POLSKA AKADEMIA NAUK

 INSTYTUT BADAN SYSTEMOWYCH
PROCEEDINGS OF THE 3rd ITALIAN-POLISH CONFERENCE ON APPLICATIONS OF SYSTEMS THEORY TO ECONOMY, MANAGEMENT AND TECHNOLOGY

Redaktor techniczny
Iwona Dobrzyńska
Korekta
Halina Wołyniec

POLSKA AKADEMIA NAUK

 INSTYTUT BADAN SYSTEMOWYCH
PROCEEDINGS OF THE 3rd ITALIAN-POLISH CONFERENCE ON APPLICATIONS OF SYSTEMS THEORY TO ECONOMY, MANAGEMENT AND TECHNOLOGY

BIALOWIEŻA, POLAND MAY 26-31, 1976

EDITED BY J. GUTENBAUM

Redaktor techniczoy

Iwona Dobrzyíska
Korekta Halina Wołyniec

32959
 .

 (9040 (20)

 $12 \cdot(1)$

 censurt forivers lime mitavimion t

G. Casalino
F. Davoli
P. P. Puliafito
R. Zoppoli

Institute of Electrical Engineering, University of Genoa

MODELS OF COMMUNICATION NETWORKS IN LARGE-SCALE SYSTEMS

1. INTRODUCTION

As the structure of an engineering process or a socio-economical organization grows beyond a certain complexity, the so-called phenomena of the "dispersion of authority and information" occur more and more frequently.

This can be due to technological, behavioural or topological reasons. Industrial plants with remote observation posts and controllers, large organizations characterized by many decision centers, air, railway and road traffic control systems are only some of the many examples which can be given to illustrate such a dispersion.

There is no doubt that ideal communication networks, with no costs, delays and noises, interconnecting the points where information is handy and decisions are taken, should greatly decrease the level and the importance of decentralization in large scale systems. However, since real communication links are characterized by costs, noises and interruptions, communication problems play a central role in the synthesis of decentralized control structures.

Problems of this type are the following: to select the instants at which messages must be sent from observation to decision posts, to decide what data are worth transmitting and, in general, to define the communication procedure for the information interchange. These problems lead directly to a new class of control actions, that is, to the control of data flow within a communication network.

It follows that an overall optimization problem is in general to be solved, in which an optimal compromise must be sought between the cost of a communication structure and the expected pay-off that the set of data made available by such a communication structure can provide to the decision makers who exert control actions on the process.

The concept of "data flow control" is strictly related to the introduction of two subteams of decision makers. The decision makers of the first subteam are given the task of gathering, processing and transmitting data, whereas the decision makers of the second subteam are given the usual task of generating control actions. To be more specific, a passive measurement device becomes
a decision maker of the first subteam whenever it is given the task of evaluating whether, and in what form, the gathered information is worth transmitting to the controllers. In a distributed information system, for example, this decision maker might be a smart terminal transmitting data to a central computer.

The benefit (i.e., the decrease in the expected loss function in controlling the process) that might be obtained by assigning the above tasks to the measurements posts will be called "expected value of task decentralization" (EVTD) throughout the paper.

The decision makers of the two classes will be considered as the cooperating members of a team [1]. The communication network interconnecting the agents of the team constitutes, in general, a graph which specifies the topology of the control organization. Two special cases will be considered in the paper. In Section 2, a two-person team will be dealt with, in which an observing agent sends data to a controlling agent through a point-to-point communication link. In section 3, we shall consider a star-shaped network connecting n peripheral observing agents to a central controller.

Extension of these two cases to more general situations is currently under investigation. It is worth noting that in recent years, the coordination of many controllers acting on the same dynamic systems has been extensively investigated in the literature (see, for instance, the papers by Yoshikawa [2] and Kurtaran [3] also for references). The case of a unique decision maker sharing information among several agents has been considered in [4].

However, to the best of the authors' knowledge, the on-line control of the communication network interconnecting the team agents had not been explicitly dealt with before [5] and [6]. The dynamic control problem of a measurement channel with observation costs and noises has been discussed in more than ten papers (see [5] also for references). Such a problem is somehow related to the online optimal adjustment of a communication channel. However, no intelligence is assumed for the measurement device, and then no task decentralization problem is posed.

Fig. 1

2.1. PROBLEM STATEMENT FOR THE POINT-TO-POINT COMMUNICATION LINK

Consider the team structure shown in Fig. 1. A linear dynamic system is given, which we assume time-invariant for the sake of simplicity

$$
\begin{equation*}
x_{i+1}=A x_{i}+B u_{i}+\xi_{i}, \quad i=0,1, \ldots, N-1 \tag{1}
\end{equation*}
$$

where x_{i} is the n-dimensional state vector at stage i, u_{i} is the r-dimensional control vector exerted on the system by $D M 2$ (the receiver and controller), and ξ_{i} is a noise vector.
$D M 1$ (the observer and transmitter) is assumed to take noisy observations s_{i} on the system state given by

$$
\begin{equation*}
s_{i}=H x_{i}+\zeta_{i}, \quad i=0,1, \ldots, N-1 \tag{2}
\end{equation*}
$$

where y_{i} is an m-dimensional vector $(m<n)$ and ξ_{i} is a random vector. A, B, H are matrices of suitable dimensions. $D M 1$ controls the information flow from $D M 1$ to $D M 2$ by means of a communication channel of the form

$$
\begin{equation*}
y_{i}=\dot{h}_{i} e_{i} s_{i}+\eta_{i}, \quad i=0,1, \ldots, N-1 \tag{3}
\end{equation*}
$$

$h_{i} \in\{0,1\}$ is a binary variables selected by $D M 1: h_{t}=1$ means that a message is sent, $h_{i}=0$ means that no message is sent. More complex communication models might be conceived by assuming that matrix H depends on a control variable h_{i} selected by $D M 1, e_{\imath} \in\{0,1\}$ is a binary random variable that takes into account the possibility of stochastic interruptions. The random event $e_{i}=1$ (no interruption takes place) occurs with a known probability p.
η_{i} is a transmission noise vector.
$\xi_{i}, \varsigma_{i}, \eta_{i}(i=0,1, \ldots, N-1)$ are zero-mean, mutually independent, Gaussian random vectors with covariance matrices $\operatorname{cov}\left(\xi_{i}\right)=Q, \operatorname{cov}\left(\varsigma_{l}\right)=W, \operatorname{cov}\left(\eta_{1}\right)=R$ x_{0} is a Gaussian random vector, independent of the random vectors previously defined, with $E\left(x_{0}\right)=\alpha, \operatorname{cov}\left(x_{0}\right)=\sum$.

We assume that DMI, before choosing h_{i}, may receive some message vector w_{i}, which will be specified later on. We also assume that at each stage $D M 2$ can derive the exact values of the variables e_{i} and h_{i} (if $e_{i}=1$). This fact can be considered realistic enough since simple transmission codes can allow DM1 to transmit noisefree messages containing the binary variable h_{i}, and enable DM2 to recognize interruptions in the communication link.

On the basis of the above hypotheses, at stage i observations, decisions and messages are then performed in the following sequence:

1) $D M 1$ observes s_{i} and receives w_{i}; 2) $D M 1$ selects h_{i}; 3) $D M 2$ recognizes the state of the communication channel and receives h_{i} and y_{i}, if $e_{i}=1$; 4) $D M 2$ selects the control action u_{t}. Therefore, the information set I_{i}^{j} of $D M j$ at stage i can be defined as follows

$$
\begin{equation*}
I_{i}^{1} \triangleq\left\{s^{i}, w^{i}, h^{i-1}\right\}, \quad I_{i}^{2} \triangleq\left\{(e h)^{2}, y^{i}, u^{i-1}\right\} \tag{4}
\end{equation*}
$$

where $s^{i} \triangleq\left\{s_{0}, \ldots, s_{i}\right\},(e h)^{i} \triangleq\left\{e_{0} h_{0}, \ldots, e_{i} h_{i}\right\}$, and so on. We want then to determine optimal decision laws $\gamma_{1 i}^{0}, \gamma_{2, i}^{0}$ of the form

$$
\begin{equation*}
h_{i}=\gamma_{1 i}\left(I_{i}^{1}\right), \quad u_{i}=\gamma_{2 i}\left(I_{i}^{2}\right) \tag{5}
\end{equation*}
$$

that minimize the expected value of the process cost

$$
\begin{equation*}
J\left(\gamma_{1}^{N-1}, \gamma_{2}^{N-1}\right)=\sum_{i=0}^{N-1}\left[\left\|u_{i}\right\|_{P}^{2}+c h_{i}\right]+\left\|x_{N}\right\|_{V}^{2} \tag{6}
\end{equation*}
$$

where $c \geqslant 0$ is a cost associated to the transmission of a message, $\left\|u_{t}\right\|_{P}^{2}=$ $=u_{i}^{T} P u_{i}, P=P^{T}>0, \mathrm{~V}=\mathrm{V}^{T}>0$. All the parameters defining the optimization problem are assumed to be known to both DMs. It follows that each $D M$ can derive the other DM's decision law. For the sake of simplicity, we assume that $D M 2$ does not change his probability density on x_{i}, whenever he receives the message $h_{i}=0$.

We want to remark explicitly that the communication channel model (2) is comprehensive of the following two practical cases, which will be considered separately in some detail.
a) The analog communication model ($A C M$), in which a Gaussian noise is superimposed on the message, but no stochastic interruption takes place, h_{1} is received in any case. The channel is then described by the equation

$$
\begin{equation*}
y_{i}=h_{i} s_{i}+\eta_{i}, \quad i=0,1, \ldots, N-1 \tag{7}
\end{equation*}
$$

b) The digital communication model (DCM). The observed vector s_{i} and h_{i} are encoded in a redundant digital message which enables error detection. Whenever an error is detected by $D M 2$, we say that a stochastic interruption takes place. $D M 2$ sends a positive or a negative acknowledgement signal (message w_{i+1}) back to $D M 1$ depending whether he has received a correct message s_{t} or not. The communication model is then given by

$$
\begin{equation*}
y_{i}=s_{i} \quad \text { if } \quad h_{i} e_{i}=1, \quad y_{i}=\varnothing \quad \text { if } \quad h_{i} e_{i}=0 \tag{8}
\end{equation*}
$$

Since $D M 1$ and $D M 2$ act as the cooperating members of a team, in the next Section we shall derive their person-by-person satisfactory (p.b.p.s.) strategies [1] that will also prove to be optimal.

2.2. PERSON-BY-PERSON SATISFACTORINESS AND OPTIMALITY

There is a groving literature concerning the application of dynamic programming in the so-called "nonclassical" optimal control problems $[2,7,8]$. Let us consider the applicability of this algorithm to the general communication model (3).

Stage $N-1$. A necessary condition for the optimality of $\gamma_{2, N-1}$ is the following
$E J\left(\gamma_{1}^{* N-19}, \gamma_{2}^{* N-1}\right) \leqslant E J\left(\gamma_{1}^{* N-1 \frac{8}{;}} \gamma_{2}^{* N-2}, \gamma_{2, N-1}\right)$
(9) is one of the $2 N$ necessary conditions for optimality that define p.b.p.s. strategies $\gamma_{1 i}^{*}, \gamma_{2 i}^{*}$ in team-theory. We show now that (9) is by itself sufficient
to make $\gamma_{2, N-1}^{*}$ optimal. By assuming $\gamma_{1}^{* N-1}$ to be fixed, dynamic programming can be applied to derive $D M 2^{\prime s}$ p.b.p.s. strategies. Then we have

$$
\begin{equation*}
u_{N-1}^{*}=\gamma_{2, N-1}^{*}\left(I_{N-1}^{2}\right)=-L_{N-1} \mu_{N-1} \tag{10}
\end{equation*}
$$

where $L_{N-1}=\left(P+B^{T} V B\right)^{-1} B^{T} V A$ and $x_{N-1}=E\left(x_{N-1} I_{N-1}^{2}\right)$ can be derived by $D M 2$ via a Kalman filter, since he knows the communication channel state. Observe that the unique strategy $\gamma_{2, N-1}^{*}$ depends on the sequence $h_{1}^{* N-1}$, but not on the particular form of strategies $\gamma_{1}^{* N-1}$. The same holds true as regards the dependence on $\gamma_{2}^{* N-2}$. Then $\gamma_{2, N-1}^{*}$ is optimal. Let $\gamma_{2, N-1}^{*}=$ $=\gamma_{2, N-1}^{0}$.
A necessary condition for the optimality of $\gamma_{1, N-1}$ is the following

$$
\begin{equation*}
E\left[J\left(\gamma_{1}^{* N-2}, \gamma_{1, N-1}^{*}, \gamma_{2}^{* N-2}, \gamma_{2, N-1}^{\circ}\right)\right] \leqslant E\left[J\left(\gamma_{1}^{* N-2}, \gamma_{1, N-1}, \gamma_{2}^{* N-2}, \gamma_{2, N-1}^{\circ}\right)\right] \tag{11}
\end{equation*}
$$

Since $D M 2$'s strategies are fixed, we can apply dynamic programming to derive $\gamma_{1, N-2}$, that is

$$
\begin{align*}
& J_{1, N-1}^{*}\left(I_{N-1}^{1}\right)=\min \left[c h_{N-1}+E\left(\left\|u_{N-1}^{0}\right\|_{P}^{2}+\left\|x_{N}\right\|_{V}^{2} \mid I_{N-1}^{1}\right)=\right. \\
& =\min \left\{c h_{N-1}+\hat{\mu}_{N-1}^{T} L_{N-1}^{T} P L_{N-1} \hat{\mu}_{N-1}+\operatorname{tr}\left[L_{N-1}^{T} P L_{N-1} \operatorname{cov}\left(\mu_{N-1} \mid I_{N-1}^{1}\right)\right]+\right. \\
& \left.+\left\|A \hat{x}_{N-1}-B L_{N-1} \hat{\mu}_{N-1}\right\|_{V}^{2}+\operatorname{tr}\left[\operatorname{cov}\left(A x_{N-1}-B L_{N-1} \mu_{N-1} \mid I_{N-1}^{1}\right) V\right]\right\}+ \\
& +\operatorname{tr}(V Q) \tag{12}
\end{align*}
$$

where $\hat{x}_{N-1} \triangleq E\left(x_{N-1} \mid I_{N-1}^{1}\right), \hat{\mu}_{N-1} \triangleq E\left(\mu_{N-1} \mid I_{N-1}^{1}\right)$.
After some algebraic manipulations, (12) becomes

$$
\begin{align*}
& J_{1, N-1}^{*}\left(I_{N-1}^{1}\right)=\hat{x}_{N-1}^{T} T_{N-1} \hat{x}_{N-1}+\operatorname{tr}(V Q)+\operatorname{tr}\left(V A \sum_{1, N-1} A^{T}\right)+ \\
+ & \min \left\{\operatorname{ch} h_{N-1}+\hat{\mu}_{N-1}^{T} L_{N-1}^{T}\left(P+B^{T} V B\right) L_{N-1} \hat{\mu}_{N-1}+\hat{x}_{N-1}^{T}\left(A^{T} V A-T_{N-1}\right) x_{N-1}+\right. \\
- & 2 \hat{x}_{N-1}^{T} A^{T} V B L_{N-1} \hat{\mu}_{N-1}+\operatorname{tr} L_{N-1}^{T}\left(P+B^{T} V B\right) L_{N-1} \operatorname{cov}\left(\mu_{N-1} \mid I_{N-1}^{1}\right)+ \\
- & \left.\left.2 \operatorname{tr} V A E\left[\left(x_{N-1}-\hat{x}_{N-1}\right)\left(\mu_{N-1}-\hat{\mu}_{N-1}\right)^{T} \mid I_{N-1}^{1}\right] L_{N-1}^{T} B^{T}\right]\right\}= \\
= & \hat{x}_{N-1}^{T} T_{N-1} \hat{x}_{N-1}+\operatorname{tr}(V Q)+\operatorname{tr}\left(V A \sum_{1, N-1} A^{T}\right)+ \\
+ & \min \left\{\left\|\hat{x}_{N-1}-\hat{\mu}_{N-1}\right\|_{S_{N-1}}^{2},+\operatorname{tr} S_{N-1}\left[\operatorname{cov}\left(\mu_{N-1} \mid I_{N-1}^{1}\right)\right]+\right. \\
- & 2 \operatorname{tr}\left[S_{N-1} E\left[\left(x_{N-1}-\hat{x}_{N-1}\right)\left(\mu_{N-1}-\hat{\mu}_{N-1}\right)^{T} \mid I_{N-1}^{1}\right]+c h_{N-1}\right\}
\end{align*}
$$

where $\sum_{1, N-1} \Delta \operatorname{cov}\left(x_{N-1} I_{N-1}^{1}\right), T_{N-1} \triangleq A^{T} V-V B\left(P+B^{T} V B\right)^{-1} B^{T} V A$ and $S_{N-1} \triangleq A^{T} V A-T_{N-1}$.

To compute the estimates $\hat{x}_{N-1}, \hat{\mu}_{N-1}$ and the other conditional expectations in (13), we need now to specify the type of messages w^{N-1} received by DM1. In this computation a central role is played by the following

Assertion 1: If the set of messages w^{N-1} are such that the information set I_{N-1}^{2} is nested in I_{N-1}^{1} [9], the control law $h_{N-1}^{*}=\gamma_{i, N-1}^{*}\left(I_{N-1}^{1}\right)$ does not depend on u^{N-2}.

From Assertion 1 it immediately follows that $\gamma_{1, N-1}^{*}$ is not influenced by $\gamma_{2}^{* N-2}$. Since $D M 1$ needs to retain $h^{* N-2}$, but not $\gamma_{1}^{* N-1}$, in order to compute $h_{2}^{* N-2}, \gamma_{1, N-1}^{*}$ turns out to be optimal. Assertion 1 and the following results can be considered an extension of the theorem presented in [5], p. 117.

To prove Assertion 1, observe first that the nested information structure we have assumed enables $D M 1$ to derive u^{N-2} exactly, and then to compute x_{N-1} via the Kalman filter.

$$
\begin{equation*}
\hat{x}_{N-1}=A \hat{x}_{N-2}+B u_{N-2}+K_{1, N-1} v_{1, N-1} \tag{14}
\end{equation*}
$$

On the other hand, $D M 2$ knows the state of the communication channel, and then he can apply the Kalman filter

$$
\begin{equation*}
\mu_{N-1}=A \mu_{N-2}+B u_{N-2}+h_{N-1} e_{N-1} K_{2, N-1} v_{2, N-1} \tag{15}
\end{equation*}
$$

where $K_{1, N-1}, K_{2, N-1}$ are the filters gains ($K_{2, N-1}$ is the gain for a communication link without interruptions at stage $N-1$) and the innovations are given by

$$
\begin{align*}
& v_{1, N-1}=s_{N-1}-H\left(A \hat{x}_{N-2}+B u_{N-2}\right), \tag{16}\\
& v_{2, N-1}=y_{N-1}-e_{N-1} h_{N-1} H\left(A u_{N-1}+B u_{N-2}\right)
\end{align*}
$$

Observe now that in (13) $x_{N-1}-\hat{x}_{N-1}$ does not depend on u^{N-2} because of a well known property of innovations [10]. Also observe that the assumption of Assertion 1 allows $D M 1$ to derive μ_{N-2}. Then $D M 1$ can compute μ_{N-1} as follows

$$
\begin{align*}
\hat{A}_{N-1} & =A \mu_{N-2}+B u_{N-2}+h_{N-1} p K_{2, N-1}\left[E\left(y_{N-1} I_{N-1}^{1}, e_{N-1}=1\right)-\right. \\
& \left.-H\left(A \mu_{N-2}+B u_{N-2}\right)\right]=A \mu_{N-2}+B u_{N-2}+h_{N-1} p K_{2, N-1}\left[s_{N-1}-\right. \\
& \left.-H\left(A \mu_{N-2}+B u_{N-2}\right)\right] \tag{17}
\end{align*}
$$

From properties which are similar to those of innovations, it is easy to see that $\mu_{N-1}-\hat{\mu}_{N-1}$ does not depend on u^{N-2}. The same is true for $\operatorname{cov}\left(\mu_{N-1}\right)$ $\mid I_{N-1}^{1}$) and for $\hat{x}_{N-1}-\hat{\mu}_{N-1}$, as ean be shown by subtracting (17) from (14).

Let us briefly discuss some cases where the hypothesis of Assertion 1 is fulfilled. Three cases are worth noting.

1) Communications are costly, but neither noisy ($\eta_{i}=0$) nor stochastically interrupted $(p=1)$. In this case, it is obviously unnecessary to send back messages from $D M 2$ to $D M 1$.
2) $A C M$: the assumption of Assertion 1 is satisfied if $w_{i}=y_{i-1}$.
3) $D C M$: the above assumption is satisfied if $w_{i}=e_{i-1}$.

Clearly, case 1 is a particular form of the $A C M$. Such a model has been partially discussed in [5]. Then, to avoid too tedious algebra, we shall abandon the general communication model (3) and go on applying the p.b.p. satisfactoriness criterion and dynamic programming by focusing attention on the $D C M$, which, on the other hand, seems to be more interesting in practical cases.

2.3. THE DIGITAL COMMUNICATION MODEL

a) Stage $\mathrm{N}-1$

DM2. We have already found DM2's optimal strategy at stage $N-1$ in the general case. This strategy holds true also in the present case without any modification. Thus we start from relation (13), obtained in the general case for $D M 1$.

DM1. With reference to the $D C M$ case, let us first specify the various quantities which appear in the from to be minimized in (13).

For $\hat{x}_{N-1}-\hat{\mu}_{N-1}$: form the Kalman filter equation (15) for μ_{N-1}, since μ_{N-2}, u_{N-2} and s_{N-1} are known to $D M 1$, it immediately follows:

$$
\begin{align*}
\hat{\mu}_{N-1} & =A \mu_{N-2}+B u_{N-2}+h_{N-1} p K_{2, N-1}\left[s_{N-1}-H\left(A_{N-2}+B u_{N-2}\right)\right]= \\
& =A \mu_{N-2}+B u_{N-2}+h_{N-1} p K_{2, N-1} \bar{v}_{2, N-1} \tag{18}
\end{align*}
$$

where $\bar{v}_{2, N-1} \triangleq s_{N-1}-H\left(A \mu_{N-2}+B u_{N-2}\right)$ is the innovation for a communication link without interruptions at stage $N-1$. Consequently:

$$
\hat{x}_{N-1}-\hat{\mu}_{N-1}=\hat{x}_{N-1}-A \mu_{N-2}-B u_{N-2}-h_{N-1} p K_{2, N-1} \bar{v}_{2, N-1}
$$

and defining

$$
\begin{align*}
& \lambda_{N-1} \stackrel{\Delta}{=} \hat{x}_{N-1}-A \mu_{N-2}-B u_{N-2} \tag{19}\\
& z_{N-1} \triangleq K_{2, N-1} \bar{v}_{2, N-1} \tag{20}
\end{align*}
$$

we can write

$$
\begin{equation*}
\hat{x}_{N-1}-\hat{\mu}_{N-1}=\lambda_{N-1}-h_{N-1} p z_{N-1} \tag{21}
\end{equation*}
$$

Of the two terms, λ_{N-1} and z_{N-1}, the former represents the difference between DM1's filtered estimate and DM2's predicted estimate of the state vector x_{N-1}; the latter represents the correction of $D M 2$'s predicted estimate, which is introduced in $D M 2$ receives the message s_{N-1}. Moreover, it is easily seen that both terms do not depend on u^{N-2}.

For $\operatorname{cov}\left(\mu_{N-1}^{1} / l_{\hat{N}-1}\right)$: substracting (18) from (15) and using definition (20), we obtain

$$
\begin{equation*}
\mu_{N-1}-\hat{\mu}_{N-1}=h_{N-1} z_{N-1}\left(e_{N-1}-p\right) \tag{22}
\end{equation*}
$$

and then:
$\operatorname{cov}\left(\mu_{N-1} / I_{N-1}^{1}\right)=h_{N-1} z_{N-1} z_{N-1}^{T} E\left[\left(e_{N-1}-p\right)^{2}\right]=z_{N-1} z_{N-1}^{T} p(1-p) h_{N-1}$
For $E\left[\left(x_{N-1}-\hat{x}_{N-1}\right)\left(\mu_{N-1}-\hat{\mu}_{N-1}\right)^{T} / I_{N-1}^{1}\right]$: using (22), we get
$E\left[\left(x_{N-1}-\hat{x}_{N-1}\right)\left(\mu_{N-1}-\hat{\mu}_{N-1}\right)^{T} / I_{N-1}^{1}\right]=$
$=E\left[\left(x_{N-1}-\hat{x}_{N-1}\right)\left(e_{N-1}-p\right) / I_{N-1}^{1}\right] z_{N-1}^{T} h_{N-1}=$
$=E\left[\left(x_{N-1}-\hat{x}_{N-1}\right) / I_{N-1}^{1}\right] E\left[e_{N-1}-p\right] z_{N-1}^{T} h_{N-1}=0$
To obtain (24), we have exploited the fact that e_{N-1} is independent of $x_{N-1}-\hat{x}_{N-1}$.

Substituting (21), (23) and (24) in (13), the expression of the cost for DM1 becomes:

$$
\begin{align*}
& J_{1, N-1}^{*}\left(I_{N-1}^{1}\right)=\left\|\hat{x}_{N-1}\right\|_{T_{N-1}}^{2}+\operatorname{tr}(V Q)+\operatorname{tr}\left(A^{T} V A \sum_{1, N-1}\right)+ \\
& +\min _{h_{N} \eta_{1}}\left\{\left\|\lambda_{N-1}-z_{N-1} p h_{N-1}\right\|_{S_{N-1}}^{2}+\operatorname{tr}\left(S_{N-1} z_{N-1} z_{N-1}^{T}\right) p(1-p) h_{N-1}+c h_{N-1}\right\} \tag{25}
\end{align*}
$$

We define:
$F_{N-1} \underline{\underline{\Delta}} \operatorname{tr}(V Q)+\operatorname{tr}\left(A^{T} V A \sum_{1, N-1}\right)$
It is worth noting that F_{N-1} is independent of $h^{* N-2}$ (and also of u^{N-2}). This fact will be useful to further developments in the following stages. Adding and subtracting $\left\|\lambda_{N-1}\right\|_{S_{N-1}}^{2} p$ in (25), after some algebraic manipulations, we get

$$
\begin{align*}
& J_{1, N-1}^{*}\left(I_{N-1}^{1}\right)=F_{N-1}+\left\|\hat{x}_{N-1}\right\|_{T_{N}}^{0}+\left\|\lambda_{N-1}\right\|_{S_{N-1}}^{2}(1-p)+ \\
& +p \min _{h_{N}-1}\left\{\left\|\lambda_{N-1}-z_{N-1} h_{N-1}\right\|_{S_{N-1}}^{2}+\frac{c h_{N-1}}{p}\right\} \tag{27}
\end{align*}
$$

In the preceding expression, we define:

$$
\begin{align*}
& G_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) \underline{\Delta_{h_{N}-1}} \min \left\{\left\|\lambda_{N-1}-z_{N-1} h_{N-1}\right\|_{S_{N-1}}^{2}+\frac{c h_{N-1}}{p}\right\} \tag{28}\\
& z_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) \stackrel{\Delta}{\underline{\Delta}}\left\|\lambda_{N-1}\right\|_{S_{N-1}}^{2}(1-p)+p G_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) \tag{29}
\end{align*}
$$

From (28) it follows that the decision law for DM1 takes on the form:
$h_{N-1}^{0}=\gamma_{1, N-1}^{0}\left(I_{N-1}^{1}\right)=f_{N-1}\left(\lambda_{N-1}, z_{N-1}\right)=f_{N-1}\left(-\lambda_{N-1},-z_{N-1}\right)$
Thus, h_{N-1}^{0} is symmetrical with respect to the vector $t_{N-1}=\left[\lambda_{N-1}^{T}, z_{N-1}^{T}\right]^{T}$. As has been shown in Section 2.2, DM1's p.b.p.s. decision law (30) is also optimal.

b) Stage $\mathrm{N}-2$

DM2. A necessary condition for the optimality of $\gamma_{2, N-2}$ is the following:
$E\left[J\left(\gamma_{1}^{* N-2}, \gamma_{1, N-1}^{0}, \gamma_{2}^{* N-3}, \gamma_{2, N-2}^{*}, \gamma_{2, N-1}^{0}\right)\right] \leqslant$
$\leqslant E\left[J\left(\gamma_{1}^{* N-2}, \gamma_{1, N-1}^{0}, \gamma_{2}^{* N-3}, \gamma_{2, N-2}, \gamma_{2, N-1}^{0}\right)\right]$
Since $D M 1$'s strategies are fixed, we can'go on applying dynamic programming to derive $\gamma_{2}{ }^{*}{ }_{N-2}$, i.e.,

$$
\begin{align*}
& J_{2, N-2}^{*}\left(I_{N-2}^{2}\right)=\min \left\{\left\|u_{N-2}\right\|_{\mathrm{P}}^{2}+E\left[c h_{N-1}^{0}+J_{2, N-1}^{0}\left(I_{N-1}^{2}\right) / I_{N-2}^{2}\right]\right\}= \\
& =\min \left\{\left\|u_{N-2}\right\|_{P}^{2}+E\left[c h_{N-1}^{0}+\left\|\mu_{N-1}\right\|_{T_{N-1}}^{2}+C_{N-1}\left(\sum_{2, N-1}\right) / I_{N-2}^{2}\right]\right\} \tag{32}
\end{align*}
$$

where $\sum_{2, N-1}=\operatorname{cov}\left(x_{N-1} / I_{N-1}^{2}\right)$ and, as in the classical case [11], $J_{2, N-1}^{0}\left(I_{N-1}^{2}\right) \underline{\underline{2}}\left\|\mu_{N-1}\right\|_{T_{N-1}}^{2}+C_{N-1}\left(\sum_{2, N-1}\right)=J_{2, N-1}^{*}\left(I_{N-1}^{2}\right)$.

The two terms $c h_{N-1}$ and $C_{N-1}\left(\sum_{2, N-1}^{2, N-1}\right)$ can be taken out of the minimization, since h_{N-1}^{0} and $\sum_{2, N-1}$ do not depend on u^{N-2}. Then we can write:

$$
\begin{align*}
& J_{2, N-2}^{*}\left(I_{N-2}^{2}\right)=E\left[c h_{N-1}^{0}+C_{N-1}\left(\sum_{2, N-1}\right) / I_{N-2}^{2}\right]+ \\
& +\min _{u_{N-2}}\left\{\left\|u_{N-2}\right\|_{P}^{2}+\left\|E\left[\mu_{N-1} / I_{N-2}^{2}\right]\right\|_{T_{N-1}}^{2}+\operatorname{tr}\left[T_{N-1} \operatorname{cov}\left(\mu_{N-1} / I_{N-2}^{2}\right)\right]\right\} \tag{33}
\end{align*}
$$

Let us consider the various quantities which appear in the term to be minimized.

For $E\left[\mu_{N-1} / I_{N-2}^{2}\right]$: from the Kalman filter equation (15), we have:

$$
\begin{equation*}
E\left[\mu_{N-1} / I_{N-2}^{2}\right]=A \mu_{N-2}+B u_{N-2}+E\left[e_{N-1} h_{N-1}^{0} K_{2, N-1} \bar{v}_{2, N-1} / I_{N-2}^{2}\right] \tag{34}
\end{equation*}
$$

As $e_{N-1} h_{N-1}^{0}$ is a binary random variable which can attain only the values 1 or 0 , we can write

$$
\begin{align*}
& E\left[e_{N-1} h_{N-1}^{0} K_{2, N-1} \bar{v}_{2, N-1} / I_{N-2}^{2}\right]= \\
& =K_{2, N-1} E\left[\bar{v}_{2, N-1} / I_{N-2}^{2}, e_{N-1} h_{N-1}^{0}=1\right] \operatorname{Pr}\left\{e_{N-1} h_{N-1}^{0}=1\right\}=0 \tag{35}
\end{align*}
$$

$\nu_{2, N-1}$ being a zero-mean random vector according to the well-known property of innovations [10]. Thus

$$
\begin{equation*}
E\left[\mu_{N-1} / I_{N-2}^{2}\right]=A \mu_{N-2}+B u_{N-2} \tag{36}
\end{equation*}
$$

For $\operatorname{cov}\left(\mu_{N-1} / I_{N-2}^{2}\right)$: from (34) and (36) we get

$$
\begin{equation*}
\operatorname{cov}\left(\mu_{N-1} / I_{N-2}^{2}\right)=E\left[e_{N-1} h_{N-1}^{0} K_{2, N-1} \bar{v}_{2, N-1} \bar{\nu}_{2, N-1}^{T} K_{2, N-1}^{T} / I_{N-2}^{2}\right] \tag{37}
\end{equation*}
$$

and since $e_{N-1}, h_{N-1}^{0}, K_{2, N-1}, \bar{v}_{2, N-1}$ do not depend on u^{N-2}, also (37) can be taken out of the minimization, Then, defining

$$
\begin{equation*}
D_{N-2} \Delta E\left[c_{N-1}^{0}+C_{N-1}\left(\sum_{2, N-1}\right) / I_{N-2}^{2}\right]+\operatorname{tr}\left[T_{N-1} \operatorname{cov}\left(\mu_{N-1} / I_{N-2}^{2}\right)\right] \tag{38}
\end{equation*}
$$

and substituting (36) in the expression of the cost (33), it results

$$
\begin{equation*}
J_{2, N-2}^{*}\left(I_{N-2}^{2}\right)=D_{N-2}+\min _{u_{N-2}}\left\{\left\|u_{N-2}\right\|_{P}^{2}+\left\|A \mu_{N-2}+B u_{N-2}\right\|_{T_{N-1}}^{2}\right\} \tag{39}
\end{equation*}
$$

Minization of (39) yields

$$
\begin{align*}
& u_{N-2}^{*}=\gamma_{2, N-2}^{*}\left(I_{N-2}^{2}\right)=-L_{N-2} \mu_{N-2} \tag{40}\\
& J_{2, N-2}^{*}\left(I_{N-2}^{2}\right)=D_{N-2}+C_{N-2}\left(\sum_{2, N-2}\right)+\left\|\mu_{N-2}\right\|_{T_{N-2}}^{2} \tag{41}
\end{align*}
$$

where the quantities $L_{N-2}, T_{N-2}, C_{N-2}\left(\sum_{2, N-2}\right)$ are the same as in the classical case; namely, for the first two of them, $L_{N-2}=\left(P+B^{T} T_{N-1} B\right)^{-1} B^{T} T_{N-1} A$, $T_{N-2}=A^{T}\left[T_{N-1}-T_{N-1} B\left(P+B^{T} T_{N-1} B\right)^{-1} B^{T} T_{N-1}\right] A$.
Again, we can observe that the unique strategy $\gamma_{2, N-2}^{*}$ depends on the sequences $h^{* N-2}$ and $u^{* N-3}$, but it does not depend on the particular form of the strategies $\gamma_{1}^{* N-2}$ and $\gamma_{2}^{* N-3}$. Thus, $\gamma_{2, N-2}^{*}$ is optimal. Let $\gamma_{2}^{*}, N-2=\gamma_{2, N-2}^{*}$ Besides, it is worth noting that the quantity $D_{N-2}+C_{N-2}\left(\sum_{2, N-2}\right)$ is independent of u^{N-2}. This fact will be useful in the following stages.
$D M 1$. A necessary condition for the optimality of $\gamma_{1, N-2}$ is the following:

$$
\begin{align*}
& E\left[J\left(\gamma_{1}^{* N-2}, \gamma_{1, N-1}^{0}, \gamma_{2, N-2}^{*}, \gamma_{2, N-1}^{0}\right)\right] \leqslant \\
& \leqslant E\left[J\left(\gamma_{1}^{* N-3}, \gamma_{1, N-2}, \gamma_{1, N-1}^{0}, \gamma_{2}^{* N-3}, \gamma_{2, N-2}^{0}, \gamma_{2, N-1}^{0}\right)\right] \tag{42}
\end{align*}
$$

Since $D M 2$'s strategies are fixed, we can apply dynamic programming and obtain

$$
\begin{align*}
& J_{1, N-2}^{*}\left(I_{N-2}^{1}\right)=\min _{h_{N-2}}\left\{c h_{N-2}+E\left[\left\|u_{N-2}^{0}\right\|_{P}^{2}+J_{1, N-1}^{0}\left(I_{N-1}^{1}\right) / I_{N-2}^{1}\right]\right\}= \\
& =\min \left\{c h_{N-2}+E\left[\left\|u_{N-2}^{0}\right\|_{P}^{2}+F_{N-1}+\left\|\hat{x}_{N-1}\right\|_{T_{N-1}}^{2}+\right.\right. \\
& \left.\left.+z_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) / I_{N-2}^{1}\right]\right\}=F_{N-1}+\min \left\{c h_{N-2}+\right. \\
& +\left\|{\hat{h_{N-2}}}_{N-2}\right\|_{L_{N-2}}^{2}{ }_{2 L_{N-2}}+\operatorname{tr}\left[L_{N-2}^{T} P L_{N-2} \operatorname{cov}\left(\mu_{N-2} / I_{N-2}^{1}\right)\right]+ \\
& +\left\|E\left[\hat{x}_{N-1} / I_{N-2}^{1}\right]\right\|_{T_{N-1}}^{2}+\operatorname{tr}\left[T_{N-1} \operatorname{cov}\left(\hat{x}_{N-1} / I_{N-2}^{1}\right)\right]+ \\
& \left.+E\left[z_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) / I_{N-2}^{1}\right]\right\} \tag{43}
\end{align*}
$$

We have now to specify some of the quantities which appear in the preceding expression of the cost.

For $E\left[\hat{x}_{N-1} / I_{N-2}^{1}\right]$: as the innovation $\boldsymbol{v}_{1, N-1}$ is zero-mean, we have

$$
\begin{align*}
& E\left[\hat{x}_{N-1} I_{N-2}^{1}\right]=E\left[A \hat{x}_{N-2}+B u_{N-2}^{0}+K_{1, N-1} v_{1, N-1} / I_{N-1}^{1}\right]= \\
& =A \hat{x}_{N-2}-B L_{N-2} \hat{\mu}_{N-2} \tag{44}
\end{align*}
$$

For $\operatorname{cov}\left(\hat{x}_{N-1} / I_{N-2}^{1}\right)$:
$\operatorname{cov}\left(\hat{x}_{N-1} / I_{N-2}^{1}\right)=\operatorname{cov}\left[\left(A \hat{X}_{N-2}-B L_{N-2} \mu_{N-2}+\dot{K}_{1, N-1} v_{1, N-1}\right) / I_{N-2}^{1}\right]=$
$=B L_{N-2} \operatorname{cov}\left(\mu_{N-2} / I_{N-2}^{1}\right) L_{N-2}^{T} B^{T}+K_{1, N-1} \operatorname{cov}\left(\nu_{1, N-1} / I_{N-2}^{1}\right) K_{1, N-1}^{T}+$
$-B L_{N-2} \operatorname{cov}\left(\mu_{N-2}, v_{1, N-1} / I_{N-2}^{1}\right) K_{1, N-1}^{T}-$
$-K_{1, N-1} \operatorname{cov}\left(\nu_{1, N-1}, \mu_{N-2} / I_{N-2}^{1}\right) L_{N-2}^{T} B^{T}$
where $\operatorname{cov}(a, b)=E\left\{[a-E(a)][b-E(b)]^{T}\right\}$. Now we shall show that the two cross covariances in (45) are zero, namely:

$$
\begin{align*}
& \operatorname{cov}\left(\mu_{N-2}, v_{1, N-1} / I_{N-2}^{1}\right)=\operatorname{cov}\left[\mu_{N-2},\left(H A x_{N-2}+H \xi_{N-2}+\zeta_{N-1}^{\prime}-\right.\right. \\
& \left.\left.-H A \hat{x}_{N-2}\right) / I_{N-2}^{1}\right] \tag{46}
\end{align*}
$$

Since \hat{x}_{N-2} is known to $D M 1$, and ξ_{N-2}, ζ_{N-1} are uncorrelated with μ_{N-2}, we have:

$$
\begin{align*}
& \operatorname{cov}\left(\mu_{N-2}, v_{1, N-1} / I_{N-2}^{1}\right)=\operatorname{cov}\left(\mu_{N-2}, x_{N-2} / I_{N-2}^{1}\right) A^{T}= \\
& =\operatorname{cov}\left[\left(A \mu_{N-3}+B u_{N-3}+e_{N-2} h_{N-2} K_{2, N-2} \bar{v}_{2, N-2}\right), x_{N-2} / I_{N-2}^{1}\right] A^{\boldsymbol{T}} H^{\boldsymbol{T}} \tag{47}
\end{align*}
$$

Again, $\mu_{N-3}, u_{N-3}, K_{N-2}, \bar{v}_{2, N-2}$ being quantities known to $D M 1$ at the present stage, and being e_{N-2} independent of x_{N-2}, it turns out that $\operatorname{cov}\left(\mu_{N-2}, v_{1, N-1} / I_{N-2}^{1}\right)=0$.

As regards the second term in (45), we have:

$$
\begin{align*}
& \operatorname{cov}\left(v_{1, N-1} / I_{N-2}^{1}\right)=\operatorname{cov}\left[H A\left(x_{N-2}-\hat{x}_{N-2}\right)+H \xi_{N-2}+\zeta_{N-1}\left(I_{N-2}^{1}\right]=\right. \\
& =H\left(A \sum_{1, N-2} A^{T}+Q\right) H^{T}+R=H \sum_{1, N-1}^{P} H^{T}+W \underline{\underline{\Delta}} N_{1, N-1} \tag{48}
\end{align*}
$$

where $\sum_{1, N-1}^{P}$ is the covariance of the one-step predicted estimate of x_{N-1} made by DM1 at stage $N-2$. Substitution of the preceding results in (45) yields

$$
\begin{align*}
& \operatorname{cov}\left(\hat{x}_{N-1} / I_{N-2}^{1}\right)=B L_{N-2} \operatorname{cov}\left(\mu_{N-2} / I_{N-2}^{1}\right) L_{N-2}^{T} B^{T}+ \\
& +K_{1, N-1} N_{1, N-1} K_{1, N-1}^{T} \tag{49}
\end{align*}
$$

where the last term does not depend on $h^{* N-2}$.
Substituting (44) and (49) in (43), and adding and subtracting the quantity $\left\|\hat{x}_{N-2}\right\|_{T_{N-2}}^{2}$, after some algebraic manipulations, we have

$$
\begin{align*}
& J_{1, N-2}^{*}\left(I_{N-2}^{1}\right)=F_{N-1}+\operatorname{tr}\left[T_{N-1} K_{1, N-1} N_{1, N-1} K_{1, V-1}^{T}\right]+ \\
& +\min \left\{c h_{N-2}+\left\|\hat{x}_{N-2}-\hat{\mu}_{N-2}\right\|_{S_{N-2}}^{2}+\operatorname{tr}\left[S_{N-2} \operatorname{cov}\left(\mu_{N-2} / I_{N-2}^{1}\right)\right]+\right. \\
& \left.+E\left[Z_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) / I_{N-2}^{1}\right]\right\} \tag{50}
\end{align*}
$$

where $S_{N-2} \triangleq A^{T} T_{N-1} A-T_{N-2}$.

Define

$$
\begin{equation*}
F_{N-2} \triangleq F_{N-1}+\operatorname{tr}\left[T_{N-1} K_{1, N-1} N_{1, N-1} K_{1, N-1}^{T}\right] \tag{51}
\end{equation*}
$$

and observe that in (50) the part to be minimized is analogous to the one appearing in (13). Then, following the same procedure used to obtain (27), we can finally write

$$
\begin{align*}
& J_{1, N-2}^{*}\left(I_{N-2}^{1}\right)=F_{N-2}+\left\|\hat{X}_{N-2}\right\|_{T_{N-2}}^{2}+\left\|\lambda_{N-2}\right\|_{S_{N-2}}^{2}(1-p)+ \\
& +p \min _{h_{N-2}}\left\{\left\|\lambda_{N-2}-z_{N-2} h_{N-2}\right\|_{S_{N-2}}^{2}+\frac{c h_{N-2}}{p^{2}}+\frac{1}{p} E\left[Z_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) / I_{N-2}^{1}\right]\right\} \tag{52}
\end{align*}
$$

The form of (54) differs from that of (27) because of the presence of the expectation in the part which has to be minimized. To compute this expectation, we must first find the probability density $p\left(\lambda_{N-1}, z_{N-1} / I_{N-2}^{1}\right)=p\left(t_{N-1} /\right.$ $\left(I_{N-2}\right)$. This will be the subject of the following discussion.

For λ_{N-1}, using the Kalman filter equation of \hat{X}_{N-1} in (19) we can write

$$
\begin{align*}
& \lambda_{N-1}=A\left(\hat{x}_{N-2}-\mu_{N-2}\right)+K_{1, N-1} v_{1, N-1}= \\
& =A\left(\hat{x}_{N-2}-A \mu_{N-3}-B u_{N-3}-e_{N-2} h_{N-2} K_{2, N-2} \bar{v}_{2, N-2}\right)+K_{1, N-1} v_{1, N-1}= \\
& =A\left(\lambda_{N-2}-e_{N-2} h_{N-2} z_{N-2}\right)+K_{1, N-1} v_{1, N-1} \tag{53}
\end{align*}
$$

The random variables in (53) are the binary random variable e_{N-2} and the innovation term $\nu_{1}, N-1$, which is Gaussian with zero mean and covariance $N_{1, N-1}$ given by (48).

Putting definitions (20) and (53) together, we can write:

$$
t_{N-1}=\left[\begin{array}{l}
\lambda_{N-1} \tag{54}\\
z_{N-1}
\end{array}\right]=,\left[\begin{array}{cc}
A & -e_{N-2} h_{N-2} A \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\lambda_{N-2} \\
z_{N-2}
\end{array}\right]+\left[\begin{array}{cc}
K_{1, N-1} & 0 \\
0 & K_{2, N-1}
\end{array}\right]\left[\begin{array}{l}
v_{1, N-1} \\
\bar{v}_{2, N-1}
\end{array}\right]
$$

In (54), the gain $K_{2, N-1}$ depends on the value assumed by the product $e_{N-2} h_{N-2}$, that is:

$$
\begin{equation*}
K_{2, N-1}=\sum_{2, N-1}^{P} H^{T}\left(H \sum_{2, N-1}^{P} H^{T}+W\right)^{-1} \tag{55}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{2, N-1}^{P}=A\left[\sum_{2, N-2}^{P}-h_{N-2} \dot{e}_{N-2} K_{2, N-2} H \sum_{2, N-2}^{P}\right] A^{T}+Q \tag{56}
\end{equation*}
$$

It follows that $K_{2, N-1}$ can assume two different values, which are easily derived from (55) and (56). Define

$$
K_{2, N-1} \triangleq\left\{\begin{array}{l}
K_{2, N-1}^{a}, e_{N-2} h_{N-2}=1 \\
K_{2, N-1}^{b}, e_{N-2} h_{N-2}=0
\end{array}\right.
$$

according to this definition, we can rewrite (54) in the following form:

$$
\begin{align*}
& {\left[\begin{array}{l}
\lambda_{N-1} \\
z_{N-1}
\end{array}\right]=\left\{\left[\begin{array}{cc}
A & -h_{N-2} A \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\lambda_{N-2} \\
z_{N-2}
\end{array}\right]+\right.} \\
& \left.+\left[\begin{array}{cc}
K_{1, N-1} \\
0 & K_{2, N-1}^{a} h_{N-2}+K_{2, N-1}^{b}\left(1-h_{N-2}\right)
\end{array}\right]\left[\begin{array}{l}
v_{1, N-1} \\
\bar{v}_{2, N-1}
\end{array}\right]\right\} e_{N-2}+ \\
& +\left\{\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\lambda_{N-2} \\
z_{N-2}
\end{array}\right]+\left[\begin{array}{cc}
K_{1, N-1} & 0 \\
0 & K_{2, N-1}^{b}
\end{array}\right]\left[\begin{array}{l}
v_{1, N-1} \\
\bar{v}_{2, N-1}
\end{array}\right]\right\}\left(1-e_{N-2}\right) \tag{57}
\end{align*}
$$

Now, we can write:

$$
\begin{align*}
& p\left(t_{N-1} / I_{N-2}^{1}\right)=p\left(t_{N-1} / I_{N-2}^{1}, e_{N-2}=1\right) p+ \\
& +p\left(t_{N-1} / I_{N-2}^{1}, e_{N-2}=0\right)(1-p) \tag{58}
\end{align*}
$$

We see immediately from (57) that the two probability densities appearing in (58) are Gaussian with mean

$$
\left[\begin{array}{c}
A\left(\lambda_{N-2}-h_{N-2} z_{N-2}\right) \\
0
\end{array}\right] ;\left[\begin{array}{c}
A \lambda_{N-2} \\
0
\end{array}\right]
$$

respectively (since $\nu_{1, N-1}$ and $\nu_{2, N-1}$ for a given e_{N-2} are Gaussian and zero-mean in any case). Their covariances depend respectively on

$$
\begin{aligned}
& \operatorname{cov}\left[\left(v_{1, N-1}^{T}, \bar{v}_{2, N-1}^{T}\right)^{T} / I_{N-2}^{1}, e_{N-2}=0\right] ; \\
& \operatorname{cov}\left[\left(v_{1, N-1}^{T}, \bar{\nu}_{2, N-1}^{T}\right)^{T} / I_{N-2}^{1}, e_{N-2}=1\right]
\end{aligned}
$$

To compute the two preceding covariances, let us consider separately the various submatrices into which they can be decomposed. We first note that the covariance of $\bar{v}_{2, N-1}$ depends on the value assumed by the product $e_{N-2} h_{N-2}$, that is:

$$
\begin{equation*}
\operatorname{cov}\left(\bar{v}_{2, N-1} / I_{N-2}^{1}, e_{N-2} h_{N-2}\right)=H \sum_{2, N-1}^{P} H^{T}+W \tag{59}
\end{equation*}
$$

where $\sum_{2, N-1}^{P}$ is given by (56). Hence the covariance can assume two distinct values, which are easily derived from (56) and (59). Define

$$
\operatorname{cov}\left(\bar{v}_{2, N-1} / I_{N-2}^{1}, e_{N-2} h_{N-2}\right) \triangleq\left\{\begin{array}{l}
N_{2, N-1}^{a}, e_{N-2} h_{N-2}=1 \\
N_{2, N-1}^{b}, e_{N-2} h_{N-2}=0
\end{array}\right.
$$

Therefore, since h_{N-2} is not a random variable, but a parameter to be chosen, we can write:

$$
\operatorname{cov}\left(\bar{v}_{2, N-1} / I_{N-2}^{1}, e_{N-2}\right)=\left\{\begin{array}{l}
N_{2, N-1}^{a} h_{N-2}+N_{2, N-1}^{b}\left(1-h_{N-2}\right), e_{N-2}=1 \tag{60}\\
N_{2, N-1}^{b}, \\
, e_{N-2}=0
\end{array}\right.
$$

For the covariance of $\nu_{1, N-1}$ we have:
$\operatorname{cov}\left(v_{1, N-1} / I_{N-2}^{1}, e_{N-2}\right)=H \sum_{1, N-1}^{\mathbf{p}} H^{T}+W=\operatorname{cov}\left(v_{1, N-1} / I_{N-2}^{1}\right)=N_{1, N-1}$
$\sum_{1, N-1}^{P}$ being independent of the product $e_{N-2} h_{N-2}$.
The last term to be computed is the cross covariance between $v_{1, N-1}$ and $\bar{v}_{2, N-1}$. We have

$$
\begin{align*}
& \operatorname{cov}\left(v_{1, N-1}, \bar{v}_{2, N-1} / I_{N-2}^{1}, e_{N-2}\right)=\operatorname{cov}\left[H A\left(x_{N-2}-\hat{x}_{N-2}\right)+\right. \\
& \left.+H \xi_{N-2}+\zeta_{N-1}, H A\left(x_{N-2}-\mu_{N-2}\right)+H \xi_{N-2}+\zeta_{N-1} / I_{N-2}^{1}, e_{N-2}\right]= \\
& =H A \operatorname{cov}\left[\left(x_{N-2}-\hat{x}_{N-2}\right),\left(x_{N-2}-\mu_{N-2}\right) / I_{N-2}^{1}, e_{N-2}\right] A^{T} H^{T}+H Q H^{T}+W \tag{62}
\end{align*}
$$

Taking the expectations, we can write:

$$
\begin{align*}
& \operatorname{cov}\left(v_{1, N-1}, \bar{v}_{2, N-1} / I_{N-2}^{1}, e_{N-2}\right)=H A E\left\{(x _ { N - 2 } - \hat { x } _ { N - 2 }) \left[\left(x_{N-2}-\hat{x}_{N-2}\right)^{T}-\right.\right. \\
& \left.\left.-\left(\mu_{N-2}-\hat{\mu}_{N-2}\right)^{T}\right] / I_{N-2}^{1}, e_{N-2}\right\} A^{T} H^{T}+H Q H^{T}+W= \\
& =H\left[A \sum_{1, N 2} A^{T}+Q\right] H^{T}+W+H A E\left[\left(x_{N-2}-\hat{x}_{N-2}\right) \mu_{N-2}^{T} / I_{N-2}^{1}, e_{N-2}\right] \tag{63}
\end{align*}
$$

The last term in (63) is zero for the following reasons: μ_{N-2} is a linear combination of observations $s_{i}, x_{N-2}-\hat{x}_{N-2}$ (estimation error) is always orthogonal to all the observations s_{l} (orthogonality principle). Moreover, we note that the sum of the first two terms in (63) is the covariance $N_{1, N-1}$ of $\boldsymbol{v}_{1, N-1}$ previously defined. Hence we have:

$$
\begin{equation*}
\operatorname{cov}\left(v_{1, N-1}, \bar{\nu}_{2, N-1} I_{N-2}^{1}, e_{N-2}\right)=N_{1, N-1} \tag{64}
\end{equation*}
$$

independent of the value assumed by e_{N-2}.
Finally, using (60), (61) and (64), we can write explicitly the expression of the probability density (58) as follows:

$$
\begin{aligned}
& p\left(t_{N-1} / I_{N-1}^{1}\right)=n\left(\left[\frac{A\left(\lambda_{N-2}-h_{N-2} z_{N-2}\right)}{0}\right] ;\left[\begin{array}{cc}
K_{1, N-1} & 0 \\
0 & K_{2, N-1}^{a} h_{N-2}+ \\
& K_{2, N-1}^{b}\left(1-h_{N-2}\right)
\end{array}\right] \times\right. \\
& \left.\times\left[\begin{array}{cc}
N_{1, N-1} & 0 \\
& N_{2, N-1}^{a} h_{N-2}+ \\
N_{1, N-1} & N_{2, N-1}^{b}\left(1-h_{N-2}\right)
\end{array}\right]\left[\begin{array}{cc}
K_{1, N-1} & 0 \\
& K_{2, N-1}^{a} h_{N-2}+ \\
0 & N_{2, N-1}^{b}\left(1-h_{N-2}\right)
\end{array}\right]^{T}\right) p+ \\
& +n\left(\left[\begin{array}{c}
A \lambda_{N-2} \\
0
\end{array}\right] ;\left[\begin{array}{cc}
K_{1, N-1} & 0 \\
0 & K_{2, N-1}^{b}
\end{array}\right]\left[\begin{array}{ll}
N_{1, N-1} & N_{1, N-1} \\
N_{1, N-1} & N_{2, N-1}^{b}
\end{array}\right]\left[\begin{array}{ccc}
K_{1, N-1} & 0 \\
& & \\
0 & K_{2, N-1}^{b}
\end{array}\right]^{T}\right)\left(\begin{array}{l}
(1-p) \\
(65)
\end{array}\right.
\end{aligned}
$$

By means of (65) it is possible to compute the expectation which appears in the expression of the cost (52), that is:

$$
\begin{align*}
& \quad E\left[Z_{N-1}\left(\lambda_{N-1} Z_{N-1}\right) / I_{N-2}^{1}\right]=p \\
& \left.\quad Z_{N-1}\left(t_{N-1}\right) p\left(t_{N-1} / I_{N-2}^{1}\right) e_{N-2}=1\right) d t_{N-1}+ \\
& +(1-p) \int Z_{N-1}\left(t_{N-1}\right) p\left(t_{N-1} I_{N-2}^{1}, e_{N-2}=0\right) d t_{N-1} \tag{66}
\end{align*}
$$

We note that (66) is a function of $\lambda_{N-2}, z_{N-2}, \sum_{2, N-2}^{P}$ (see (65)); moreover, (65) is an even function of λ_{N-2} and z_{N-2}.

The results obtained allow us to go back to the cost (52), and define:

$$
\begin{align*}
& G_{N-2}\left(\lambda_{N-2}, z_{N-2}, \sum_{2, N-2}^{P}\right) \triangleq \min _{h_{N-2}}\left\{\left\|\lambda_{N-2}-z_{N-2} h_{N-2}\right\|_{S_{N-2}}^{2}+\right. \\
& \left.+\frac{1}{p} E\left[Z_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) I_{N-2}^{1}\right]+\frac{c h_{N-2}}{p}\right\} \tag{67}
\end{align*}
$$

$Z_{N-2}\left(\lambda_{N-2}, z_{N-2}, \sum_{2, N-2}^{P}\right)=\left\|\lambda_{N-2}\right\|_{S_{N-2}}^{2}(1-p)+p G_{N-2}\left(\lambda_{N-2}, z_{N-2}, \sum_{2, N-2}^{P}\right)$
so that the expression of the cost becomes

$$
\begin{equation*}
J_{1, N-2}^{*}\left(I_{N-2}^{1}\right)=F_{N-2}+\left\|\hat{x}_{N-2}\right\|_{T_{N-2}}^{2}+Z_{N-2}\left(\lambda_{N-2}, z_{N-2}, \sum_{2, N-2}^{p}\right) \tag{69}
\end{equation*}
$$

From (67) it follows that the decision law for DM1 at stage $N-2$ takes on the form

$$
\begin{align*}
& h_{N-2}^{*}=\gamma_{1, N-2}^{*}\left(I_{N-2}^{1}\right)=f_{N-2}\left(\lambda_{N-2}, z_{N-2}, \sum_{2, N-2}^{P}\right)= \\
& =f_{N-2}\left(-\lambda_{N-2},-z_{N-2}, \sum_{2, N-2}^{P}\right) \tag{70}
\end{align*}
$$

We note that, at stage $N-2$, the information set I_{N-2}^{1} reduces to the quantities $\lambda_{N-2}, z_{N-2}, \sum_{2, N-2}^{P}$. At stage $N-1, I_{N-1}^{1}$ consisted only of the two quantities λ_{N-1} and z_{N-1}. Also observe that the unique strategy $\gamma^{*}, N-2$ turns out to be independent of the form of the strategies $\gamma_{1}^{* N-3}$ and $\gamma_{2}^{* N-3}$. Hence $\gamma_{1, N-2}^{*}$ is optimal, and we write $\gamma_{1, N-2}^{*}=\gamma_{1, N-2}^{0}$.

It is clear now that the calculations performed at stage $N-2$ can be extended to the preceding stages, so that we can formally state the results obtained in the following

Theorem: If, in the $D C M$ problem, $w_{i}=e_{i-1}$, the optimal strategies of the two $D M s$ may be determined as follows:

- DM2's optimal strategy is given by

$$
\begin{equation*}
u_{i}^{0}\left(I_{i}^{2}\right)=-L_{i} \mu_{i}, \quad i=0,1, \ldots, N-1 \tag{71}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{i}=\left(P+B^{T} T_{i+1} B\right)^{-1} B^{T} T_{i+1} A \tag{72}
\end{equation*}
$$

$$
\begin{align*}
& T_{i}=A^{T}\left[T_{i+1}-T_{i+1} B\left(P+B^{T} T_{i+1} B\right)^{-1} B T_{i+1}\right] A, T_{N}=V \tag{73}\\
& \mu_{i} \triangleq E\left(x_{i} / I_{2}^{2}\right)=A \mu_{i-1}+B u_{i-1}+e_{i} h_{i} K_{2 i} \bar{v}_{2 i} \tag{74}\\
& \bar{v}_{2 i} \triangleq s_{i}-H\left(A \mu_{i-1}+B u_{i-1}\right) \tag{75}\\
& \sum_{2, i+1}^{P} \triangleq \operatorname{cov}\left(x_{i+1} I_{i}^{2}\right)=A\left[\sum_{2 i}^{P}-e_{i} h_{i} K_{2 i} H \sum_{2 i}^{P}\right] A^{T}+Q \tag{76}\\
& K_{2 i}=\sum_{2 i}^{P} H^{T}\left(H \sum_{2 i}^{P} H^{T}+W\right)^{-1} \tag{77}
\end{align*}
$$

under the initial conditions

$$
\mu_{0}=\alpha+e_{0} h_{0} K_{20}\left(y_{0}-H \alpha\right), \sum_{20}^{P}=\sum
$$

- DM1's optimal strategy is given by

$$
\begin{align*}
& h_{i}^{0}=f_{i}\left(\lambda_{i}, z_{i}, \sum_{2 i}^{P}\right), \quad i=0,1, \ldots, N-2 \tag{78}\\
& h_{N-1}^{0}=f_{N-1}\left(\lambda_{N-1}, z_{N-1}\right) \tag{79}
\end{align*}
$$

where

$$
\begin{align*}
\lambda_{i} & =\hat{X}_{i}-A \mu_{i-1}-B u_{i-1} \tag{80}\\
z_{i} & =K_{2 i} \bar{v}_{2 i}=K_{2 i}\left[s_{i}-H\left(A \mu_{i-1}+B u_{i-1}\right)\right] \tag{81}
\end{align*}
$$

with \hat{x}_{i} 今 $E\left(x_{i} / I_{i}^{1}\right)$ obtained by $D M 1$ via a Kalman filter. The optimal decision laws (78), (79) are obtained by solving the following recursive equations:

$$
G_{i}\left(\lambda_{i}, z_{i}, \sum_{2 i}^{P}\right)=\min _{h_{2}}\left\{\left\|\lambda_{i}-z_{i} h_{i}\right\|_{S_{i}}^{2}+\right.
$$

$$
\begin{equation*}
\left.+\frac{1}{p} E\left[Z_{i+1}\left(\lambda_{i+1}, z_{i+1}, \sum_{2, i+1}^{P}\right) / I_{i}^{1}\right]+\frac{c h_{i}}{p}\right\} \tag{82}
\end{equation*}
$$

$$
\begin{equation*}
Z_{i}\left(\lambda_{i}, z_{i}, \sum_{2 i}^{P}\right)=\left\|\lambda_{i}\right\|_{S_{i}}^{2}(1-p)+p G_{i}\left(\lambda_{i}, z_{i}, \sum_{2 i}^{P}\right), \quad i=0,1, \ldots, N-2 \tag{83}
\end{equation*}
$$

where $z_{N}()=$.0 , so that $G_{N-1}()=.G_{N-1}\left(\lambda_{N-1}, z_{N-1}\right), Z_{N-1}()=.Z_{N-1}\left(\lambda_{N-1}\right.$, z_{N-1}), and

$$
\begin{equation*}
S_{i}=A^{T} T_{i+1} A-T_{i} \quad i=0,1, \ldots, N-1 \tag{84}
\end{equation*}
$$

In (82), expectations are computed by means of the probability densities $p\left(\lambda_{i+1}, z_{i+1} / I_{i}^{1}\right)$ given by (65) after the appropriate subsitution of indexes.

The main results of the above Theorem are the following. DM2's optimal
decision strategy is linear and can be implemented on the basis of a well known separation property. This attractive result is a direct consequence of the fact that for the $D C M$ the information set I_{i-1}^{2} is nested in I_{i}^{1} (see also Assertion 1).

On the contrary, DM1's optimal decision strategy cannot be derived in an analytical form but must be computed by solving numerically the nonlinear stochastic optimization problem outlined by (82), (83).

2.4. A SUBOPTIMAL COMMUNICATION SCHEME FOR THE ACM

While in the DCM it is realistic to assume that a message $w_{i}=e_{i-1}$ is received by $D M 1$ in any case, since this message reduces to a positive or a negative acknowledgement signal, in the $A C M$ it seems rather artificial to suppose that a non-noisy message $w_{i}=y_{i-1}$ is always received by $D M 1$ (this might be reasonable whenever $D M 1$ could use a more powerful receiving device than $D M 2$'s).

On the other hand, noisy or interrupted or incomplete messages from $D M 2$ to $D M 1$ lead in general to a non-nested information structure, and it has been shown in [5] that, in such a case, DM2 cannot generate control actions on the system by means of a linear control law based on the usual separation property. Since it can be demonstrated that the computation of DM2's optimal control law entails heavy complications, it seems interesting to examine whether the EVTD is still positive for an $A C M$ in which $D M 2$ is constrained to use the classical estimation and control scheme of $L Q C$ stochastic optimal control.

To be more specific, we assume that 1) a communication channel from $D M 1$ to $D M 2$ (as described in Section 2.1, point a)) is given; 2) no message w_{i} is sent back to $D M 1$;3) $D M 2$ is constrained to generate u_{i} via the suboptimal control law $u_{i}=-L_{t} \mu_{i}$, where μ_{i} is estimated by means of the usual Kalman filter adapted to the received sequence h^{i}. This problem has some aspects in common with the case considered in [12], in which, however, a simpler controlling structure is assumed.

For the sake of brevity, we shall only consider a static scalar problem characterized by the one-stage decision process

$$
\begin{equation*}
x_{1}=a x_{0}+b u_{0}+\xi_{0}, \quad p\left(x_{0}\right)=N(0, \Sigma) \tag{85}
\end{equation*}
$$

The measurement and communication links are given by

$$
\begin{equation*}
y_{0}=h_{0} s_{0}+\eta_{0}=h_{0}\left(x_{0}+\zeta_{0}\right)+\eta_{0}, h_{0} \in\{0,1\} \tag{86}
\end{equation*}
$$

No cost c is involved in transmitting the message s_{0}. Later on, we shall sketch the extension of this problem to the dynamic vectorial case.

We are then interested in computing the quantity

$$
\begin{equation*}
E V T D=E\left(\tilde{J}^{0}-J^{0}\right) \tag{87}
\end{equation*}
$$

where $\quad J^{0}=\min _{h_{0}\left(s_{0}\right)} E\left(P u_{0}^{2}+V x_{1}^{2}\right)$
whith the constraint $u_{0}=-L_{0} \mu_{0}, \mu_{0}$ derived via a Kalman filter, and

$$
\begin{equation*}
\tilde{J}^{0}=\min _{u_{0}\left(y_{0}\right)} E\left(P u_{0}^{2}+V x_{1}^{2}\right), \quad \text { with } h_{0}=1 \tag{89}
\end{equation*}
$$

In other words, \tilde{J}^{0} is the classical minimum expected cost of $L Q G$ stochastic optimal control [11], in which $D M 1$ is reduced to a passive observing - transmitting device, while J^{0} is the optimal cost for a control structure, in which $D M 2$ obeys the classical decision law. But DM1 is now "active", in the sense that he is given the responsibility of deciding the convenience of transmitting the observed data (task decentralization).

From the stochastic control theory we have

$$
\begin{equation*}
\tilde{J}^{0}=T_{0} \mu_{0}^{2}+V Q+a^{2} V \operatorname{var}\left(x_{0} y_{0}\right) \tag{90}
\end{equation*}
$$

where $\left.\mu_{0}=E\left(x_{0} / y_{0}\right)=K_{0} y_{0}, K_{0}=\sum\left(\sum+R+W\right)\right]$ Then

$$
\begin{align*}
& E\left(\tilde{J}^{0}\right)=T_{0} K_{0}^{2} E\left(y_{0}^{2}\right)+V Q+a^{2} V\left[1 / \sum+1 /(R+W)\right]^{-1}= \\
& =\left(a^{2} V-S_{0}\right) \sum^{2}\left(\sum+R+W\right)^{-1}+V Q+a^{2} V \sum(R+W)\left(\sum+R+W\right)^{-1}= \\
& =a^{2} V \sum+V Q-S_{0} \sum^{2}\left(\sum+R+W\right)^{-1} \tag{91}
\end{align*}
$$

To compute J^{0}, consider (13) in a static case and obtain

$$
\begin{align*}
& J^{0}=T_{0} \hat{x}_{0}^{2}+V Q+a^{2} V \operatorname{var}\left(x_{0} s_{0}\right)+S_{0} \min _{h_{0}\left(s_{0}\right)}\left\{\left(\hat{x}_{0}-\hat{\mu}_{0}\right)^{2}+\operatorname{var}\left(\mu_{0} / s_{0}\right)-\right. \\
& \left.-2 E\left[\left(x_{0}-\hat{x}_{0}\right)\left(\mu_{0}-\hat{\mu}_{0}\right) / s_{0}\right]\right\} \tag{92}
\end{align*}
$$

It is easy to see that in (92) the cross product vanishes, and that $\operatorname{var}\left(\mu_{0} / s_{0}\right)=$ $=h_{0} K_{20}^{2} R$, where K_{20} is DM2's Kalman filter gain when $h_{0}=1$. Then we have

$$
\begin{aligned}
& E\left(J^{0}\right)=T_{0} K_{10}^{2}\left(\sum+W\right)+V Q+a^{2} V \sum_{10}+ \\
& +S_{0} E \min \left\{\begin{array}{ll}
K_{10}^{2} s_{0}^{2}, & \text { if } \quad h_{0}=0 \\
\left(K_{10}-K_{20}\right)^{2} s_{0}^{2}+K_{20}^{2} R, \quad \text { if } \quad h_{0}=1
\end{array}=\right. \\
& =T_{0} \sum^{2}\left(\sum+W\right)^{-1}+V Q+a^{2} V \sum W\left(\sum+W\right)^{-1}+ \\
& + \\
& S_{0} E\left[K_{10}^{2} s_{0}^{2}+\min \left\{\begin{array}{l}
0 \\
\left(K_{20}^{2}-2 K_{10} K_{20}\right) s_{0}^{2}+K_{20}^{2} R
\end{array}\right]=\right. \\
& =a V \sum\left[\sum\left(\sum+W\right)^{-1}+W\left(\sum+W\right)^{-1}\right]+V Q+
\end{aligned}
$$

$+S_{0} E$ min $\{$
$=$

$$
\begin{equation*}
\left\{\left\{[\Sigma /(\Sigma+R+W)]^{2}-2 \Sigma^{2}(\Sigma+R+W)^{-1}(\Sigma+W)^{-1}\right\} s_{0}^{2}+K_{20}^{2} R\right. \tag{93}
\end{equation*}
$$

$=a^{2} V \sum+V Q+S_{0} E \min \left\{\begin{array}{l}0 \\ -\psi_{0} s_{0}^{2}+K_{20}^{2} R\end{array}\right.$
where $\psi_{0}=\sum^{2}\left(2 R+\sum+W\right)\left[\left(\sum+R+W\right)^{2}\left(\sum+W\right)\right]^{-1}>0$.
It can easily be shown that $E\left(-\psi_{0} s_{0}^{2}\right)+K_{20}^{2} R=-\sum^{2}\left(\sum+R+W\right)^{-1}$ (see (91)). This corresponds to the quite obvious fact that $\left.E\left(J^{0}\right)\right|_{n_{0}\left(s_{0}\right)=1}=E\left({ }^{7^{0}}\right)$. Therefore we have

$$
\begin{align*}
& E V T D=E\left(\tilde{J}^{0}\right)-E\left(J^{0}\right)= \\
& =S_{0} E\left[-\psi_{0} s_{0}^{2}+K_{20}^{2} R-\min \left\{\begin{array}{l}
0 \\
-\psi_{0} s_{0}^{2}+K_{20}^{2} R
\end{array}\right]=\right. \\
& =S_{0} E\left[\max \left(0,-\psi_{0} s_{0}^{2}+K_{20}^{2} R\right)\right]>0 \tag{94}
\end{align*}
$$

The positive quantity (94) yields then the maximum cost is convenient to spend in order to give the observing device decision responsibilities concerning the transmission of data.

Let us briefly discuss how the scalar problem can be generalized to the dynamic vectorial case. This general case can be solved by observing that a unique decision maker (i.e., the observing - transmitting device DM1) is acting, and that two dynamic subsystems characterize the process, namely, the plant subsystem (1) and the Kalman filter implemented by the controller.
The Kalman filter equation can be rewritten as follows

$$
\begin{align*}
& \mu_{i}=\left(I-h_{i} K_{2 i} H\right)\left(A \mu_{i-1}+B u_{i-1}\right)+h_{i} K_{2 i} y_{i}= \\
& =\varphi_{2 i}\left(h_{i}\right)\left(A-B L_{i-1}\right) \mu_{i-1}+h_{i} K_{2 i} H x_{i}+h_{i} K_{2 i} \zeta_{i}+h_{i} K_{2 i} \eta_{i} \tag{95}
\end{align*}
$$

where $\varphi_{2 i}\left(h_{i}\right)=I-h_{i} K_{2 i} H$ and $K_{2 i}$ is again the controller's filter gain when $h_{i}=1$. By introducing the controller's decision law, the state equation (1) becomes

$$
\begin{align*}
& x_{i+1}=A x_{i}-B L_{i} \mu_{i}+\xi_{i}=-B L_{i} \varphi_{2 i}\left(h_{i}\right)\left(A-B L_{i-1}\right) \mu_{i-1}+ \\
& +\left(A-h_{i} B L_{i} K_{2 i} H\right) x_{i}+\xi_{i}-h_{i} B L_{i} K_{2 i} \zeta_{i}-h_{i} B L_{i} K_{2 i} \eta_{i} \tag{96}
\end{align*}
$$

Define the $2 n$-dimensional augmented state vector $X_{i} \triangleq\left(\mu_{i-1}^{T}, x_{i}^{T}\right)^{T}$. Then, using more compact notations, we can write

$$
\begin{equation*}
X_{i+1}{ }^{m \infty}=\hat{A}_{i}\left(h_{i}\right) X_{i}+\hat{c}_{i}\left(h_{i}\right) \psi_{i}^{\prime} \tag{97}
\end{equation*}
$$

where $\psi_{i}=\left(\xi_{i}^{T}, \zeta_{i}^{T}, \eta_{i}^{T}\right)^{T}$ and matrices $\hat{A}_{i}\left(h_{i}\right), \hat{c}_{i}\left(h_{i}\right)$ are immediately derived from (95), (96). The observing equation is given by

$$
\begin{equation*}
s_{i}=[0 \mid H] X_{i}+\zeta_{i} \tag{98}
\end{equation*}
$$

Finally, cost (6) can be rewritten as

$$
\begin{equation*}
J\left(\gamma_{1}^{N-1}\right)=\sum_{i=0}^{N-1}\left(\left\|\mu_{i}\right\|_{\hat{P}_{i}}^{2}+c_{i} h_{i}\right)+\left\|x_{N}\right\|_{V}^{2} \tag{99}
\end{equation*}
$$

where $\hat{P}_{i} \triangleq L_{i}^{T} P L_{i}$.
Relationships (97), (98) and (99) lead to a single-person stochastic optimization problem, in which h_{i} is the control variable. This problem is not $L Q G$, but can be solved via dynamic programming in a conventional way.

The computational aspects of the above stated problem will be analyzed in a forthcoming paper. Some preliminary results can be summarized in the following

Assertion 2: Although DM2's strategy $u_{i}=-L_{i} \mu_{i}$ leads to a suboptimal solution to the $A C M$ problem with no communication link from $D M 2$ to $D M 1$, it turns out that $E V T D \geqslant 0$.

Moreover, it can be shown that EVTD $\geqslant 0$ even if messages are not penalized by transmission costs c. This is an interesting result, as it means that improvements can be obtained in the process cost (with respect to the classical LQC stochastic optimization) by "giving intelligence" to the observing-transmitting device.

3.1. PROBLEM FORMULATION FOR THE STAR-SHAPED COMMUNICATION NETWORK

In this Section, the team structure differs from that discussed in Section 2 for two reasons: 1) a peripheral subteam with more than one observing transmitting agent is dealt with; 2) the problem is static, i.e., a single-stage decision process is considered. Despite of the simplification induced by the second assumption, the coordination mechanism among the peripheral agents leads to severe computational problems.

An $A C M$ will be discussed in which, without loss of generality, only two peripheral agents, PA1 and PA2, are active. The team structure is shown in Fig. 2. Let us state the corresponding problem.

Let an n-dimensional random vector $r_{j}(i=1,2)$ describe the influence exerted by a j-th stochastic environment sector on a decision process, r_{i}, r_{2} are mutually independent, Gaussian, zero-mean with $\operatorname{cov}\left(r_{1}\right)=\sum_{1}, \operatorname{cov}\left(r_{2}\right)=\sum_{2}$. We assume that r_{j} is observed by PAj through a noisy measurement channel

$$
\begin{equation*}
s_{j}=H_{j} r_{j}+\zeta_{j}, \quad j=1,2 \tag{100}
\end{equation*}
$$

Fig. 2. Single equation regression analysis
$P A j$ is given the task of deciding whether the observed vector s_{j} is worth transmitting to a central agent $C A$ by means of a noisy communication link characterized by the equation

$$
\begin{equation*}
y_{j}=h_{j} s_{j}+\eta_{j}, \quad h_{j} \in\{0,1\}, \quad j=1,2 \tag{101}
\end{equation*}
$$

Then a message s_{j} is sent from $P A j$ to $C A$ or not depending on whether $h_{j}=1$ or $h_{j}=0$, respectively. Transmission of s_{j} is penalized by a cost c_{j}. Noises $\zeta_{1}, \xi_{2}, \eta_{1}, \eta_{2}$ are mutually independent and independent of r_{1}, r_{2}, Gaussian, zero-mean with $E\left(\xi_{1}\right)=E\left(\xi_{2}\right)=E\left(\eta_{1}\right)=E\left(\eta_{2}\right)=0$ with $\operatorname{cov}\left(\zeta_{1}\right)=$ $=W_{1}, \operatorname{cov}\left(\zeta_{2}\right)=W_{2}, \operatorname{cov}\left(\eta_{1}\right)=R_{1}, \operatorname{cov}\left(\eta_{2}\right)=R_{2}$. All covariances are >0. We also assume that $C A$ can tell the exact value of h_{j}. The process cost is given by

$$
\begin{equation*}
J=c_{1} h_{1}+c_{2} h_{2}+u^{T} Q u+2\left(r_{1}+r_{2}\right)^{T} D u \tag{102}
\end{equation*}
$$

where $Q=Q^{r}>0$ and D are matrices of suitable dimensions.
Let $I \triangleq\left\{h_{1}, h_{2}, y_{1}, y_{2}\right\}$ be $C A^{\prime} s$ information set. We want then to determine optimal decision laws $\gamma_{1}^{0}, \gamma_{2}^{0}, \varphi^{0}$ of the form

$$
\begin{equation*}
h_{1}=\gamma_{1}\left(s_{1}\right), \quad h_{2}=\gamma_{2}\left(s_{2}\right), \quad u=\varphi(I) \tag{103}
\end{equation*}
$$

which minimize the expected value of cost (102).
It is worth noting that an N-stage decision process that can be reduced to the above stated static case has been presented in [13]. To be more specific, it has been shown that such a reduction is possible whenever $C A$ can observe the dynamic system state vector x_{i} exactly at each stage.

3.2. DERIVATION OF THE P.B.P.S. STRATEGIES FOR THE PERIPHERAL AGENTS

A necessary condition for the optimality of strategies (103) is given by

$$
\begin{equation*}
E\left[J\left(\gamma_{1}^{*}, \gamma_{2}^{*}, \varphi^{*}\right)\right] \leqslant E\left[J\left(\gamma_{1}^{*}, \gamma_{2}^{*}, \varphi\right)\right] \tag{104}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
E\left\{E\left[J\left(\gamma_{1}^{*}, \gamma_{2}^{*}, \varphi^{*}\right) / I\right]\right\} \leqslant E\left\{E\left[J\left(\gamma_{1}^{*}, \gamma_{2}^{*}, \varphi\right) / I\right]\right\} \tag{105}
\end{equation*}
$$

From (105) the following problem is derived

$$
\min _{u} E\left[J\left(\gamma_{1}^{*}, \gamma_{2}^{*}, u\right) / I\right]=\min _{u}\left\{u^{T} Q u+2\left[E\left(r_{1} / I\right)+E\left(r_{2} / I\right)\right]^{T}\right\} D u+
$$

+ terms independent of u.
Thus, for fixed $\gamma_{1}^{*}, \gamma_{2}^{*}$, we obtain

$$
\begin{equation*}
u^{*}=\varphi^{*}(I)=-Q^{-1} D^{T}\left[E\left(r_{1} / I\right)+E\left(r_{2} / I\right)\right]=-Q^{-1} D^{T}\left(h_{1} K_{1} y_{1}+h_{2} K_{2} y_{2}\right) \tag{107}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{j}=\left[\sum_{j}^{-1}+H_{j}^{T}\left(W_{j}+R_{j}\right)^{-1} H_{j}\right]^{-1} H_{j}\left(W_{j}+R_{j}\right)^{-1}, \quad j=1,2 \tag{108}
\end{equation*}
$$

The unique strategy (107) does not depend on the particular form of $\gamma_{1}^{*}, \gamma_{2}^{*}$ and then it is optimal. Let $\varphi^{*}=\varphi^{0}$. Substitution of φ^{0} in the cost (102) yields

$$
\begin{equation*}
J=c_{1} h_{1}+c_{2} h_{2}+\left\|r_{1}-h_{1} K_{1} y_{1}+r_{2}-h_{2} K_{2} y_{2}\right\|_{s}^{2}-\left\|r_{1}+r_{2}\right\|_{s}^{2} \tag{109}
\end{equation*}
$$

where $S \triangleq D Q^{-1} D^{T}$. To derive the optimal strategies $\gamma_{1}^{0}, \gamma_{2}^{0}$, we must then solve the following problem

$$
\begin{equation*}
\min _{\gamma_{1}, \gamma_{2}} E\left(c_{1} h_{1}+c_{2} h_{2}+\left\|r_{1}-h_{1} K_{1} y_{1}+r_{2}-h_{2} K_{2} y_{2}\right\|_{s}^{2}\right) \tag{110}
\end{equation*}
$$

In order to show what difficulties may be encountered in solving problem (110), and not to be involved in too lengthy algebra, let us simplify the network model by assuming that all measurement and communication channels are noise-free and that $H_{1}=H_{2}=I$. Then, problem (110) becomes

$$
\begin{equation*}
\min _{\gamma_{1}, \gamma_{1}} E\left[c_{1} h_{1}+c_{2} h_{2}+\left\|\left(1-h_{1}\right) r_{1}+\left(1-h_{2}\right) r_{2}\right\|_{S}^{2}\right] \tag{111}
\end{equation*}
$$

This minimization has been discussed in [13]. We summarize here some results. The p.b.p.s. strategies $\gamma_{1}^{*}=h_{1}^{*}\left(r_{1}\right), \gamma_{2}^{*}=h_{2}^{*}\left(r_{2}\right)$ which are candidates for optimality must satisfy the following conditions

$$
\begin{equation*}
E\left[J_{T}\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right)\right] \leqslant E\left[J_{\mathbf{T}}\left(\gamma_{1}, \gamma_{2}^{*}\right)\right], E\left[J_{T}\left(\gamma_{1}^{*}, \gamma_{2}^{*}\right)\right] \leqslant E\left[J_{T}\left(\gamma_{1}^{*}, \gamma_{2}\right)\right] \tag{112}
\end{equation*}
$$

where $J_{T}\left(\gamma_{1}, \gamma_{2}\right)=c_{1} h_{1}+c_{2} h_{2}+\left\|\left(1-h_{1}\right) r_{1}+\left(1-h_{2}\right) r_{2}\right\|_{S}^{2}$.
In [13], it has been shown that to derive the strategy pairs $\gamma_{1}^{*}, \gamma_{2}^{*}$ (these pairs may not be unique) we can use the following

Assertion 3: the p.b.p.s. strategy pairs γ_{1}^{*}, γ_{2}^{*} (if they exist) are given by

$$
\begin{equation*}
h_{j}^{*}\left(r_{j}\right)=1\left(\left\|r_{j}-k_{j}\right\|_{S}^{2}-c_{j}-\left\|k_{j}\right\|_{S}^{2}\right), \quad j=1,2 \tag{113}
\end{equation*}
$$

where k_{1}, k_{2} are n-dimensional vectors that must satisfy the following system of $2 n$ (nonlinear) equations

$$
\begin{align*}
& k_{1}=E\left[h_{2}^{*}\left(r_{2}\right) r_{2}\right]=f_{1}\left(k_{2}\right) \tag{114}\\
& k_{2}=\underset{r_{2}}{E}\left[h_{1}^{*}\left(r_{1}\right) r_{1}\right]=f_{2}\left(k_{1}\right)
\end{align*}
$$

Fig. 3. Simultaneous estimation results
In order to solve system (114), the knowledge of $p\left(r_{1}\right), p\left(r_{2}\right)$ is required. These probability densities, however, need not be Gaussian. A possible numerical method to find the optimal strategy pair is then the following: a) system (114) is solved and the set of p.b.p.s. strategy pairs is determined; b) if more then one solution is found, the cost $E\left[J_{T}\left(\gamma_{1}, \gamma_{2}\right)\right]$ is evaluated for all pairs and the globally optimal solution is derived. Let us illustrate this procedure by means of an example given in [13].

Suppose that r_{j} is a scalar binary variable taking on values a and $-a$ with probability 0.5 . Let $c_{1}=c_{2}=c$ and $c / S<a^{2}$. (113) yields the form of strategy $h_{j}^{*}\left(r_{j}\right)$: if r_{j} belongs to a certain interval centered on $k_{j}, P A_{j}$ must not send any message, otherwise a message must be sent. The length of the interval depends on k_{j}.

By using (114), it is immediate to determine functions $k_{1}=f_{1}\left(k_{2}\right)$ and $k_{2}=f_{2}\left(k_{1}\right)$, which are shown in fig. 3. Three intersections A, B, C are found, each giving a p.b.p.s. strategy pair. Point A yields $h_{1}^{*}(a)=0, h_{1}^{*}(-a)=1$ and $h_{2}^{*}(a)=1, h_{2}^{*}(-a)=0$. At point $C, P A 1$ and $P A 2$ exchange these strategies. At point B, it is always convenient to send a message. Evaluation of cost $E\left[J_{T}\left(\gamma_{1}, \gamma_{2}\right)\right]$ for the three pairs gives: $E\left(J_{T}\right)=c+S a^{2} / 2$ for points A, C, $E\left(J_{T}\right)=2 c$ for point B. Therefore, the pairs corresponding to points A, C are optimal if $a^{2}<2 c / S$, otherwise the pair corresponding to point B is optimal.

Clearly the numerical procedure illustrated in the example may turn out to be too cumbersome for a large dimension of the random vectors and for more than two PAs. Assignment of local costs to $P A 1$ and PA2 (see [14]) may allow a direct computation of the optimal values of k_{1}, k_{2} provided that particular conditions are met for $p\left(r_{1}\right), p\left(r_{2}\right)$. These conditions have been discussed in [13], but only qualitative (and rather conservative) results have been obtained.

In any case, Assertion 3 is not devoid of interest, since a functional problem has been reduced to a much simpler one and this regardless of the form of $p\left(r_{j}\right)$. Moreover, the particular structure of system (114) can be exploited in step a) of the numerical procedure, whereas a direct comparison of the average costs for the various p.b.p.s. strategy pairs (if more than one solution has been found) does not seem a formidable problem.

4. CONCLUSIONS

It is deemed that the communication problems presented in the paper and their generalization to more complex and realistic models constitute a central point in the theory of large scale systems for the following reasons.
a) Costi? noisy and stochastically interrupted communications are among the main reasons for "dispersion of authority and information" in large scale decision processes.
b) Significant savings in controlling an informationally decentralized process can be obtained by introducing (and optimizing) a new class of control actions, that is, the on-line control of data flow within the decentralized structure, and more specifically from the posts where information is handy to the posts where decisions are taken.
c) The growing employment of low-cost numerical devices (like microprocessors, microcomputers, etc.) will certainly accelerate the tendency to "distribute intelligence" in the information structure. Practical examples may be suggested by the problems presented in this paper, that is, by the convenience of giving the measurement devices responsibilities on the selection of optimal trnasmission instants and of the form of communication procedure.

It follows that simplified models of communication networks can be quite useful to make aggregate analyses of the costs and benefits of process control oriented information structures (costs and benefits mean respectively the costs
that must be paid to distribute intelligence and the decrease in the expected cost function obtained by introducing the corresponding intelligent devices). Actually, the concept of EVTD has been introduced with the aim of framing such analyses in quantitative terms. Evaluation of the costs and benefits of an information structure is certainly facilitated in the area of industrial processes, where any loss due to non-optimal data handling can be directly compared with the intrinsic cost of the process itself.

As regards the theoretical aspects of the paper, a few comments may be useful to a more synthetical understanding of the results. In the point-to-point communication link, the central problem is concerned with the possibility of planning communication channels, for which the assumption of nested information structure is satisfied. If this assumption is met, the controller's optimal decision law is linear according to a classical separation property, whereas the transmitter's optimal strategy can be derived by solving numerically a certain nonlinear stochastic optimization problem. In the case of a non-nested information structure, a linear, although suboptimal, decision law for the controller is still convenient with respect to the conventional control scheme, in which no intelligence is assumed for the observing-transmitting device.

In the star-shaped communication network, it has been shown that nontrivial computational aspects also arise in the case of static decision processes. The extension of this communication network to the general dynamic case seems to pose formidable computational problems. No results are available either for a star-shaped network, in which a unique observer shares information among several controllers, of for more general communication structures described by a bipartite graph connecting an observing subteam to a controlling subteam.

Finally, it is worth noting that an interesting area for both theoretical and applicative research should concern the asymptotical behaviour of decision makers' strategies in an infinite time-control horizon.

REFERENCES

[1] MARSCHAK, J. and R. RADNER, "Economic Theory of Teams", Yale University Press, New Haven and London, 1972.
[2] YOSHIKAWA, T., "Dynamic Programming Approach to Decentralized Stochastic Control Problems", IEEE Trans. Automatic Control, December 1975, 796-797.
[3] KURTARAN, B. Z., "A Concise Derivation of the LQG One-Step--Delay Sharing Problem Solution", IEEE Trans. Automatic Control, December 1975, 808-810.
[4] GROVES, T. and R. RADNER, "Allocation of Resources in a Team", Journal of Economic Theory, 4, 1972, 415-441.
[5] ZOPPOLI, R., "Communication Problems in Decentralized Control Systems", Proc. of the Second European Meeting on Cybernetics and System Research, Vienna, April 1974, 110-123.
[6] PULIAFITO, P. P. and R. ZOPPOLI, "Time-Varying Information Structures in a Team Organization", Proc. of the Meeting on Optimization Problems in Engineering and Economics, Naples, December 1974.
[7] SANDELL, N. R. and M. ATHANS, "Solution of Some Nonclassical LQG Stochastic Decision Problems", IEEE Trans. Automatic Control, vol. AC-19, April 1974, 108-116.
[8] KRAMER, L. C. and M. ATHANS, "On Simultaneous Choice of Dynamic Control on Measurement Strategies for Stochastic Systems", Joint Automatic Control Conf., Stanford, Ca., August 1972.
[9] HO, Y. C. and K. C. CHU, "Team Decision Theory and Information Structures in Optimal Control Problems - Part I", IEEE Trans. Automatic Control, vol. AC-17, Feb. 1972, 15-22.
[10] KAILATH, T., "An Innovations Approach to Least-Squares Estimation - Part I: Linear Filtering in Additive White Noise", IEEE Trans. Automatic Control vol. AC-13, 6, 1968, 646-654.
[11] AOKI, M., "Optimization of Stochastic Systems", Academic Press, New York, 1967.
[12] ATHANS, M. and L. C. KRAMER, "On Linear Stochastic Systems with Coupled Measurement and Dynamic Control", Ricerche di Automatica, vol. III, August 1973, 144-157.
[13] PULIAFITO, P. P. and R. ZOPPOLI, "Optimal Control of Data Flow from Peripheral to Central Units in an Information Structure", IFAC Symposium on Large Scale Systems, Udine (Italy), June, 1976.
[14] TAKAHARA, Y. and M. D. MESAROVIC, "Coordinability of Dynamic Systems", IEEE Trans. Automatic Control, vol. AC-14, December 1969 688-698.

SUMMARY

Costly and/or noisy communications constitute one of the main reasons for dispersion of information among different decision makers in large scale systems. Because of the technical constraints of communication links, other responsibilities may be given to decision makers besides the usual task of generating control actions on a process; for instance, to select the instants at which messages must be sent to other agents of the organization, to decide data are worth transmitting, and, in general, to define the communication, procedure for the information interchange.

In the paper, a rather frequent communication network is considered, in which peripheral agents gather and communicate data to a central agent,
who controls a single process operating in a stochastic environment. In a distributed information system, for example, the peripheral agents might be smart terminals transmitting data to a central computer which controls an industrial or an administrative process. The peripheral and the central agents are considered as the cooperating decision makers of a team.

Two special cases are examined, which provide introductory elements for a more integrated view of those decentralized systems in which both control of data flow and control actions on the process must be taken into account. Actually, it is deemed that simplified models of this type can be useful to make aggregate analyses of costs and benefits in general information structures.

A crucial point throughout the paper is the optimal assignment of tasks among the team agents. In this regard, the concept of "expected value of task decentralization" (EVTD) is defined and evaluated for all problems.

In the first case, a static decision problem is dealt with. A central agent controls the process, on which $n>1$ sectors of a stochastic environment exert their influence by means of n random vectors. The i-th random vector is only known to the i-th peripheral agent. Under the usual L-Q-G assumptions, necessary conditions for the optimal control of data flow from the peripheral agents to the central controller are established by means of the so-called person-by-person satisfactoriness (p.b.p.s.) principle.

In the second case, a dynamic decision problem is considered but, in this case, a single peripheral agent is supposed to be given the task of controlling the communication channel. This agent takes observations on the state vector of the dynamic system. Here again the problem is approached via the p.b.p.s. principle, and a dynamic programming algorithm is derived for the two agents' decision laws.

In both case, the obtained algorithms do not yield the transmission strategies in a closed analytical form except for trivial cases. However, they are constructive for numerical computations and provide useful simulation guidelines. Extensions of these two basic problems to the n-agent peripheral subteam are finally discussed in the dynamic case.

Instytut Badań Systemowych PAN

Nakład 300 egz. Ark. wyd. 25,0. Ark. druk. 23,75. Papier druk. sat. kl. III $80 \mathrm{~g} 61 \times 86$. Oddano do składania 8 X 1976 Podpisano do druku w sierpniu 1978 r. Druk ukończono w sierpniu 1978 roku

CDW - Zaklad nr 5 w Bielsku-Białej zam. 62/K/77 J-124

$$
32959
$$

