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On the quantifiers of the intuitionistic fuzzy logic
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Abstract

Some new types of quantifiers are introduced in intuitionistic fuzzy logic
and some of their properties are discussed.
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1 Introduction

Intuitionistic Fuzzy Logic (IFL) is introduced in [1, 2, 3] on the basis of ideas
from [6, 7].

In the research on IFL, two real numbers, 1(p) and v(p), are assigned to the
proposition p with the following constraint to hold:

w(p) +v(p) < 1.

They correspond to the “truth degree” and to the “falsity degree” of p. Let this
assignment be provided by an evaluation function V', defined over a set of propo-
sitions S in such a way that:
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When values V' (p) = (a,b) and V' (q) = (c, d) of the proposition forms p and
q are known, the evaluation function V' can be extended also for the operations
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“negation”, “conjunction”, “disjunction”, “implication” and others. For example,
V(_'p) = <b7 a>7
V(p&q) = (min(a, c), max(b, d)),
V(pV q) = (max(a, c), min(b, d)).

The proposition p is called an intuitionistic fuzzy tautology if and only if a > b
and a tautology if and only if a = 1,b = 0.
Also, let for propositions p and ¢

V(p) < V(q)ifandonly ifa < cand b > d.

Meantime, in Intuitionistic Fuzzy Set (IFS) theory (see [5]) firstly two, and
after this — six other topological operators were introduced. The author saw that
the Intuitionistic Fuzzy (IF) interpretations of the first two topological operators
(“closure” and “interior”) coincide with the two logical quantifiers “there exists”
and “for all”), respectively.

In the present research, we give definition of six new logical quantifiers, that
are analogous to the six topological operators, mentioned above. Some of the
properties of the new operators will be studied and some open problems will be
formulated.

2 Main results

Let x be a variable, obtaining values in set F and let P(x) be a predicate with a
variable x. Let

V(P(z)) = (u(P(2)),v(P(x)))-
The IF-interpretations of the quantifiers for all (V) and there exists (3) are
introduced in [2] by

V(VaP(x)) = (sup u(P(y)), inf v(P(y))),

yerR yek
V(BzP(z)) = (it u(P(y)),supv(P(y))).
ye yeER

Their geometrical interpretations are illustrated in Figs. 1 and 2, respectively,
where x1, ..., 5 are the possible values of the variable = and V' (x1), ..., V(z5),
their IF-estimations.



The most important property of the two quantifiers is that each of them jux-
taposes to predicate P a point (exactly one for each quantifier) in the IF-interpre-
tational triangle.

(0,1)

Now, we introduce the following six new quantifiers.

V(¥ P(@)) = {{@, inf p(P(y)),v(P())x € E},

V(VyaP(x)) = {(z, min(1 - ZﬂelgV(P(y)),M(P(w)),sggV(P(y))W € B},

V(3uzP(z)) = {{z,sup u(P(y)), min(1 — sup u(P(y)), v(P(z)))|x € E},
yeE yeE

V(&,zP(z)) = {<fﬂaM(P(x)),yig]f;V(P(y)Dlx € E},



V(V,xP(z)) = {(z, min(1 — SEEV(P@))’ u(P(z)),
min(jggV(P(y)), 1= p(P(2)))|x € E},

VP () = {{min(sup p(Pw), 1~ v(P()),

min(l — sup p(P(y)), v(P((z)))z € B}
IS
Let the possible values of variable x be a, b, c and let their IF-estimations
V(a), V(b), V(c) be shown on Fig. 3. The geometrical interpretations of the new
quantifiers are shown in Figs. 4-9.

(0,1)
V(a)
V(e),
V(b)
<0, 0> (1, 0)
Fig. 3.
(0,1)
V(o)
V(3uxP(x
V(o) ( (z))
0
<0, 0> <1,0> <O, 0> <1,0>
Fig. 4. Fig. 5.



Fig. 6. Fig. 7.

Fig. 8. Fig. 9.

Therefore, we can change the forms of the first two quantifiers to the forms

V(VeP(z)) = {{z, inf p(P(y)),supv(P(y)))|x € B},
ye yeE

V(F3zP(z)) = {(=, sggu(P(y)% yingV(P(y))Hw € B}

Obviously, for every predicate P,
V(VaP(x)) C V(VuxP(x)) C V(V,2P(x))
C

CV(3yzP(z)) CV(3uzP(z)) C V(IzP(z))
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and
V(VzP(z)) CV(V,xP(x)) CV(V,zP(x))

CV(F2P(z)) CV(FuwP(z)) CV(F2xP(z)).

Theorem 1. For every predicate P,

(@) V(=3u2-P(z)) = V (Ve P(z)),
(b) V(=Vuz—-P(z)) = V(I,zP(x)),
©) V(=~Fz-P(x)) = V(Y P(x)),
(@) V(=Vyz-P(x)) = V(3uzP(z)),
(e) V(—EI;‘La:ﬂP(l‘)) =V (VizP(x)),

) V(=V,z~P(x)) = V(FzP(z)),
Proof: (a) Let P be a predicate. Then

V(=3uz=P(2))

= ~{{z,supv(P(y)), min(1 — sup v(P(y)), u(P(z)))|z € E}
S yeE

= {(z, min(1 - zggV(P(y))%u(P(m)),ZtelgV(P(y)»lw € B}

=V (V,xP(x)).
The proofs of the remaining assertions are analogous.

Theorem 2. For every predicate P,

@ V(©&Euz(JzP(z)) = V(z(EueP(x))) = V(IzP(x)),
b)) V(Vze(VyxP(x))) = V(Vyz (Ve P(x))) = V (Ve P(x)),
©) V(3uz(VyzP(2))) = V(Vuz(SuaP(2))),
@ V(3z(VyxP(x))) =V (Vyx(IpzP(x))).

Theorem 3. For every two predicates P and @),

@) 3.(P(z) vV Q(z)) = 3, P(x) vV 3,Q(z),
(b) I (P(z) VQ(x)) =3, P(x) VI Q(x)
©) VYV, (P(z) vVQ(z)) =V,P(z) VV,Q(x)
(d) Y, (P(z) vV Q(z)) =V, P(x) VV,Q(x)



For difference with quantifiers for all and there exists, that juxtapose to all
values of x exactly one value (specific for each one of the quantifiers), the herewith
defined new quantifiers give us possibility to introduce more precise quantifiers,
giving concrete values for the individual values of x. These precise quantifiers
have the following forms for a value a of variable z:

V([7urP(@))(a) = (inf 1(P(y)), v(P(a)),

V([VvaP(x)](a)) = (min(1 — sup v(P(y)), u(P(a)),sup v(P(y))),

yer yekr
V([BpzP(z)](a)) = <zlelgu(P(y)),min(1 - Slelgu(P(y)), v(P(a))),
V([FvzP(2)](a) = <M(P(a)),yingV(P(y))>,
V([VyazP()](a)) = (min(1 — SEEV(P(?J)),
1(P(a)), min(sup v(P(y)), 1 — p(P(a))),
yeE
V([FzP(@)|(a) = (min(zgg 1(P(y)), 1 = v(P(a)),
min(1 — sup u(P(y)), v(P((a))).

yeE

3 Conclusion

The herewith defined quantifiers give answer to the Open Problem 11 from [5].
Now, the connections between the new quantifiers and the other operators and
operations in IFL have to be studied.

It is interesting to mention the analogy between the first two (old) quantifiers

b
(¥, 3) and the definite integral ([ f(z)dz) and the analogy between the new six

a
quantifiers and the indefinite integral ([ f(x)dz).
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