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On the quantifiers of the intuitionistic fuzzy logic
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Abstract

Some new types of quantifiers are introduced in intuitionistic fuzzy logic

and some of their properties are discussed.

Keywords: Intuitionistic fuzzy logic, Quantifier, Topological operator

1 Introduction

Intuitionistic Fuzzy Logic (IFL) is introduced in [1, 2, 3] on the basis of ideas

from [6, 7].

In the research on IFL, two real numbers, µ(p) and ν(p), are assigned to the

proposition p with the following constraint to hold:

µ(p) + ν(p) ≤ 1.

They correspond to the “truth degree” and to the “falsity degree” of p. Let this

assignment be provided by an evaluation function V , defined over a set of propo-

sitions S in such a way that:

V (p) = 〈µ(p), ν(p)〉.
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When values V (p) = 〈a, b〉 and V (q) = 〈c, d〉 of the proposition forms p and

q are known, the evaluation function V can be extended also for the operations

“negation”, “conjunction”, “disjunction”, “implication” and others. For example,

V (¬p) = 〈b, a〉,

V (p&q) = 〈min(a, c),max(b, d)〉,

V (p ∨ q) = 〈max(a, c),min(b, d)〉.

The proposition p is called an intuitionistic fuzzy tautology if and only if a ≥ b

and a tautology if and only if a = 1, b = 0.
Also, let for propositions p and q

V (p) ≤ V (q) if and only if a ≤ c and b ≥ d.

Meantime, in Intuitionistic Fuzzy Set (IFS) theory (see [5]) firstly two, and

after this – six other topological operators were introduced. The author saw that

the Intuitionistic Fuzzy (IF) interpretations of the first two topological operators

(“closure” and “interior”) coincide with the two logical quantifiers “there exists”

and “for all”), respectively.

In the present research, we give definition of six new logical quantifiers, that

are analogous to the six topological operators, mentioned above. Some of the

properties of the new operators will be studied and some open problems will be

formulated.

2 Main results

Let x be a variable, obtaining values in set E and let P (x) be a predicate with a

variable x. Let

V (P (x)) = 〈µ(P (x)), ν(P (x))〉.

The IF-interpretations of the quantifiers for all (∀) and there exists (∃) are

introduced in [2] by

V (∀xP (x)) = 〈sup
y∈E

µ(P (y)), inf
y∈E

ν(P (y))〉,

V (∃xP (x)) = 〈 inf
y∈E

µ(P (y)), sup
y∈E

ν(P (y))〉.

Their geometrical interpretations are illustrated in Figs. 1 and 2, respectively,

where x1, ..., x5 are the possible values of the variable x and V (x1), ..., V (x5),
their IF-estimations.
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The most important property of the two quantifiers is that each of them jux-

taposes to predicate P a point (exactly one for each quantifier) in the IF-interpre-

tational triangle.
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Fig. 2.

Now, we introduce the following six new quantifiers.

V (∀µxP (x)) = {〈x, inf
y∈E

µ(P (y)), ν(P (x))〉|x ∈ E},

V (∀νxP (x)) = {〈x,min(1− sup
y∈E

ν(P (y)), µ(P (x)), sup
y∈E

ν(P (y))〉|x ∈ E},

V (∃µxP (x)) = {〈x, sup
y∈E

µ(P (y)),min(1− sup
y∈E

µ(P (y)), ν(P (x))〉|x ∈ E},

V (∃νxP (x)) = {〈x, µ(P (x)), inf
y∈E

ν(P (y))〉|x ∈ E},
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V (∀∗νxP (x)) = {〈x,min(1− sup
y∈E

ν(P (y)), µ(P (x)),

min(sup
y∈E

ν(P (y)), 1− µ(P (x))〉|x ∈ E},

V (∃∗µxP (x)) = {〈x,min(sup
y∈E

µ(P (y)), 1− ν(P (x)),

min(1− sup
y∈E

µ(P (y)), ν(P ((x))〉|x ∈ E}.

Let the possible values of variable x be a, b, c and let their IF-estimations

V (a), V (b), V (c) be shown on Fig. 3. The geometrical interpretations of the new

quantifiers are shown in Figs. 4-9.
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Fig. 6. Fig. 7.
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Therefore, we can change the forms of the first two quantifiers to the forms

V (∀xP (x)) = {〈x, inf
y∈E

µ(P (y)), sup
y∈E

ν(P (y))〉|x ∈ E},

V (∃xP (x)) = {〈x, sup
y∈E

µ(P (y)), inf
y∈E

ν(P (y))〉|x ∈ E}.

Obviously, for every predicate P ,

V (∀xP (x)) ⊆ V (∀µxP (x)) ⊆ V (∀νxP (x))

⊆ V (∃νxP (x)) ⊆ V (∃µxP (x)) ⊆ V (∃xP (x))
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and

V (∀xP (x)) ⊆ V (∀νxP (x)) ⊆ V (∀∗νxP (x))

⊆ V (∃∗µxP (x)) ⊆ V (∃µxP (x)) ⊆ V (∃xP (x)).

Theorem 1. For every predicate P ,

(a) V (¬∃µx¬P (x)) = V (∀νxP (x)),

(b) V (¬∀µx¬P (x)) = V (∃νxP (x)),

(c) V (¬∃νx¬P (x)) = V (∀µxP (x)),

(d) V (¬∀νx¬P (x)) = V (∃µxP (x)),

(e) V (¬∃∗µx¬P (x)) = V (∀∗νxP (x)),

(f) V (¬∀∗µx¬P (x)) = V (∃∗νxP (x)),

Proof: (a) Let P be a predicate. Then

V (¬∃µx¬P (x))

= ¬{〈x, sup
y∈E

ν(P (y)),min(1− sup
y∈E

ν(P (y)), µ(P (x))〉|x ∈ E}

= {〈x,min(1− sup
y∈E

ν(P (y))), µ(P (x)), sup
y∈E

ν(P (y))〉|x ∈ E}

= V (∀νxP (x)).

The proofs of the remaining assertions are analogous.

Theorem 2. For every predicate P ,

(a) V (∃µx(∃νxP (x))) = V (∃νx(∃µxP (x))) = V (∃xP (x)),

(b) V (∀µx(∀νxP (x))) = V (∀νx(∀µxP (x))) = V (∀xP (x)),

(c) V (∃µx(∀µxP (x))) = V (∀µx(∃µxP (x))),

(d) V (∃νx(∀νxP (x))) = V (∀νx(∃νxP (x))).

Theorem 3. For every two predicates P and Q,:

(a) ∃µ(P (x) ∨Q(x)) = ∃µP (x) ∨ ∃µQ(x),

(b) ∃ν(P (x) ∨Q(x)) = ∃νP (x) ∨ ∃νQ(x),

(c) ∀µ(P (x) ∨Q(x)) = ∀µP (x) ∨ ∀µQ(x),

(d) ∀ν(P (x) ∨Q(x)) = ∀νP (x) ∨ ∀νQ(x).
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For difference with quantifiers for all and there exists, that juxtapose to all

values of x exactly one value (specific for each one of the quantifiers), the herewith

defined new quantifiers give us possibility to introduce more precise quantifiers,

giving concrete values for the individual values of x. These precise quantifiers

have the following forms for a value a of variable x:

V ([∀µxP (x)](a)) = 〈 inf
y∈E

µ(P (y)), ν(P (a))〉,

V ([∀νxP (x)](a)) = 〈min(1− sup
y∈E

ν(P (y)), µ(P (a)), sup
y∈E

ν(P (y))〉,

V ([∃µxP (x)](a)) = 〈sup
y∈E

µ(P (y)),min(1− sup
y∈E

µ(P (y)), ν(P (a))〉,

V ([∃νxP (x)](a)) = 〈µ(P (a)), inf
y∈E

ν(P (y))〉,

V ([∀∗νxP (x)](a)) = 〈min(1− sup
y∈E

ν(P (y)),

µ(P (a)),min(sup
y∈E

ν(P (y)), 1− µ(P (a))〉,

V ([∃∗µxP (x)](a)) = 〈min(sup
y∈E

µ(P (y)), 1− ν(P (a)),

min(1− sup
y∈E

µ(P (y)), ν(P ((a))〉.

3 Conclusion

The herewith defined quantifiers give answer to the Open Problem 11 from [5].

Now, the connections between the new quantifiers and the other operators and

operations in IFL have to be studied.

It is interesting to mention the analogy between the first two (old) quantifiers

(∀, ∃) and the definite integral (
b∫

a

f(x)dx) and the analogy between the new six

quantifiers and the indefinite integral (
∫
f(x)dx).
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