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0. Gedymin
Institute of Management Organization, Technical University of Warsaw

THE DYNAMIC PARETO’S OPTIMUM AND THE PONTRIAGIN-
-KRIVIENKOV’S THEORY IN PLANNING OF ECONOMIC GROWTH

1. STATEMENT OF THE PROBLEM

Consider the following problem of economic growth. In finite planning
period [0, T}, n-+1 differentjmeasurable economic goals are accomplished. These
goals are stocks of n-1 commodities x7, ..., xT,; in final moment 7. They
form a vector called ‘“‘the final economic activity goal”’. In every moment
of planning period [0, T} n+1 commodities are produced at rates u,(z),
wees Uyy 1 (2) with the aid of n+1 homogenous factors of production x, (%), ...,
X,.1(t). Thus we have n+1 industries, each industry producing only one
commodity and using n-1 stocks of the production factors. Then, the product-
ion relationship (production function) can be written in the form:

Clu(®), ... ,u e OIS xH te[0,T] i=1,..,n+1 )]
u; =0 2)

We shall require that €;(i=1, ..., n-+1) be twice differentiable and defined
over open set in E2"*2 containing the set of solutions to (1).

The process of commodity accumulation is described by:

dx(t) ) )

—-dt—=u,-(r)-—;1ix,-(t) i=1,..,n+1 (3)

where y;(i=1, ..., n-F1) are certain constants and
(0 =x) i=1,..,n+1 C))

We say that the control strategy (u,(2),..., u,, 1(¢)) is admissible when, for each
u(t) € U, where the set U depends on the state variables x=(x,, ..., X,4+1)
and u{r) is a piecewise continuous function of time. It is the set of points u which
satisfy (1) for a specified x. Now we will try to formulate the criterion of the
selection of such admissible control variables and corresponding state variables,
which will be optimal from the point of view of the whole society. This point
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of view must be sxplicitly expressed by Central Planning Authority. It seems
reasonable that such criterion should be based on Pareto optimality concept.
One must assume that the attainment level of “final economic activity goal™
at the moment 7 increases, when the level of at least one goal increases, and
the attainment of the other goals does not decrease. Then the dynamic Pareto
optimum can be defined as a state of the economy in which it is not possible
to increase the level of one goal at moment 7, without decreasing the level
of at least one of the other goals at moment 7. Thus we have the following
problem of attaining dynamic Pareto optimum in production process described
by (1)—(4): Which conditions must be satisfied by admissible control variables
u (), ..., u,,,{t) and the corresponding trajectory for the state variables
x1(2)s ..., X, 1 (2) that the stock of one commodity on period [O, T] be maximal
without decreasing stocks of other n goods in that period below the prescribed
level. The problem is that of maximizing the objective functional
T

J(x,u):(j;u,,,_idt (5)

subject to the comstraints (1)—(3), the initial conditions (4) and
x(M=>x] i=1,..,n (6)

2. NECESSARY CONDITIONS

The consirained maximization problem (1)—(6) is equivalent to the follow-
ing problem of maximizing the Lagrange functional:

T T n

A= J. Fdi= {u,,H-}- Z pi®) [ui(t)—ﬂixi(t)—d’;?)]+
o g i

i=

n n

+ Z gl {xi(t)_%}i—si(t)]}dt"' Z pT) [xi(T)“xiT—“i]

i=1 i=

where ¢ and a, (i=1, ..., n) are nonnegative slack variables and p,(t), ¢,(t),
p:(T), (=1, ..., n4-1) are Lagrangian multipliers. One group of necessary
conditions of optimal control and state variables are the Euler-Lagrange
equations:

OF d (OF
= _L(Z)=o, 7
dy dt(ﬁj/) @)

where y stands for variables u;(t), x;(¢), p;(2), q:(¢), &(2), a,(t), (i=1,
vy By j=1,..,n+1).
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For all variables other than x;(i=1, ..., n) conditions (7) boil down to

equations
OF
— =0
oy

since no other time derivative appears.
Particular attention must be paid to equations:

OF _d (0F
ox, dt \ox,

They can be written as:

dp}(®)
dt
dx}(t)

—— .*t—i;kt i:].,-..,n
o = w O

=wpi()—qf(® i=1,..,n

If we introduce the Hamiltonian function

VH- = Pn.+ 1Uns1t '=il PO [ut)—u: x()]

we have:
T T n n+1
dx{t
A= Jth: j'{“n+1+H‘— Z pi?) 7524' 2 qit) x
0 0 i=1 i=1

n

- X [xi(t)_(gi_—si(t)]} dr+ z pdT) [x(T)—x"— ;]

i=1
we can rewrite equations (11), (12) in the following way
dpi(®) _ OH[x*(v), w*(®), p*()]

g{) i=1,..,n

dt 0x;
dxj() 0H[x*(n), w*(®), p*®)] |
. i=1,...,n
dt dp;
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Moreover, we have the other necessary conditions:

% & * it g * :

OH [x*(), w*(®), p*()] _ z )

Ou; Ou;
. i=1
that is

p?‘(t)=zmq?(t) j=1,..,n+1 {18)
- Ou;

We also have: _

t0) ([x3 0~ 6.[u*()]) = 0 )

i pi(T) [xH(T)—x{]=0 o )

Now we can formulate the necessary conditions for our control problem
They are based on the Pontrlagm Hadley-Kemp theory [7, 4].

Theorem 1: Suppose that #*(¢) is an admissible control for control problem
(1)—(6), and let x*(¢), x*(0)=x°, be corresponding trajectory for the state
variables which ends on the smooth manifold defined by x(7T)—x* > 0. Then
if program [x*(¢), u*(t)] maximizes J (x, u), it is necessary that'there exist
a constant p,, ; = 0 (which without loss of generality can be taken to be 0 or 1)
and a’ continuous vector-valued function p(f) such that

[pu,+ 1-P (t)] #0 (@2))

for any ¢, as well as a vector-valued function ¢(#) > 0 which is continuous except
possibly at corners of x*(¢), with such properties that if (13) then the conditions
(15)—(20) are satisfied. Furthemore, if U(x) is the set of u satisfying (1) and if

M), p*(0] = sup H [*(0), (0, p*(9)] S (22)

then for each re€[0, T]
H{x*(1), u(®), p*(0] = M[x* (1), p*(1)] B (23

These conditions were derived on the basis of the results obtained by Hadley
and Kemp [4].

Thus we showed that necessary conditions for Pareto optimum for the
problem (1)—(6) are a combination of conditions given by Pontriagin and
Hadley and Kemp.

Variables p(?) and ¢(¢) are Lagrangian multipliers connected with the flow
constraint (3) and the stock constraint (1). g(f) (i=1, ..., n) are the interest
rates for stocks of commodities x,(z). Then differential equations.(.ll) or (15)
may be interpreted as relations between shadow prices in:optimum state of
economy when the foresight is perfect. Next we have the optimal balance
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dx(t) .

5 in
moment f {0, T), i; being treated as the rates of depreciations of commodity
stocks x(1).

The Hamiltonian function (13) may be interpreted as follows: we can put
DPns+1= 1 so flow of commodity #n+1 that is u,, , may be treated as a numeraire.
Thus the Hamiltonian function is a weighted sum of net commodity flows
dx (1)

dt
of the numeraire, and H may be interpreted as an inputed net product. We
could say that these net commodity flows are the current economic activity
goals. So the condition (23) requires to maximize the weighted sum of current
goals in every moment of the planning period # € [0, T]. In such a way a dyna-
mic problem with multiple final goals (final economic activity goal at final
momern:t T') can be decomposed into the series of static problems with multiple
current goals, each problem for each moment of the planning period [O, T1.
The equivalence between the dynamic and static problems is guaranteed if
prices p,(t) (i=1, ..., n) are derived from the equations (11) or (15) and (17)—
—(19) and the transversality conditions (19), according to the theorem pre-
sented before. The prices p(z) (i=1, ..., n+41) are the coeffitients of the mutual
current goals transformation in every moment ¢ e [0, T].

Now we give simple interpretation of the prices p;, (i=1, ..., n).

Theorem 2: Suppose that the state of an economic system (1)—(3), in
moment ¢ € [@, T]is defined by the vector-valued function x(z). If in the period
[t, T] the system is conirolled in an optimal manner, then the value of the
objective functional in this period [¢, T] depends only on state of the system
in the moment ¢, Let this value be J*[x(¢)]. In the problem of maximizing (5)
subject to the constraints (1)—(3) and the boundary conditions (4), (6) let
the function J*[x(f)] be continuous and continuously differentiable in the
region R; then for all r € [0, T] for which x(¢) € R the optimal control z*(¢)
satisfies. Pontriagin’s maximum condition (see Theorem. 1) with respect to
to p(t)==[p.(), ..., p,(?)]. where

0J*[x*(]

pit)=—"—>= i=1,..,n €24)
ax;

equations between gross flows of goods u;(¢#) and net flows

every

(=1, ..., n+1) where weights are the prices p,(t) expressed in terms

(x*(1), is the trajectory corresponding to the optimal control u*(z), t[O, T1),
and

8 [x*(1)]

o = HIX"®, p* (), w¥(0)] €25)

This follows from the modified results obtained by L.J. Rozonoer [8]
and M. Albouy [1].

Following M. Albouy [1] we may interprete (24) as follows. The dual price
p¢) is a measure of cumulated utility (gain) J* increase in the period [¢, T]
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due to a marginal increment of the input stock x; at the moment 7, provided
this stock is used in optimal manner.

The maximum value of Hamiltonian function is a weighted sum of the net
current goals

dxff)  dx, |
[—dt‘?{] 9)

where weights are marginal gains in the period [f, 7], due to little changes
in input stocks x;

n+1 n+1

bk s y
H[x*(n), p*@), w* (0] = Z it )dx 4 ZMM V)

ax; dt

i=1 i=

3. GENERALIZED CONTROL PROBLEM

The question arises how to find the coefficients of transformation between
final goals in moment T of the planning period. In order to solve this problem
we formulate our previous problem (1)—(6) as a generalized control problem.
We can write down the general goals as weighted sum of final goals:

T n
Tat+1 J' Ups1 dt+ Z 7tixi(’l-v) . (28)
1} i=1

Now we assume that €; (i=1,...,n) are linear functions of (v, ..., Unt1)

We will try to define the coefficients n;, (i=1, ..., n) .The primald _/namxc
problem is to maximize (13) subject to the constramts (1)—4).

According to the mathematical theory of dynamic control of J. Krivienkov
[5} . we can formulate a dual dynamic problem as follows [3}: Minimize the
weighted sum of the initial stocks of inputs:

n+i .
2 PO)X),  puia=1 (29)
subject to the constraints:

opLt o .

Oi;f)w.-pi(r)—q,-(t), >0, i=1, .. ntl (30)

06 [u(t :

C’——Eﬂzm(r) i=1,..,n+1 a3n
u .
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and: L .
D =m=p] i=1,.,n+l T 32)

Now we write the dynamic duality theorem.

Theorem 3: To every primal dynamic problem (28), (1)—(4), (6) there cor-
responds the dual dynamic problem (29)—(32) and the following dual relatlon
exists:

nt+1

Max[pu+l _‘. un+1dt+ Z Pl i(T)] MlIl Z pi(O)x (33)

We can prove this theorem on the basis of Krivienkov theory.

We may interpret this theorem as follows: If the control variables and the
state variables are optimal in dynamic Pareto sense then there exist such
trajectories of prices — weights p,(¢),t [0, T],(i=1, ..., n-+1) that weighted
sum of final goals

nt1 T

'Zl p;rxl(T) (Whel’e Xp41 = g Upypy dt)

equals to the weighted sum of initial stocks of inputs.

This theorem has very interesting implications, especially in the field of
economic growth and theory of investment planning [3]. We note, that the
dual constraints (30), (31) resemble very closely the Pontriagin-Hadley- Kemp
conditions (14), (16a).

Then next dynamic duality theorem is as follows.

Theorem 4: Suppose that the program {x(¢)*, u*(t), t€[O, T]} is a feasible
solution the problem (28), (1) ,(4), (6) and program to {p*(¢), g*(¢), t €[0, T}
is a feasible solution to the problem (29)—(32). Then satisfying one of the
conditions:" :

.. nmn+1. n+1 o

iy Z pi x{(T) = Zl pi(0)x? :.;(34)
T n+1 T n+1 ’ f

2) }.[_Z pi(Hul(H]dt = f[; S OYHOIED - (35

is sufficient for optimality of both programs.
This theorem also can be proved on the basis of the Krivienkov’s theory
One may show, that optimal solutions to the static primal problem, in
every moment t [0, T : :

n+1
Max Y. p(ud - (36)
i=1
subject to the constraints
Clu@®]<x() i=1,...,n “(37)
w20 i=1,.. ,n+l C (%)
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are equivalent to the optimal solution of the primal dynamic problem (28),
(1), (4), (6). The problem (36)—(37) could be called the associated primal
static problern with the multiple goals.
Moreover, optimal solutions to the static dual problem, in every moment
tel0, T]
n+1

Min Y, x£t) g9 (39

i=1
subject to the constraints
n

%,
Zq,&t)f;pj(t) q;20; j=1,...,n+1 (40)

1
k=1

are equivalent to the optimal solutions of the dual dynamic problem (29)—(32).
The problem (39), (40) conld be called the associated dual static problem.
One may prove that for both static problems in every moment ¢ &[0, T

the following condition is satisfied:

ot n+1
Max Y pdtyu{t) =Min Y. x(6)q(t) (41)
i=1 i=1 .
Mbreover, fulfillment of the condition
11:1-.1 n+l
Y p(u(@= 3% x{t)q{) for every te[0,T] (42)
i=1 i=1

is sufficient for optimality of feasible solutions to both static problems.

Thus the dynamic problem (28), (1)—(4), (6) for the planning period [O, T]
can be decomposed into the series of the static problems (36)—(37) for each
moment £ € [Q, T]. Similarly this relation is valid for the dual dynamic (29)—
—(32) and static problems (39), (40).

What relation does exist between the Hamiltonian function (13) (net pro-
duct) and the objective function (36) (gross product) of the static problem?

It follows from the theorems 1 and 4, that these functions attain their maxima
in the same point; then the condition of maximization of the former may be
replaced by maximization of the latter. The reverse is also true. .

If the conditions of Pontriagin and Krivienkov (see the theorems) are satis-
fied then we have the equivalence between dynamic Pareto optimum in the
period [0, T] with the series of the associated static Pareto optima in every
moment ¢ e [0, T]. Decomposing the dynamic problem with multiple final
goals into the series of the static problems with multiple current (intermediary,
momentary) goals makes possible combination of the short term economic
planning with long term planning.
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Taking into account (24) we may write:

oI [x™(T
p:."Tz(J:—(—l] i=1,...,n+1 (43)
&x; -

Thus the maximum value of the generalized objective functional is

T
JHx*u*) = J Uy di+ Z L:(T—)] x3(T) (44)
0 i=1

We may interprete the optimal prices (43) as an efficient price system that
reflects the relative desirability of various commodities stocks at the terminal
date.

The problem of finding the Pareto optimum can be formulated as the
problem of maximization of an arbitrary x;(i=1,...,n+1) in [OT] when
other final goaln do not change.

Example

Let us examine a simple model of multisectoral economy, in which the
technology is of the discrete type [2]. We can formulate the problem of optimal
growth of such economy as the control problem with multiple goals.

Consider an economy producing n-+1 goods, a consumption good C and 7
depreciable capital goods Z,, ..., Z, with depreciation rates p., ..., 4,. Bach
sector uses, as fixed proportion inputs, both capital goods and a labour L,
which grows at an exogenously fixed rate n.

We assume that the production technology is given by a coefficient matrix

bOl b02 bO_.n+1

biy byy . by : . (45)

bul an bn_.n+1

Therefore we have the production function as a system of inequalities.
The labour constraint:

boss1 C+ z boyZ, < L - (46)

The capital constraints:

b;ns: C+ i} b;Z; <K, i=1,..,n _ .(47)
j=

C 0, Z;20; j=1,..,n _ ' . (48)
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We now have the following optimal growth problem:
T o
Maximize { Ce™*dt -i(49)
o o

where ¢ is time rate of discount.
Subject to the inequalities (46), (47) and the flow constraints:

dL(t)
 — YL(t 50
el | @
where v is the rate of labour growth and
dKt) _ o
=Z;—wK{(t) i=1,..,n (51)
dt
we have also (48) and s
K{0)=K? (52)
K=K i=1,...,n (53)

where K? and KT (i=1, ..., n) are fixed parameters, the former are histosizally
given, the latter given by Central Planning Authority. o

Now we apply the Pontriagin-Hadley-Kemp theory and we get the dysamic
conditions (15), (16):

dpi(y)  &H

— =+ pr—qr@) i=1,.., {54
e o, i+ pi(D—q;i (1) i n ._ ( )
dxf(@) oH
_x_(_)= = =7ZFO-wK¥D i=1,..,n (55)
dt op;

and the static conditions (17)

bowss W+ 'Zo bjne1 4t = Po : ' (56)
_’= L oda

bias W+ Y bugf=>pf j=1,..,n . (57)
i=1

Where w is the dual price (the wage rate) for labour constraint {46).
Moreover if d 5
M (K*@), p*(N] = Su% HIK*®), p*(1), Z(®)] ' (58)
Ze

then it is necessary that .
HLK*(%), Z*(D, p*(0] = M[K*(1), p*(9] (59
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This is the Hamiltonian function, interpreted as net imputed product,
being the function of the Z=(Z,, ..., Z,), then it has its absolute maximum
in the point Z=Z*(t), in every moment of planning period ¢ € [0, T].

Next, we have [see (19)]:

W*(L—bo,n+1C—"Z bo;Z;) =0 (60)
j=1

_Zlq?(Ki—bi,m C— -Zx bijZ) =0 (61)

i= j=

and transversality conditions (20)
LIK(T)—-K1p(TD)e™ " =0 (62)
i=1

Now we can formulate a generalized primal dynamic planning problem as
follows [3]:

. Max i; pTK(T) (63)
shbjeét to the flow constraints

'dlj‘t(t) =ZWO)-wmK(E i=0,1,..,n+1 . (64)
where

Ko =L(0), Kyui(D=J; Zof)=0; Zyes(®)=C()
Ho= =V, fyy; =0

the stock constraints (46), (47) and the boundary conditions

K(0)=K? i=0,1,...,n (65)

KT 2K i=1,..,n (66)
Generalized dual dynamic problem:

n+1

Min Y K?pA0) (67)

i=0

subject to the constraints
dp; .

A (1;+0) pd8) —q1) (68)
‘Z bigizp; Jj=1,..,n+1 - (69)
i=0
q;: 20 i=0,..,n (70)
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where go=w
pAT) =pl  i=0,1,..,n+1 - (71)

where p,,,=1.
From the Theorems 3 and 4 we have

nt+1 n+1
Max Y. piK(T)=Min Y K?p(0) (72)
i=0 i=0
and
n+1 nt+1
H ¥ KM=} KipiO0) (73)
i=0 i=
T n+i T n+1l
2) ()[ ['Zo pHZ(1)]dt = (j; ['Zo Ki(t) g{0]dt (74)
Then associated primal problem is to maximize: _
nt1
2 Dz (75)

subjéct to the constraints (46)—(48) and the associated dual problem is to
minimize
nh 1

I'Z'd K;q; (76)

subject to the constraints (69), (70).
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SUMMARY

The following problem of planning economic growth with multiplicity of
goals is the starting point of our considerations. In interval of the social
reproduction process, considered in finite planning period (O, T), n different
measurable economic goals are realized. They may be expressed as a vector,
called the “general economical act1v1ty goal”.

The dynamic Pareto optimum is defined as the situation in which it is not
possible to increase the degree of attainment of one goal without decréasing
the degree of attainment of at least one of the other goals in the final moment
of planning period. If the stocks of n goods in moment 7" are the economical
activity goals, the choice problem of optimal strategy of the econcmic growth
can be formulated in foliowin gway: what conditions must be fuifilled to maxi-
mize the production of one good during the planning period (@, T) without
decreasing stocks of the other goods below the given level in moment 7. Our
purpose may be formulated as the maximization problem of a Lagrange func-
tional, where the boundary conditions are determined. The strategy which
maximizes the functional is the optimal strategy in the sense of dynamic Pareto
optimum. The necessary conditions for the maximum of this functional may
be obtained from modified Pontriagin conditions. Beside the other conditions,
thev consist of differential equations describing the dynamics of the conjugate
variables which may be treated as specific dual prices. Then the maximization
of mentioned Lagrange functional with given boundary conditions may be
treated as the maximization of weighted sum in interval (@, T}, where the
weights are the dual prices in moment 7, when the other conditions are ful-
filled. It may be proved that this problem is equivalent to the maximization
of the hamiltonian which may be treated as the product (income) flow
in every moment of planning interval; it is the weighted sum of current
goals (particular good flows). We prove that the strategy maximizing the
hamiltonian in every moment of planning period (@, T) is the strategy-which
corresponds to the dynamic Pareto optimum if only the weights in the hamil-
tonian are the conjugate variables obtained from the Pontriagin conditions.
The maximum of hamiltonian in given moment may be treated as a 'statlc
Pareto optimum in this moment. :
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