 + 
j=l 

k1 

+ L lihix)-wij+S2jll2)-½ e2 ll.92ll2 (42b) 

j=k,+1 

The generalization of the global constraints (41a) to a Hilbert space 1s 

Y0 2 = { ( x , u , w) E H y : w - M h ( x) E D C H w} (43a) 

where Dis a given positive cone in the space of global constraints Hw , and Hy 
is the solution space (if Hw = R"w and D = D 1 = {w E R'IS: wił ;;, O,j = 1, ... k 1; 
Wu= 0,j = k 1+l, ... k}, then the sets Y02 given by (42a) and (43a) are identi
cal) . The function.f : Hy • R1 should be interpreted as a performance functio
nal, and the local constraining functions gj : Huj • Hxj can, for example, 
express the state equations for !ocal variables x j with controls uj, wj and di
sturbances zj. The fully augmented Lagrange functional takes the form 
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(43b) 

where (·)°• denotes the projection on the dual cone D* = { w* E Hw : < w*, 

w> )o O 'v' 1v E D}. The analytical form of this projection is usually simple to 
determine (for example, if Hw=Rnw with D = D 1 as above, then (42b) and 
(43b) are identical). If the !ocal constraints correspond to state equations, it is 
often nol necessary to penalize for these constraints, since thcy can be solved 
for x given u, w. z 1 , and the augemented Lagrange functional (43b) takes 
a more simplc form. The full form (43b) corresponds aclually to an extension 
of the Balakrishnan c-technique for di!Terential conslraints [ 13]. 

8. CONCLUSIONS 

The algorithm A4 of saddle-point seeking can be modified to solve large 
scale problems. One of possiblc modifications of this algorithm cor;esponds 
to a primal-dual method of coordination. An important fcalure of coordina
tion methods based on the algorithm A4 is that the !ocal optimization and 
coordination are simultaneous. Thus, large scalc problems of quadratic 
programming are solved by these melhods in finite and small number of steps. 
The addilional advantage of the primal-dual method is that the coordination 
problem can be made well-condiLioned by a suitable choicc of penalty coe
!Ttcients. However, the most important advantage of coordination methods 
based on the algorithm A4 is that Lhey can be easily extended to nonlinear 
and infiniLe-dimrnensional problems. 
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SUMMARY 

The developements of the theory of augmented Lagrange functions (or, 
equivalently, shifted penalty functions) resulted in powerful saddle-point 
theorems and, recently, in new single-loop iterative algorithms for saddle-point 
seeking and for solving optimization problems with constraints. A particularly 
strong new algorithm is based on two variable metric approximations and 
a constraint shift (or violation) prediction. For large scale optirnization, this 
algorithm leads to a primal-dual coordination method. The method converges 
in a finite member of steps for quadratic problems with linear constraints 
and interactions, and generally converges rapidly for more complicated pro
blems. The method has also other advantages of shifted penalty or augmented 
Lagrange funktions when applied to large scale optimization. lt is also hoped 
that the method can be used for on-line coordination in hierarchical control 
systems. 
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