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Abstract

The paper deals with sup−∗ composition of intuitionistic fuzzy relations,

but its considerable part concerns properties of arbitrary fuzzy relations.

At first, auxiliary properties of binary operations ∗ : [0, 1]2 → [0, 1] are

completed. Next, properties of composition and dual composition of fuzzy

relations are discussed. Then, the existence results for sup−∗ composition

of intuitionistic fuzzy relations are presented. Finally, the above results are

used for construction of semigroups and semirings of intuitionistic fuzzy

relations.

Keywords: Ordered semigroup, ordered semiring, fuzzy relation, relation

composition, dual composition, intuitionistic fuzzy relation.

1 Introduction

After the introduction of intuitionistic fuzzy sets (cf. [1]) there was a period of

over ten years without considerations about compositions of intuitionistic fuzzy

relations. One of the early papers in this direction was discussion by Burillo and

Bustince [4] about the possibility of composition of intuitionistic fuzzy relations

with simultaneous application of triangular norms and conorms. As a result of
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this discussion these authors further examined sup−T and inf −S compositions

(cf. [5]). A new understanding of such compositions was presented by Cornelis

et al. [6], where triangular norms on IFS-lattice were applied. A new kind of

compositions based on Bandler-Kohout operations was examined by Deschrijver

and Kerre [8].

In this paper we apply properties of fuzzy relations in a description of simi-

lar properties of intuitionistic fuzzy relations. We pay here attention to algebraic

properties of relation composition. In particular we describe fundamental alge-

braic structures of intuitionistic fuzzy relations. Thus we need auxiliary results

from algebra (Section 2), real analysis (Section 3) and fuzzy relation theory (Sec-

tions 4 and 5). The longest Section 5 contains theorems and examples describing

behaviour of fuzzy relation composition under diverse assumptions about the op-

eration ∗. Then, intuitionistic fuzzy relations are described and properties of their

compositions are examined (Sections 6-8).

2 Semigroups and semirings

We begin with algebraic structures with one binary operation. The notion of a

semigroup is a simplification of that of a group.

Definition 1 ([14], Chapter X). Let S 6= ∅ and ∗ : S × S → S.

• An algebraic structure (S, ∗) is called a semigroup if the operation ∗ is associa-

tive.

• A semigroup (S, ∗, e) is called a monoid, if the operation ∗ has the neutral ele-

ment e.

• A semigroup (monoid) is called commutative, if the operation ∗ is commutative.

• A semigroup (monoid) is called idempotent, if the operation ∗ is idempotent, i.e.

a ∗ a = a for a ∈ S.

• A semigroup (monoid) has the zero element z if a ∗ z = z ∗ a = z for a ∈ S

and we write (S, ∗, z) or (S, ∗, e, z).
• A semigroup (monoid) is called ordered, if (S,6) is a partially ordered set and

the operation ∗ is isotonic (increasing), i.e.

a 6 b ⇒ (c ∗ a 6 c ∗ b, a ∗ c 6 b ∗ c) for a, b, c ∈ S.

The next step is a consideration of algebraic structures with two binary oper-

ations. The notion of a semiring is a simplification of that of a ring.

Definition 2 ([13]). Let S 6= ∅ and ∗, ◦ : S × S → S.

• An algebraic structure (S, ∗, ◦, 0, e) is called a semiring if:
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a) (S, ∗, 0) is a commutative monoid;

b) (S, ◦, e, 0) is a monoid with the zero element 0;

c) the operation ◦ is distributive with respect to the operation ∗ , i.e.

c ◦ (a ∗ b) = (c ◦ a) ∗ (c ◦ b), (a ∗ b) ◦ c = (a ◦ c) ∗ (b ◦ c) for a, b, c ∈ S.

• A semiring is called commutative, if the operation ◦ is commutative.

• A semiring (S, ∗, ◦, 0, e,6) is called ordered, if both of its semigroups are or-

dered and 0 < e (positive order).

Algebraic structures (N,+, ·, 0, 1,6) and (2X ,∪,∩, ∅, X,⊂) are known ex-

amples of ordered semirings. We pay more attention to a semiring called bounded

distributive lattice (L,∨,∧, 0, 1), where both operations ∨,∧ are associative,

commutative, idempotent and mutually distributive. In particular, a bounded dis-

tributive lattice is an ordered semiring with respect to the partial order:

a 6 b ⇔ a ∨ b = b for a, b ∈ S.

With this order the lattice (L,∨,∧, 0, 1) has bounds inf L = 0, supL = 1.

The lattice is called complete if it is a complete ordered set with the above order.

Next, we consider an additional binary operation ∗ in a lattice L.

Definition 3 ([2], Chapter XIV). Let (L,∨,∧, 0, 1) be a complete, distributive

lattice, T 6= ∅ and ∗ : L× L → L.

• The operation ∗ is called join-distributive if it is distributive with respect to ∨.

• The operation ∗ is called meet-distributive if it is distributive with respect to ∧.

• The operation ∗ is called infinitely sup-distributive if

a ∗ (sup
t∈T

bt) = sup
t∈T

(a ∗ bt), (sup
t∈T

bt) ∗ a = sup
t∈T

(bt ∗ a) for a, bt ∈ L. (1)

• The operation ∗ is called infinitely inf-distributive if

a ∗ (inf
t∈T

bt) = inf
t∈T

(a ∗ bt), (inf
t∈T

bt) ∗ a = inf
t∈T

(bt ∗ a) for a, bt ∈ L. (2)

From infinite distributivity we obtain finite distributivity but the converse is

possible in a finite lattice only.

3 Semigroups in [0, 1]

Binary operations in interval [0, 1] play an important role in generalizing connec-

tives ‘and’ and ‘or’ of fuzzy logic. We begin with the elementary properties of

increasing operations.
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Lemma 1 ([10], Lemma 1). Let ∗ : [0, 1]2 → [0, 1]. The following three condi-

tions are equivalent:

∀
a,b,c∈[0,1]

(b 6 c) ⇒ (a ∗ b 6 a ∗ c, b ∗ a 6 b ∗ c), (3)

∀
a,b,c∈[0,1]

a∗max(b, c) = max(a∗b, a∗c), max(b, c)∗a = max(b∗a, c∗a), (4)

∀
a,b,c∈[0,1]

a∗min(b, c) = min(a∗ b, a∗ c), min(b, c)∗a = min(b∗a, c∗a). (5)

Lemma 2 (cf. [16], Section I.1). Let f : [p, q] → R be an increasing real function

and x ∈ [p, q].
• The function f is left-continuous if and only if f(x) = sup

t<x
f(t) for x > p.

• The function f is right-continuous if and only if f(x) = inf
t>x

f(t) for x < q.

Lemma 3 (cf. [16], Introduction). Let f : [p, q] → R be an increasing real

function and B ⊂ [p, q].
• If the function f is left-continuous, then f(supB) = sup f(B).
• If the function f is right-continuous, then f(inf B) = inf f(B).

Proof. Let x = supB. By monotonicity we get

b 6 x ⇒ f(b) 6 f(x) for b ∈ B, sup f(B) = sup
b∈B

f(b) 6 f(x) = f(supB).

Moreover, there exists an increasing sequence (bk) in B, such that lim bk
k→∞

= x

and by left-continuity we get f(supB) = f(x) = lim
k→∞

f(bk) 6 sup f(B). This

finishes the proof of the first part of the lemma and the proof of the second one is

similar.

Theorem 1. Let ∗ : [0, 1]2 → [0, 1].
• The operation ∗ is infinitely sup-distributive if and only if it is increasing and

left-continuous with respect to both arguments.

• The operation ∗ is infinitely inf-distributive if and only if it is increasing and

right-continuous with respect to both arguments.

Proof. At first we assume that the operation ∗ is increasing and left-continuous.

We prove the left condition in (1) and the proof of the right case is similar. Let

T 6= ∅, a, bt ∈ [0, 1], t ∈ T , B = {bt : t ∈ T}, x = supB. Since the function fa,

fa(t) = a ∗ t, t ∈ [0, 1] is increasing and left-continuous, then by Lemma 3 we

get (1):

a ∗ (sup
t∈T

bt) = a ∗ x = fa(x) = fa(supB) = sup fa(B) = sup
t∈T

(a ∗ bt).
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Conversely, let us assume that the operation ∗ is infinitely sup-distributive.

Putting T = {1, 2}, b1 = b, b2 = c from (1) we get the property (4) and the

operation ∗ is increasing by Lemma 1 (cf. (3)).

Now let a, x ∈ [0, 1], x > 0. Putting T = [0, x), from (1) we get

sup
t<x

fa(t) = sup
t<x

(a ∗ t) = a ∗ (sup
t<x

t) = a ∗ x = fa(x).

By Lemma 2 this proves the left-continuity of the function fa, i.e. the left-

continuity of the operation ∗ in the second argument. Similarly, we can prove

the left-continuity of the operation ∗ in the first argument. Thus the operation ∗ is

increasing and left-continuous.

The proof of the second part of the theorem may be obtained dually.

Recently many papers have been devoted to important semigroups in the in-

terval [0, 1] such as triangular norms and conorms, uninorms, nullnorms and their

diverse generalizations.

Definition 4 ([15]). Let operation ∗ : [0, 1]2 → [0, 1] be an increasing, associative

and commutative. It is called:

• a uninorm if it has the neutral element e ∈ [0, 1],
• a nullnorm if it has the zero element z ∈ [0, 1] and 0∗x = x for x 6 z, 1∗x = x

for x > z.

The uninorm ∗ is called

• conjunctive if 0 ∗ 1 = 0,

• disjunctive if 0 ∗ 1 = 1,

• triangular norm if e = 1,

• triangular conorm if e = 0.

Example 1 ([15], Examples 1.2, 1.14). As a common representation of the above

classes we put here the drastic triangular norm ∗, which is a conjuctive uninorm

(e = 1) and nullnorm with z = 0, and also the drastic triangular conorm ∗d,

which is a disjuctive uninorm (e = 0) and nullnorm with z = 1. These op-

erations are used in our considerations as some counter-examples, because the

drastic triangular norm is not left-continuous and the drastic triangular conorm is

not right-continuous:

x ∗ y =






x, if y = 1

y, if x = 1

0, if x, y < 1

, x∗dy =






x, if y = 0

y, if x = 0

1, if x, y > 0

, x, y ∈ [0, 1].
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4 Fuzzy relations

A fuzzy relation in a set X 6= ∅ is an arbitrary mapping R : X ×X → [0, 1] and

we shall write R ∈ FR(X). For R,S ∈ FR(X) we use the induced order and

the lattice operations:

R 6 S ⇔ (R(x, y) 6 S(x, y), x, y ∈ X),

(R∨S)(x, y) = R(x, y)∨S(x, y), (R∧S)(x, y) = R(x, y)∧S(x, y), x, y ∈ X.

Lemma 4 (cf. [12]). (FR(X),∨,∧, 0X×X , 1X×X) is a complete, distributive

lattice (and a commutative, ordered semiring).

The most important operations on fuzzy relations are their compositions. We

shall restrict here to sup−∗ and inf −∗ compositions.

Definition 5 ([12]). Let ∗ : [0, 1]2 → [0, 1]. By sup−∗ composition of fuzzy

relations R,S ∈ FR(X) we call the fuzzy relation R ◦ S, where

(R ◦ S)(x, z) = sup
y∈X

(R(x, y) ∗ S(y, z)), x, y ∈ X. (6)

Similarly, inf −∗ composition (dual composition) is defined by

(R • S)(x, z) = inf
y∈X

(R(x, y) ∗ S(y, z)), x, y ∈ X. (7)

Example 2. The operation ∗ can be retrieved from compositions (6), (7) by the

application of constant fuzzy relations cX×X , where

cX×X(x, y) = c for c ∈ [0, 1], x, y ∈ X.

Let a, b ∈ [0, 1], and x, z ∈ X . Directly from Definition 5 we obtain

(aX×X ◦ bX×X)(x, z) = sup
y∈X

(aX×X(x, y) ∗ bX×X(y, z))

= sup
y∈X

(a ∗ b) = a ∗ b = (a ∗ b)X×X(x, z),

(aX×X • bX×X)(x, z) = inf
y∈X

(aX×X(x, y) ∗ bX×X(y, z))

= inf
y∈X

(a ∗ b) = a ∗ b = (a ∗ b)X×X(x, z).

Thus, the above compositions of constant fuzzy relations are constant fuzzy rela-

tions and we have

aX×X ◦ bX×X = (a ∗ b)X×X , aX×X • bX×X = (a ∗ b)X×X . (8)
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Example 3. We will show that a constant result of the composition can be also

obtained for non-constant arguments. Let us consider X = [0, 1] with binary

operations from Example 1. Putting

R(x, y) = y, S(x, y) =

{
0, max(x, y) = 1

y, max(x, y) < 1
, x, y ∈ [0, 1],

for the drastic triangular norm ∗ we get

(R ◦ S)(x, z) = max(y ∗ 0, sup
y<1

y ∗ y) = max(0, 0) = 0,

i.e. R ◦ S = 0[0,1]2 . Dually, using the drastic triangular conorm ∗d and

Rd(x, y) = 1− y, Sd(x, y) =

{
1, max(x, y) = 1

1− y, max(x, y) < 1
, x, y ∈ [0, 1]

we get

(Rd•dSd)(x, z) = inf
y∈[0,1]

(1− y)∗d

{
1, max(y, z) = 1

1− z, max(y, z) < 1
,

=

{
min(0∗d1, infy<1(1− y)∗d(1− z)) = min(1, 1) = 1, z < 1

infy∈[0,1](1− y)∗d1 = 1, z = 1

for x, y ∈ [0, 1], i.e. Rd•dSd = 1[0,1]2 .

5 Properties of compositions of fuzzy relations

Dependencies between properties of the operation ∗ and these of sup−∗ compo-

sition were examined in details in [9]. We summarize or reprove some of these

results. The above dependencies are not clear and not obvious. It is commonly

known that the compositions from Definition 5 need not be commutative (simi-

larly as the matrix product). Simultaneously, by Example 2 we can see that the

compositions preserve constancy of fuzzy relations, but by Example 3 the con-

stant result does not need constant arguments. These examples will help us to

describe more exactly dependencies between operations ∗, ◦ and •.

Lemma 5. Let ∗ : [0, 1]2 → [0, 1].
• The sup−∗ (inf −∗) composition is increasing in FR(X) if and only if the

operation ∗ is increasing.
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• If the operation ∗ is increasing, then the sup−∗ composition is join-distributive

and meet-subdistributive, i.e.

T ◦(R∨S) = T ◦R∨T ◦S, (R∨S)◦T = R◦T ∨S◦T, R, S, T ∈ FR(X), (9)

T ◦(R∧S) 6 T ◦R∧T ◦S, (R∧S)◦T 6 R◦T∧S◦T, R, S, T ∈ FR(X). (10)

• If the operation ∗ is increasing, then the inf −∗ composition is meet-distributive

and join-superdistributive, i.e.

T •(R∧S) = T •R∧T •S, (R∧S)•T = R•T∧S•T, R, S, T ∈ FR(X), (11)

T •(R∨S) > T •R∨T •S, (R∨S)•T > R•T∨S•T, R, S, T ∈ FR(X). (12)

Proof. Let R,S, T ∈ FR(X). We consider only the case of sup−∗ composi-

tion because considerations of inf −∗ composition are dual to the first one. If

the operation ∗ is increasing, then similarly as in [12], Proposition 3A we get

monotonicity, join-distributivity (9) and meet-subdistributivity (10).

Conversely, if the operation ◦ is increasing, then it is increasing for constant

relations and for a, b, c ∈ [0, 1] we get (cf. (8))

a 6 b ⇔ aX×X 6 bX×X ⇒ aX×X ◦ cX×X 6 bX×X ◦ cX×X

⇔ (a ∗ c)X×X 6 (b ∗ c)X×X ⇔ a ∗ c 6 b ∗ c.

Similarly we get a 6 b ⇒ c ∗ a 6 c ∗ b, which finishes the proof of equivalence.

Lemma 6. The sup−∗ (inf −∗) composition has the zero element Z if and only

if the operation ∗ has the zero element z ∈ [0, 1] and Z = zX×X .

Proof. If z ∈ [0, 1] is the zero element of the operation ∗ and Z = zX×X , then

for every R ∈ FR(X) we get

(Z ◦R)(x,w) = (zX×X ◦R)(x,w) = sup
y∈X

(z ∗R(y, w)) = sup
y∈X

z = z

= zX×X(x,w) = Z(x,w),

i.e. Z ◦R = Z and similarly we get R ◦ Z = Z.

Conversely, if a fuzzy relation Z ∈ FR(X) is the zero element of operation

◦, then for c ∈ [0, 1] we get Z ◦ cX×X = cX×X ◦ Z = Z, i.e.

(Z ◦ cX×X)(x,w) = sup
y∈X

(Z(x, y) ∗ c) = Z(x,w),
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(cX×X ◦ Z)(x,w) = sup
y∈X

(c ∗ Z(y, w)) = Z(x,w).

The result in the first line is independent of w and that in the second line is inde-

pendent of x, i.e. Z(x,w) = Z(x, x) = Z(w,w) = const., because x,w ∈ X are

arbitrary. Thus the relation Z is constant. Denoting this constant by z we have

Z = zX×X . Moreover, from the above lines we obtain z ∗ c = c ∗ z = z, i.e. z is

the zero element of operation ∗.

The proof in the case of inf −∗ composition is similar.

Lemma 7. Let operation ∗ : [0, 1]2 → [0, 1] be increasing.

• The sup−∗ composition sup−∗ has the neutral element E ∈ FR(X) if and

only if the operation ∗ has the zero element z = 0, the neutral element e ∈ (0, 1]
and

E(x, y) =

{
e, x = y

0, x 6= y,
, x, y ∈ X. (13)

• The inf −∗ composition has the neutral element E′ ∈ FR(X) if and only if the

operation ∗ has the zero element z = 1, the neutral element e′ ∈ [0, 1) and

E′(x, y) =

{
e′, x = y

1, x 6= y,
, x, y ∈ X. (14)

Proof. Let the increasing operation ∗ has the zero element z = 0, the neutral

element e > 0 and the fuzzy relation E be defined by (13). For every R ∈
FR(X), x,w ∈ X , we obtain

(E ◦R)(x,w) = sup
y∈X

(E(x, y) ∗R(y, w)) = max(e ∗R(x,w), sup
y 6=x

(0 ∗R(y, w)))

= e ∗R(x,w) = R(x,w),

i.e. E ◦ R = R. Similarly we get R ◦ E = R and thus the fuzzy relation (13) is

the neutral element of the operation ◦.

Conversely, let us assume, that a fuzzy relation E ∈ FR(X) is the neutral

element of the operation ◦ and c ∈ [0, 1]. We consider diagonal fuzzy relations of

the form

Dc(x, y) =

{
c, x = y

0, x 6= y,
, Dd(x, y) =

{
0, x = y

1, x 6= y,
, x, y ∈ X.

At first we get E ◦Dc = Dc ◦ E = Dc. Thus for c = 0 we get

sup
y∈X

(E(x, y) ∗ 0) = sup
y∈X

(0 ∗ E(x, y)) = 0,

57

• 



which gives

E(x, y) ∗ 0 = 0 ∗ E(x, y) = 0 for x, y ∈ X. (15)

Using this property we obtain

(E ◦Dc)(x, x) = sup
y∈X

(E(x, y) ∗ c) = max(E(x, x) ∗ c, sup
y 6=x

(E(x, y) ∗ 0))

= E(x, x) ∗ c = Dc(x, x) = c.

Similarly, we get c ∗ E(x, x) = c, i.e. e = E(x, x) is the neutral element of the

operation ∗. Thus E(w,w) = e for w ∈ X because the neutral element is unique.

Now by (15) we obtain

De(x,w) = (De ◦E)(x,w) = max(e ∗E(x,w), sup
y 6=x

(0 ∗E(y, w))) = E(x,w),

i.e. E = De.

Finally, we have E ◦Dd = Dd ◦ E = Dd and for x ∈ X we obtain

0 = Dd(x, x) = (E ◦Dd)(x, x) = max(e ∗ 0, sup
y 6=x

(0 ∗ 1)) = 0 ∗ 1.

Similarly, we get 1 ∗ 0 = 0, which by monotonicity proves that z = 0 is the zero

element of the operation ∗ (e.g. we have 0 6 x ∗ 0 6 1 ∗ 0 = 0).

Lemma 8. Let ∗ : [0, 1]2 → [0, 1].
• The sup−∗ composition is infinitely sup-distributive if and only if the operation

∗ is increasing and left-continuous.

• The inf −∗ composition is infinitely inf-distributive if and only if the operation

∗ is increasing and right-continuous.

Proof. Let T 6= ∅, R, St ∈ FR(X), t ∈ T and x,w ∈ X . If the operation ∗ is

increasing and left-continuous, then by Theorem 1 it is infinitely sup-distributive

and we have

(R◦sup
t∈T

St)(x,w) = sup
y∈X

(R(x, y)∗sup
t∈T

St(y, w)) = sup
y∈X

sup
t∈T

(R(x, y)∗St(y, w))

= sup
t∈T

sup
y∈X

(R(x, y) ∗ St(y, w)) = sup
t∈T

(R ◦ St)(x,w),

which proves that

R ◦ (sup
t∈T

St) = sup
t∈T

(R ◦ St).
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Similarly, we get

(sup
t∈T

St) ◦R = sup
t∈T

(St ◦R),

i.e. the sup−∗ composition is infinitely sup-distributive.

Conversely, let us assume that the sup−∗ composition is infinitely sup-dis-

tributive. We apply this to the constant fuzzy relations.

At first, let T 6= ∅, a, bt ∈ [0, 1], t ∈ T, x, y ∈ X . Formally we have

(sup
t∈T

(bt)X×X)(x, y) = sup
t∈T

bt = (sup
t∈T

bt)X×X(x, y).

Thus

sup
t∈T

(bt)X×X = (sup
t∈T

bt)X×X .

Now we get

(a ∗ sup
t∈T

bt)X×X = aX×X ◦ (sup
t∈T

bt)X×X = aX×X ◦ (sup
t∈T

bt)X×X

= sup
t∈T

aX×X ◦ (bt)X×X = sup
t∈T

(a ∗ bT )X×X = sup
t∈T

(a ∗ bt)X×X .

Thus

a ∗ sup
t∈T

bt = sup
t∈T

(a ∗ bt)

and similarly we get

sup
t∈T

bt ∗ a = sup
t∈T

(bt ∗ a),

i.e. the operation ∗ is infinitely sup-distributive. By Theorem 1 it is increasing

and left-continuous.

The proof in the case of inf −∗ composition is similar.

Lemma 9. Let ∗ : [0, 1]2 → [0, 1].
• If the sup−∗ (inf −∗) composition is associative in FR(X), then the operation

∗ is associative in [0, 1].
• If the operation ∗ is increasing, left-continuous and associative, then the sup−∗
composition is associative.

• If the operation ∗ is increasing, right-continuous and associative, then the

inf −∗ composition is associative.

Proof. Let a, b, c ∈ [0, 1]. If the composition ◦ is associative in FR(X), then we

can apply the constant fuzzy relations and (8):

((a ∗ b) ∗ c)X×X = (a ∗ b)X×X ◦ cX×X = (aX×X ◦ bX×X) ◦ cX×X
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= aX×X ◦ (bX×X ◦ cX×X) = aX×X ◦ (b ∗ c)X×X = (a ∗ (b ∗ c))X×X .

Thus, (a∗b)∗c = ((a∗b)∗c)X×X(x, y) = (a∗(b∗c))X×X(x, y) = a∗(b∗c), i.e.

the operation ∗ is associative and the proof in the case of the inf −∗ composition

is analogical.

Now, let R,S, T ∈ FR(X), x,w ∈ X . If the operation ∗ is increasing, left-

continuous and associative, then by Lemma 8 the sup−∗ composition is infinitely

sup-distributive. Thus we get

[(R ◦ S) ◦ T ](x,w) = sup
z∈X

(R ◦ S)(x, z) ∗ T (z, w)

= sup
z∈X

(sup
y∈X

R(x, y) ∗ S(y, z)) ∗ T (z, w) = sup
z,y∈X

[(R(x, y) ∗ S(y, z)) ∗ T (z, w)]

= sup
y,z∈X

[R(x, y) ∗ (S(y, z) ∗ T (z, w)] = sup
y∈X

R(x, y) ∗ (sup
z∈X

S(y, z) ∗ T (z, w))

= sup
y∈X

R(x, y) ∗ (S ◦ T )(y, w) = [R ◦ (S ◦ T )](x,w),

which proves associativity of the sup−∗ composition.

The proof in the case of inf −∗ composition is similar.

It is troublesome fact that we have no equivalence in the above lemma. How-

ever, if we delete additional assumptions about the operation ∗, then we can lose

the positive result.

Example 4 (cf. [9], Example 6). We show that the continuity assumption from

the above lemma cannot be deleted in consideration of the composition associa-

tivity. From Examples 1, 3 we use the drastic triangular norm ∗ (which is not

left-continuous), relations R,S ∈ [0, 1]2 and additionally relation T = 1[0,1]2 . By

Example 3 we have R ◦ S = 0[0,1]2 and by (8) we get

(R ◦ S) ◦ T = 0[0,1]2 ◦ 1[0,1]2 = (0 ∗ 1)[0,1]2 = 0[0,1]2 .

For x, z ∈ [0, 1] we also have

(S ◦ T )(x, z) = 0 ∗ 1 ∨ sup
y<1

y ∗ 1 = 0 ∨ 1 = 1.

Similarly, R ◦ 1[0,1]2 = 1[0,1]2 , i.e. R ◦ (S ◦ T ) = 1[0,1]2 .

In the case of inf −∗ composition we also use Examples 1, 3 with the drastic

triangular conorm ∗d, X = [0, 1], relations Rd, Sd and additionally T d = 0[0,1]2 .

We get

(Rd•dSd)•dT d = 1[0,1]2 > Rd•d(Sd•dT d) = 0[0,1]2 .

Therefore, the sup−∗ (inf −∗d) composition is not associative, while the opera-

tion ∗, (∗d) is associative and increasing.
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Example 5. We show that the monotonicity assumption cannot be deleted from

Lemma 9 in consideration of the composition associativity. We consider the bi-

nary operation x ∗ y = 2xy − x − y + 1, x, y ∈ [0, 1], for which z = 0.5, e = 1
and x ∗ 0 = 0 ∗ x = 1 − x. It is associative and continuous but not increasing,

because 0 < 1 and 0 ∗ 0 = 1 > 0 ∗ 1 = 0. Putting X = [0, 1], R(x, y) = 0.5y,

S(x, y) = 0.5x, x, y ∈ [0, 1] and T = 0[0,1]2 , for sup−∗ composition we obtain

(R ◦ S)(x, z) = sup
y∈[0,1]

(0.5y2 − y + 1) = 1, (S ◦ T )(x, y) = sup
y∈[0,1]

(1− 0.5x)

= 1− 0.5x, x, z ∈ [0, 1],

(R ◦ S) ◦ T = 0[0,1]2 < R ◦ (S ◦ T ) = 0.5[0,1]2 .

Dually we put the operation x∗dy = x + y − 2xy, x, y ∈ [0, 1], and relations

Rd(x, y) = 1− 0.5y, Sd(x, y) = 1− 0.5x, T d = 1[0,1]2 . We get

(Rd•dSd)•dT d = 1[0,1]2 > Rd•d(Sd•dT d) = 0.5[0,1]2 .

Therefore, the sup−∗ (inf −∗d) composition is not associative, while the opera-

tion ∗ (∗d) is associative and continuous.

Under suitable assumptions about the operation ∗ we can obtain a semigroup

or a semiring of fuzzy relations. Directly from the above lemmas (Lemmas 5-9)

we get

Theorem 2. Let ∗ : [0, 1]2 → [0, 1] be an increasing, associative operation.

• If the operation ∗ is left-continuous, then (FR(X), ◦,6) is an ordered semi-

group of fuzzy relations.

• If the operation ∗ is left-continuous with the zero z = 0 and the neutral element

e > 0, then (FR(X), ◦, E, 0X×X ,6) is an ordered monoid with the zero 0X×X .

Moreover, (FR(X),∨, ◦, 0X×X , E,6) is an ordered semiring of fuzzy relations,

where E is given by (13).

• If the operation ∗ is right-continuous, then (FR(X), •,6) is an ordered semi-

group of fuzzy relations.

• If the operation ∗ is right-continuous with the zero z = 1 and the neutral ele-

ment e < 1, then (FR(X), •, 1X×X , E′,6) is an ordered monoid with the zero

1X×X . Moreover, (FR(X),∧, •, 1X×X , E′,6) is an ordered semiring of fuzzy

relations, where E′ is given by (14).

• If the operation ∗ is continuous, then we get both ordered semigroups:

(FR(X), ◦,6) and (FR(X), •,6).
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Let us observe, that fixed operation ∗ cannot generate both monoids from the

last result, because they have different zero elements. The above theorem can be

simplified in the case of commonly known triangular norms, triangular conorms,

uninorms and nullnorms:

Corollary 1. Let ∗ : [0, 1]2 → [0, 1].
• If the operation ∗ is a left-continuous nullnorm, then (FR(X), ◦,6) is an or-

dered semigroup of fuzzy relations.

• If the operation ∗ is a right-continuous nullnorm, then (FR(X), •,6) is an or-

dered semigroup of fuzzy relations.

• If the operation ∗ is a left-continuous, conjuctive uninorm with the neutral el-

ement e > 0, then (FR(X), ◦, E, 0X×X ,6) is an ordered monoid with the zero

0X×X and (FR(X),∨, ◦, 0X×X , E,6) is an ordered semiring of fuzzy relations,

where E is given by (13) (for e = 1 it is the case of left-continuous triangular

norms).

• If the operation ∗ is right-continuous, disjunctive uninorm with the neutral el-

ement e < 1, then (FR(X), •, 1X×X , E′,6) is an ordered monoid with the zero

1X×X , and (FR(X),∧, •, 1X×X , E′,6) is an ordered semiring of fuzzy rela-

tions, where E′ is given by (14) (for e = 0 it is the case of right-continuous

triangular conorms).

6 Intuitionistic fuzzy relations

Intuitionistic fuzzy relations are pairs of fuzzy relations.

Definition 6 ([3]). Let fuzzy relations R,Rd ∈ FR(X) fulfil the condition

R(x, y) +Rd(x, y) 6 1, x, y ∈ X.

A pair ρ = (R,Rd) is called an (Atanassov’s) intuitionistic fuzzy relation.

The family of all intuitionistic fuzzy relations in X is denoted by IFR(X).

According to the condition from the above definition we consider the triangle

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 6 1}

with order relation

(x1, x2)6L(y1, y2) ⇔ (x1 6 y1, x2 > y2).
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Lemma 10 ([7]). (L∗,6L) = (L∗,∨L,∧L) is a complete, distributive lattice with

bounds 0L = (0, 1), 1L = (1, 0), where

(x1, x2)∨L(y1, y2) = (max(x1, y1),min(x2, y2)),

(x1, x2)∧L(y1, y2) = (min(x1, y1),max(x2, y2)).

Thus, intuitionistic fuzzy relations are functions with values in the lattice

(L∗,∨L,∧L). Using this lemma we can introduce induced order and induced

lattice operations in IFR(X).

Definition 7 ([5]). Let ρ, σ ∈ IFR(X), ρ = (R,Rd), σ = (S, Sd). We put

ρ6Lσ ⇔ (R 6 S,Rd
> Sd),

ρ∨Lσ = (R ∨ S,Rd ∧ Sd), ρ∧Lσ = (R ∧ S,Rd ∨ Sd).

Directly from Lemma 4 we get

Corollary 2. (IFR(X),6L) = (IFR(X),∨L,∧L) is a complete, distributive

lattice with bounds 0IFR = (0X×X , 1X×X), 1IFR = (1X×X , 0X×X).

7 Composition of intuitionistic fuzzy relations

After detailed discussion of diverse formulas of composition of intuitionistic fuzzy

relations in [4] we can use a general version of sup−∗ composition:

Definition 8 ([5]). Let ∗, ∗d : [0, 1]2 → [0, 1], ∗ 6 (∗d)′ and ρ, σ ∈ IFR(X),
ρ = (R,Rd), σ = (S, Sd). By composition of intuitionistic fuzzy relations ρ, σ ∈
IFR(X) we call ρ◦Lσ = (R ◦ S,Rd•dSd), i.e.

(ρ◦Lσ)(x, z) = (sup
y∈X

R(x, y) ∗ S(y, z), inf
y∈X

Rd(x, y)∗dSd(y, z)), x, y ∈ X,

where a∗′b = 1− (1− a) ∗ (1− b), a, b ∈ [0, 1].

According to [4], we get

Lemma 11 ([4], Proposition 1). Let ∗, ∗d : [0, 1]2 → [0, 1]. If ∗ 6 (∗d)′ and

ρ, σ ∈ IFR(X), then ρ◦Lσ is an intuitionistic fuzzy relation.

This provides us consideration of semigroups and semirings of intuitionistic

fuzzy relations.
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8 Algebraic structures of intuitionistic fuzzy

relations

Directly from Lemma 11 and Theorem 2 we obtain

Theorem 3. Let ∗, ∗d : [0, 1]2 → [0, 1] be increasing, associative operations and

∗ 6 (∗d)′.
• If the operation ∗ is left-continuous and the operation ∗d is right-continuous,

then (IFR(X), ◦L,6) is an ordered semigroup of intuitionistic fuzzy relations.

• If additionally the operation ∗ has the zero z = 0 and the neutral element

e > 0, the operation ∗d has the zero zd = 1 and the neutral element ed < 1,

then we obtain an ordered monoid (IFR(X), ◦L, EL, 0IFR(X),6) of intuitionis-

tic fuzzy relations and (IFR(X),∨L, ◦L, 0IFR(X), EL,6) is an ordered semiring

of intuitionistic fuzzy relations where, EL = (E,E′).

Corollary 3. Let ∗, ∗d : [0, 1]2 → [0, 1], ∗ 6 (∗d)′.
• If the operation ∗ is a left-continuous nullnorm and the operation ∗d is a right-

continuous nullnorm, then (IFR(X), ◦L,6) is an ordered semigroup of intuition-

istic fuzzy relations.

• If the operation ∗ is a conjunctive, left-continuous uninorm with e > 0, the oper-

ation ∗d is a disjunctive, right-continuous uninorm with ed < 1, then (IFR(X),
◦L, EL, 0IFR(X),6) is an ordered monoid of intuitionistic fuzzy relations, and

(IFR(X),∨L, ◦L, 0IFR(X), EL,6) is an ordered semiring of intuitionistic fuzzy

relations, where EL = (E,E′) (for e = 1 and ed = 0 it is the case of left-

continuous triangular norms and right-continuous triangular conorms).

Example 6. Using the drastic triangular operations and fuzzy relations from Ex-

ample 4 we put ρ = (R,Rd), σ = (S, Sd), τ = (T, T d). Using the composi-

tion ◦L we get R◦L(S◦LT ) = 1IFR 6= (R◦LS)◦LT = 0IFR. Therefore, the

composition ◦L is not associative, while operations ∗ and ∗d are associative and

increasing.

Example 7. Using the operations and fuzzy relations from Example 5 we simi-

larly put ρ = (R,Rd), σ = (S, Sd), τ = (T, T d). Using the composition ◦L we

get R◦L(S◦LT ) = 0IFR 6= (R◦LS)◦LT = 0.5IFR. Therefore, the composition

◦L is not associative, while operations ∗ and ∗d are associative and continuous.

9 Conclusion

The goal of the paper is a presentation of some algebraic structures of intuitionistic

fuzzy relations. Such results are important from two points of view. First of all,
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the composition of fuzzy relations is the main operation on fuzzy relations and

appears in many applications. Thus, the composition properties can be applied in

many domains. From the second point of view, algebraic structures are standard

notions in mathematics and their properties are summarized in many monographs.

Identification of such structures in relational calculus gives possibility of their

consideration on higher level of abstraction with application of known theories.

In such a way many particular cases may be replaced with one general statement

(e.g. definition, theorem, proof or example).

Some generalizations of sup− inf composition need additional assumptions

connected with monotonicity and continuity. In practical computation on a finite

domain the continuity assumptions are not necessary. However, a general theorem

need precise assumptions. Examples of such results are presented in Section 5.

Further considerations will concern properties of powers of intuitionistic fuzzy

relations based on results of paper [11].
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