




APPLICATIONS OF INFORMATICS 
IN ENVIRONMENT ENGINEERING 
AND MEDlCINE 



Polish Academy of Sciences • Systems Research Institute 

Series: SYSTEMS RESEARCH 
Vol. 42 

Series Editor: -

Prof. Jakub Gutenbaum 

Warsaw 2005 



This publication was supported 
by POLISH MINISTRY OF SCIENCE IN INFORMATION SOCIETY TECHNOLOGIES 

This book consist of the papers describing the applications of informatics in 
environment and health engineering and protection. Problems presented in 
the papers concern quality management of the surface waters and the 
atmosphere, application of the mathematical modeling in environmental 
engineering, and development of computer systems in health and 
environmental protection. In severa! papers results of the research projects 
financed by the Polish Ministry of Science and Information Society 
Technologies are presented. 

Papers Reviewers: 

Prof. Ludosław Drelichowski 
Prof. Olgierd Hryniewicz 
Dr. Edward Michalewski 
Prof. Andrzej Straszak 
Dr. Jan Studzinski 

Text Editor: Anna Gostynska 

Copyright © Systems Research Institute of Polish Academy of Science, 
Warsaw 2005 

Systems Research Institute of Polish Academy of Science 
Newelska 6, PL 01-447 Warsaw 

Section of Scientific Information and Publications 
e-mail: biblioteka@ibspan. waw. pl 

ISBN 83-89475-04-9 
ISSN 0208-8029 



APPLICATIONS OF INFORMATICS 
IN ENVIRONMENT ENGINEERING 

AND MEDICINE 

Editors: 

Jan Studzinski 
Ludosław Drelichowski 

Olgierd Hryniewicz 



CHAPTER 1 

Water and Air Quality Management 





<> Applications of informatics in environment engineering and medicine 

MISSING DATA IN WATER QUALITY TIME SERIES 

Albrecht GNAUCK, Bernhard LUTHER 
Brandenburg University of Technology at Cottbus, Germany 
< umweltinf ormatik@tu-cottbus.de; luthe r@tu-cottbus.de> 

Missing data in water quality time series lead to some generał problems in 
many .fields of environmental research and simulation. They cause not only 
difficulties in process identi.fication and parameter estimation but also 
misinterpretations of spatial and tempora[ variations of water quality 
indicators. Mostly, time series represent samples of data at discrete time 
events based on various sampling intervals. For modelling and simulation of 
water quality processes time series must be mapped on a regular time grid. 
This procedure is known as re-sampling of time series and consists on data 
interpolation or, in the case of disturbed signals, on data approximation. 
Some well-known linear and nonlinear interpolation methods exist white data 
approximation can be done by static and dynamie procedures. Regression 
type functions or in the case of cycling time series Fourier approximations are 
mainly used. By these procedures equidistant data will be obtained. In 
opposite of that, digital .filtering procedures deliver consistent equidistant 
data estimates based on major signal frequencies. In the paper different 
algorithms of data interpolation and approximation are applied on irregularly 
sampled water quality time of rivers with different hydraulic conditions. 
Additionally, low pass .filters are checked to .find out the best filter Junction for 
each water quality indicator. 

Keywords: Water quality, time series, interpolation, approximation, digital 
filtering. 

1. Introduction 

Water quality time series of freshwater ecosystems characterise not only 
complex ecological processes but also levels of water pollution due to anthropogenic 
activities as well as industrial and agricultural land use in a river basin. The goals of 
adrninistrative freshwater monitoring programs consist of information rnining of the 
actual ecosystem state including the historie development of ecological processes 
(Gnauck, 1982). The intensity of water pollution and the impact on ecosystem 
functioning as well as on biodiversity of freshwater organisms can be estimated on 
the base of water quality time series. They form a decision platform for complex and 
complicated water quality management altematives. Time series of water quality 
express the results of interacting and networking ecological processes. Only 
regularly sampled data represent the full ecosystem information. For modelling and 
simulation of environmental processes it is necessary that all data sets are based on a 
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regularly time grid. But in practice, water quality time series often contain missing 
and/or irregularly sampled data. Data gaps entail not only information lacks, but lead 
also to misinterpretations of statistical measures and results of water quality 
simulation models (Little and Rubin 1983). 

From this background the question arises how to fill in data gaps in time 
series. Gentili et al. (2004) reported on some methods of linear interpolation and 
imputation techniques. Meloun et al. ( 1994) have used simple interpolation and 
approximation methods to fill gaps in chemical data series. Gnauck et al. (1976) and 
Gnauck and Winkler (1983) estimated missing data in water quality time series by 
static recursive regression estimation procedures. Hirsch et al. (1982) used trend 
techniques to estimate monthly water quality data from incomplete data sets. 
Dynamie estimation procedures to solve modelling problems caused by missing data 
are applied by Young and Beck (1974), Pagano (1978), Vecchia (1985), Vecchia 
and Ballerini ( 1991 ), Franses ( 1994, 1999), McLeod ( 1994 ), Drepper et al. ( 1994 ), 
Hondzo and Stefan ( 1996), Bhangu and Whitfield ( 1997), Franses and Draisma 
(1997), Lehmann and Weber (1998), Franses (1999), Young (1999). Various 
stationary and instationary trend functions, simple data filter and approximation 
methods for water quality time series are discussed by Hipel and McLeod (1994). 
Haan (2002) applied trend functions on hydrologie time series. 

The efficiency of all these procedures is quite different. For modelling and 
simulation of water quality processes it is necessary that all data sets are based on a 
regularly time grid. On the other hand, filling the data gaps in water quality time 
series by information theory based methods (Lange 1999), by wavelet analysis 
(Gnauck and Tesche 1998) or by transfer function using z-transformation (Young 
1999, Romanowicz and Petersen 2003) is at the beginning and commonly not used. 
The question how to handle missing data in water quality, or more generał, in 
environmental time series is unsolved up to now (Nittner 2003, Latini and Passerini 
2004). In the following chapters some proposals are given how to fili in data gaps in 
water quality time series, and to get not only equidistant but consistent data. 

2. Missing data in water quality time series 

Mostly, water quality time series consist of data which are based regular 
sampling intervals as daily, weekly, and two weekly or monthly intervals. But 
medium-term and long-term water quality time series often contain missing and/or 
irregularly sampled data. Figure 1 shows an example of an irregular sampled data 
set. The reasons for incomplete water quality time series are manifold: Failures in 
measurement devices, inaccurate laboratory analytics, errors in data management, 
interruption of transmission lines, data storage errors, changes in sampling program 
design and others. Little and Rubin ( 1987) classified missing data as missing 
completely at random, as missing at random and as non-ignorable. 
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All missing data have to be replaced. Known procedures are replacing by 
smoothing, by interpolation, by application of trend functions or by data from 
reference curves according to standards and conventional rules. But the efficiency of 
all these procedures is quite different. Applying interpolation procedures on irregular 
sampled raw data sets time series with equidistant sampling intervals will be 
obtained. The application of approximation methods on such time series results in 
functional relationships. Another procedure is the so-called re-sampling method 
(Adorf 1995) which requires data interpolation and, in the case of noisy information, 
data approximation to place sampled data on a regularly time scale. The goal of this 
method is to reconstruct time series with small sampling intervals. The following 
tasks are equivalent to re-sampling: 

1. Filling the gaps of irregularly recorded data by interpolation. 

2. Reconstruction of data of regularly recorded time series by means of 
analytical functions or signal estimations. 

3. Filling the gaps of irregularly recorded data by means of measuring 
values of reference curves. 

The re-sampling procedure can be extended by application of digital filtering 
methods (figure 2). On the base of equidistant data consistent time series based on 
major process frequencies will be obtained. 
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Figure 2. Re-sampling and digital filtering of data 

3. Interpolation 

To obtain water quality time series with equidistant daily sampling intervals 
from irregularly sampled raw data Gnauck and Luther (2004) compared four 
interpolation methods (table l) for ńvers with different hydraulic conditions. The 
methods are distinguished by the degree of continuity of derivatives of the 
interpolation function x (t) on an interval [tk, tk+tl- Nearest neighbour method gives 
out discontinuous interpolated data while the other ones produce continuous 
interpolated time seńes. 3rd order polynomial and cubic splines interpolation 
functions are distinguished by parameters only. Because of random, but not norma! 
distńbuted raw data and nonlinear effects within the water quality processes 
observed no K1- like statistics was used. The suitability of interpolation method was 
valuated by standard error SE = s/✓n between interpolated and original time series 
(table 2). For all investigated time seńes mostly linear interpolation method was 
found out the best one to get daily data. This can be explained by the time step of 
interpolation of one day in compańson with most ecological process rate constants. 
Nearest neighbour method can easily be applied to irregular sampled time seńes, but 
continuous interpolated data should be preferred. 
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Table 1. Interpolation algorithms used 

Method Algorithm Remark 

J1(t) = { x, f<(tk+fk+1)/2 
X !i1: c(O)[to, tn] 

Nearest 
neighbour Xk+1 f~(fk+fk+1)/2 X discontinuo 

us 

x(t) = Xk+1 - Xk (t- t k) + Xk 
X E c(O)[to, tn] 

Linear 
fk+1- fk X continuous 

~ -· - -- -----·-- - ~--- --

x E c 0>[t t 1 
x(t) l[tk.tk+,] = ak t3 + bk t2 + ck t3 + dk 

O, n 
Cubic Hermite 

polynomial X continuous 
differentiable 

X EC(2)[t t] O, n 

Cubic splines x(t)l[tk.tk+l] = ek t3 + t k t2 + gk t3 + hk x,x 
continuous 

differentiable 

Table 2. Comparison of standard errors of interpolation algorithms used 

Year Method NH4-N NO2-N NO3-N o-PO4-P DOC 

1994 neighbour 0,12 0,020 0,27 0,020 1,47 

1994 linear 0,09 0,017 0,23 0,019 1,14 

1994 spline 0,11 0,019 0,23 0,019 1,41 

1994 cubic 0,11 0,019 0,23 0,019 1,41 

1995 neighbour 0,09 0,016 0,22 0,027 0,73 

1995 linear 0,08 0,015 0,20 0,025 0,69 

1995 spline 0,10 0,016 0,22 0,026 0,71 

1995 cubic 0,10 0,016 0,22 0,026 0,71 
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Polynomial and cubic splines interpolation are also helpful, but they result for 
some intervals in the opposite time structure compared with raw data. Mainly linear 
interpolation functions show acceptable results. Table 3 contains results for daily 
interpolations from two-weekly irregularly sampled data for rivers with different 
hydraulic flow regimes. lt comes out from table 3 that linear interpolation method 
can be used to get regularly sampled data independent from river hydraulics. 

Table 3. Interpolation methods applied on rivers 

Variable Spree Havel Upper Elbe Lower Oder 
Elbe 

NH4-N linear linear linear linear linear 

NO2-N linear linear Linear linear linear 

NO3-N linear linear linear linear linear 

o-PO4-P Linear, linear, no data no data no data 
spline, spline, 

polynomial polynomial 

DOC linear linear linear linear linear 

UV no data linear, no data no data Linear, 
spline, sp line 

polynomial 

Turbidity no data linear linear linear linear 

Conductivity sp line, spline, linear, linear, linear, 
polynomial polynomial spline, spline, polynomial 

polynomial polynomial 

DO linear linear linear linear linear 

4. Approximation 

A second step in re-sampling of water quality time series is the estimation of 
missing data due to approximating functions. For parameter estimation mostly least 
squares method or maximum Likelihood method are used. Valuations of linear 
approximations by multiple linear regression functions are expressed by 
performance index R2 (Straskraba and Gnauck 1985). To approximate aperiodic 
water quality time series some procedures as multi variate regression models 
(Gnauck and Winkler 1983), polynomial models (Hirsch et al. 1982) or time-discrete 
transfer function models (Young 1999) are helpful. Haefner ( 1996) discussed data 
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problems in the context of chaos of biologica! problems. Evaluations of the quality 
of fit are given by linear or nonlinear coefficients of determination. Table 4 contains 
results of an approximation study of the Havel River. The last column indicates the 
significance level of the approximation. 

Table 4. Trend functions of water quality of the River Havel 

Water quality Trend function Order R2 P(95%) 
indicator 

Water flow polynornial 2 0,8126 + 

Temperature polynomial 2 0,6177 + 

Conductivity polynomial 2 0,1971 -

Chloride polynomial 2 0,0382 -

DO polynornial 2 0,3858 + 

BOD polynomial 2 0,4264 + 

csv polynornial 2 0,7611 + 

NH4-N exponential 0,5669 + 

NO2-N exponential 0,4879 + 

NO3-N exponential 0,4746 + 

O-PO4-P exponential 0,8683 + 

TP polynornial 2 0,0822 -

SiO2 polynomial 2 0,8888 + 

Suspended matter polynomial 2 0,0227 -

Chlorophyll-a polynomial 2 0,6032 + 

Inorg. part of biomass polynomial 2 0,6742 + 

Loss of organie matter polynomial 2 0,1418 -

Trend functions or polynomials are well studied but their parameters are 
interpretable only in few cases. For a linear trend: y(t) = ao(t) + a1(t) x(t) the 
parameter can be interpreted as follows : ao - mean start value, a1 - mean rate of 
change. In case of a quadratic trend y(t) = ao(t) + a1(t) x(t) + ai(t) x2 (t) the following 
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interpretation of parameters can be given: ao - mean start value, a1 - mean rate of 
change, a2 - mean process acceleration. For a higher order polynomial trend 
y(t) = ao(t) + a1(t) x(t) + az(t) x2 (t) + ..... + an(t) x"(t) an interpretation of parameters 
is mostly impossible. The parameters of an exponential trend x(t) = x(O) e · kt + E 
can be interpreted according to kinetics 1. order: x(O) - initial concentration value, 
k - rate of change, E - random quota. 

Mathematical equations descńbe either the time dependency (function of 
time t) or the frequency dependency (function of frequency ro or cycles per time 
unit) (Pollock 1999). Because of water quality processes are often influenced by 
external cycling processes they will be approximated by Fouńer polynomials which 
express characteristic cycles by harmonie frequencies. A water quality cycling 
(or peńodic) process with peńod T0 is described by a Fouńer series of the form 
x(t) = ar/2 + La;-cos(iO>ot) + Lb; ·sin(iroot) with - 00 :s; i :s; + 00 , O)o = 2rc/T0 - frequency 
of the basie cycle, T0 - peńod of cycle. Coefficients ai and bi are calculated as 
follows ai = l/T0 fx(t)·cos(iO)ot)dt and bi = l/T0 fx(t)·sin(iO)ot)dt. The initial parameter 
a0 is given by a0 = l/2T0 fx(t)dt. The Fourier polynomial is an approximation which 
represents the minimum mean squared deviation of the cycling process. The 
amplitudes of the approximating function are given by Ai = ✓ a/ + b/, where phase 
shifts in the interval [O, 2rc] are given by cpi = arc tan b/ai. The application of Fourier 
polynomials to water quality processes often leads to a shift of the approximated 
time seńes (figure 3). 
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Fourier approximations of cycling water quality processes of freshwater 
ecosystems are mostly expressed by the yearly dominant harmonie cycle. The 
frequency will be different in dependence from location (table 5). 

Table 5. Fourier approximations of physical variables of freshwater ecosystems 

Fourier approximation 

Saidenbach reservoir 

TEMP(t) = 12.0 + l.458-cos((61t/l80)t)- 4.462-sin((61t/l80)t 

Neunzehnhain reservoir 

TEMP(t) = 11.9 + 0.693-cos((61t/l80)t) + 4.415 -sin((61t/l80)t 

Klicava reservoir 

TEMP(t) = l 1.1 - 6.650-cos((91t/l80)t) - 7.820-sin((91t/l80)t 

Slapy reservoir 

TEMP(t) = 12.0 - 7.073-cos((l01t/l80)t) - 6.684-sin((l01t/l80)t 

River Havel 

TEMP(t) = 12.5 + 10.5-sin((t+208)·21t/327) 

River Havel 

I(t) = 280 + 210-sin((t+240)·21t/365) 

S. Digital Filtering 

Time series of water quality are described by methods of linear systems 
theory. They are given by monitored data at discrete time events. Each real system 
causes distortions, attenuations and redundancies of the time structure of signals. 
These effects have to be measured and evaluated. Therefore, some characteristics of 
a reference system are needed which shows no distortions (Meyer 2003). Such 
a system is given by an ideał low pass filter. Filters are frequency dependent systems 
which let pass selected frequency ranges of signals (pass band), and lock other 
frequency ranges (lock band). Usually, a signal can be separated into two parts: The 
disturbance signal (x0 (t)) and in the useful part of signal (xu(t)). A signal transfer of 
a linear transfer system of an input signal x(t) = xu(t) + x0 (t) results with an output 
signal y(t) = Yu(t) + y0 (t) where y0 (t) = O is desired. In this case YN(t) = k xN(t - 't) is 
the distortion free transferred signal. In the case of y0 (t) • O optima! filter as 
Wiener filter or Kalman filter will be get. Digital filters are subdivided into recursive 
(ITR-) filters and non-recursive (FIR-) filter. Other subdivisions are used by 
frequency range (low pass, band pass, high pass, band lock), by the kind of filter 
approximation, and by the order of approximating polynomial. To obtain consistent 
data signal transmission should be carried out by an ideał low pass filter with the 
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gai n characteristic IH( ro)l2 = l/( 1 +F( ro2)). It works as a distortionless system 
(Kammeyer und Kroschel 2002, Meyer 2003, Werner 2003). The amplitude 
response IH(ro)l2 = 1, if ro$; 1 or IH(ro)l2 = O, if ro> l. 

Filter procedures can be distinguished by differences in the pass band and by 
the ripple effects (Meyer 2003). An often applied family of linear discrete filters 
with infinite pulse response is given by Butterworth filters. Noise and outliers are 
strongly reduced by high limiting frequencies. For low cut-off frequencies the 
filtered time series does not follow the original time series and converges to zero. 
This is known from exponential filters. Some important low pass filters are listed in 
table 6. They are distinguished by band pass and ripple effects. 

Table 6. Digital filters 

Method Equation Comment 

Butterworth IH(w)l2 = 1/(1 + w20) Amplitude response 
(power low pass) should be flat as 

possible in the pass 
band 

Chebychev l IH(w)i2 = l/(l + €2 c/(w)) € - ripple factor or 
eccentricity, € = 0.1526, 
cn(w) is the Chebychev 
polynomial of order n. 
In the pass band a ripple 
is accepted. Transition 
from pass band to stop 
band is steeper than for 
Butterworth filter 

Chebychev 2 IH(w)i2 = 1/(l + 1o*2 c/°(w)) €* = 2€/(l-€), in the stop 
(inverse Chebyshev filter) band a ripple is 

accepted 

Cauer IH(w)i2 = 1/(l + €2 F0 *(w2)) F n*( w2) - characteristic 
(elliptic filter) function. Ripples arise 

in the pass band and in 
the stop band. One gets 
the steepest transition 
between both frequency 
bands 

Filter functions of water quality indicators were tested for different rivers. 
Higher order filters cause strong ripple effects in pass band as well as in stop band. 
Because of ripples cause unexplainable disturbances for signal reproduction filters 
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of order l to 3 should be used only. In figures 4 and 5 two examples are given. 
Comparing standard errors it can be seen that filters of lower order lay out smaller 
standard errors. They show smoother frequency behaviour as filters of higher order. 
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Mostly, Butterworth filters, Chebychev l filters and Cauer filters are found 
out as useful for water quality indicators. Chebychev 2 filters were found acceptable 
in a few cases only. For this filter type standard errors of !ower order filters are 
higher than those for higher orders. 
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After filter selection limiting frequencies are determined by means of power 
spectra. Figures 6 - 7 show results of signal reconstructions of long-term water 
quality data of River Spree at Berlin by digital filters. 
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In figures 8 and 9 show applications of elliptic filters to reconstruct 
irregularly sampled water quality and quantity data. 
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Results from a filler study for rivers are summarised in table 7. lt can be seen 
that elliptic filters are obtained for nutrients. All filler functions are deterrnined on 
a 95% probability level. Some filler functions are valid for the 1 % significance level. 
They are marked by brackets. 

Table 7. Applications of digital filters on water quality indicators 

Indicator 1. order filter 2. order filter 3. order filter 

DOC Cauer (Cauer) (Cauer) 

conducti vity Butterworth, Cauer Butterworth Butterworth, Cauer, 
Chebychevl Chebychevl 

NH4-N Cauer (Cauer) (Cauer) 

N02-N Cauer (Cauer) (Cauer) 

NO3-N Cauer (Cauer) (Cauer) 

DO Butterworth, Cauer Butterworth Butterworth, Cauer, 
Chebychevl Chebychevl 

o-PO4-P Cauer (Cauer) (Cauer) 

pH Butterworth, Cauer Butterworth, Butterworth, Cauer, 
Chebychevl Chebychev2 Chebychev 1, 

Chebychev2 

water flow Butterworth, Butterworth, Butterworth, Cauer, 
Chebychev 1, Cauer Chebychevl Chebychev 1, 

water Butterworth, Butterworth, Butterworth, Cauer 
temperature Chebychev l, Cauer Chebychev l, Chebychev 1, 

Chebychev2, Chebychev2, 
Cauer 

6. Conclusions 

The question how to handle missing data in water quality time series depends 
not only from the problem to be solved but more from the data set available. 
Applying interpolation procedures time series with equidistant sampling intervals 
will be obtained. Linear interpolation method is suitable for most of time series of 
water quality indicators but cannot express the dynarnics of ecological processes. 
The application of approximation methods series results in functional relationships 
which are valid for stationary environmental conditions only. Data processing of 
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equidistant water quality time series by digital filters produces consistent time series 
which are suitable for modelling and simulation. These frequency dependent 
algorithms are able to follow the inherent dynarnics of ecological signals which 
comes out by different networking processes. By means of such algorithms 
ecological signals can be reconstructed according to their dynamics. For rivers with 
different hydraulics digital filtering methods were not only successful but 
a prerequisite for modelling. 
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