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Abstract

In this paper we consider two aspects of binary operations on interval valued

fuzzy sets. The first is connected with some methods of construction of such

operations. Here we describe decomposable operations (e.g. t-representable

t-norms) and their generalizations. Moreover we describe which properties

of components are transferred to the decomposable operations. The same

problem is considered for the generalization of decomposable operations.

The second aspect considered in this paper is connected with algebraic prop-

erties of binary operations, i.e. for a given properties (associativity, mono-

tonicity, commutativity and existence of neutral or zero element) we tray

describe the structure of operations. In particular, we describe the structure

of uninorms and nullnorms on LI .

Keywords: Interval-valued fuzzy set, Atanassov’s intuitionistic fuzzy set,

lattices L∗ and LI , uninorm, nullnorm, decomposable operations.

1 Introduction

Binary operations such as triangular norms and triangular conorms are applied in

multivalued logic and fuzzy set theory. In this paper we consider two aspects of

binary operations on interval valued fuzzy sets. The first is connected with some
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methods of construction of such operations. The second aspect considered in this

paper is connected with algebraic properties of binary operations, i.e. for a given

properties (associativity, monotonicity, commutativity and existence of neutral or

zero element) we tray describe the structure of operations (cf. [4]). In particular,

we describe the structure of uninorms and nullnorms on LI .

Interval valued fuzzy sets have been introduced by Zadeh [19] and form an

extension of fuzzy sets. While fuzzy sets give only a degree of membership for

each element of the universe, interval valued fuzzy sets maps each element of the

universe on an interval of possible membership-degrees. Hence interval valued

fuzzy sets are not only capable of modelling vagueness, but also uncertainty.

The another extension of fuzzy sets are intuitionistic fuzzy sets introduced

by Atanassov [1]. Atanassov intuitionistic fuzzy sets give not only a degree of

membership µ for each element of the universe, but also give a degree of non-

membership ν, which only need to satisfy the constraint µ+ ν ≤ 1. The number

1 − µ − ν is called the hesitation degree and hence is also capable of modelling

uncertainty.

In the next section we define interval-valued fuzzy sets, intuitionistic fuzzy

sets and the lattices LI and L∗, and we show that both interval-valued fuzzy set

theory and intuitionistic fuzzy set theory are equivalent to LI fuzzy set theory.

Further we recall the definition of t-norm and t-conorm on LI . In Section 3 we

describe decomposable operations (e.g. t-representable t-norms) and their gener-

alizations (e.g. pseudo-t-representable operations). Moreover we describe which

property of components operations are transferred to the decomposable opera-

tions. The same problem is considered for the generalization of decomposable

operations. In Section 4 we recall the properties of uninorms in [0, 1] and next

we describe the uninorms on LI . First we show the relationship with t-norms and

t-conorms on LI and next we describe some properties of representable uninorms

on LI , e.g. we discuss the possible values of the neutral element and zero element

for these uninorms. In Section 5 we present nullnorms on LI and consider similar

properties as for uninorms.

2 Interval valued and Atanassov’s intuitionistic fuzzy

sets

First we recall the notion of some extensions of fuzzy set theory. The fuzzy set

theory turned out to be a useful tool to describe situations in which the data are

imprecise or vague.
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Definition 1 ([18]). A fuzzy set A in a universe X is a mapping

A : X → [0, 1].

Fuzzy set describe the degree to which a certain point belongs to a set. A

is also called a membership function and A(x) is called membership degree of

x ∈ X .

The natural way of extension the operations on sets to fuzzy sets is by mem-

bership functions

(A ∪B)(x) = max (A(x), B(x)) ,

(A ∩B)(x) = min (A(x), B(x)) ,

for x ∈ X .

There are many other generalizations of these operations. Some of them are

based on triangular norms and triangular conorms (cf.[16]) which we may use

instead of operations min, max.

Definition 2 ([16]). A triangular norm T is an increasing, commutative, associa-

tive operation T : [0, 1]2 → [0, 1] with neutral element 1.

A triangular conorm S is an increasing, commutative, associative operation

S : [0, 1]2 → [0, 1] with neutral element 0.

Example 1 ([16]). Well-known t-norms and t-conorms are:

TM (x, y) = min(x, y), SM (x, y) = max(x, y),
TP (x, y) = x · y, SP (x, y) = x+ y − xy,

TL(x, y) = max(x+ y − 1, 0), SL(x, y) = min(x+ y, 1),

So, we have the generalization of the sum and the intersection in the following

form

(A ∪B)(x) = S (A(x), B(x)) ,

(A ∩B)(x) = T (A(x), B(x)) ,

for x ∈ X .

Intuitionistic fuzzy sets were introduced by Atanassov as an extension of the

fuzzy sets in the following way.

Definition 3 (cf. [1], [2]). An Atanassov intuitionistic fuzzy set A on a universe

X is a triple

A = {(x, µ(x), ν(x)) : x ∈ X}, (1)

where µ, ν : X → [0, 1] and µ(x) + ν(x) ≤ 1, x ∈ X .

πA(x) = 1− µA(x)− νA(x) is called the hesitation degree of x.
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An Atanassov intuitionistic fuzzy set assigns to each element of the universe

not only a membership degree µ(x) but also a nonmembership degree ν(x), x ∈
X .

Now we consider the operations defined on Atanassov intuitionistic fuzzy sets.

Namely

A ∪B = {x,max(µA(x), µB(x)),min(νA(x), νB(x))},

A ∩B = {x,min(µA(x), µB(x)),max(νA(x), νB(x))}.

An Atanassov intuitionistic fuzzy set A on X can be represented by an L∗-

fuzzy set in the sense of Goguen. Namely

Definition 4 (cf. [14]). An L-fuzzy set A on a universe X is a function

A : X → L where L is a lattice.

In this paper by (L∗,≤L∗) we mean the following complete lattice

L∗ = {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1}, (2)

(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1 and x2 ≥ y2.
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Figure 1: Lattice L∗

Another extension of fuzzy sets are interval-valued fuzzy sets introduced by

Zadeh [19]. In interval-valued fuzzy sets to each element of the universe a closed

subinterval of the unit interval is assigned and this is the way of describing the

unknown membership degree.
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Definition 5 ((cf. [15])). An interval valued fuzzy set A in a universe X is a

mapping A : X → Int([0, 1]), where Int([0, 1]) denotes the set of all closed

subintervals of [0, 1], i.e. a mapping which assigns to each element x ∈ X the

interval [A(x), A(x)], where A(x), A(x) ∈ [0, 1] and A(x) ≤ A(x).

An interval valued fuzzy set A on X can be represented by the LI -fuzzy set

A in the sense of Goguen, where

LI = {[x1, x2] : x1, x2 ∈ [0, 1] : x1 ≤ x2}, (3)

with following order

[x1, x2] ≤LI [y1, y2] ⇔ x1 ≤ y1 ∧ x2 ≤ y2.

(LI ,≤L) is a complete lattice with operations

[x1, x2] ∧ [y1, y2] = [min(x1, y1),min(x2, y2)],

[x1, x2] ∨ [y1, y2] = [max(x1, y1),max(x2, y2)].

and the boundary elements 1LI = [1, 1] and 0LI = [0, 0].
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Figure 2: Lattice LI

Deschrijver and Kerre [5] showed that Atanassov intuitionistic fuzzy sets are

equivalent to interval-valued fuzzy sets. The isomorphism assign the Atanassov

intuitionistic fuzzy set the interval value fuzzy set as follows: (x, µA(x), νA(x))
7→ [µA(x), 1− νA(x)].

In this article we will develop our investigations for (LI ,≤L), since in this

case we have the product order and it will be easier to prove the main result.
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3 Some methods of construction of binary operations

In this section we put some methods of construction of binary operations. We look

for assumptions needed to the construction of the operation from a given class.

First we put some properties of binary operations which will be useful in the

further considerations.

Definition 6 ([13]). A binary operation F is called idempotent in LI if

∀
x∈LI

F(x, x) = x. (4)

It is called associative if

∀
x,y,z∈LI

F(x,F(y, z)) = F(F(x, y), z). (5)

It is called commutative if

∀
x,y∈LI

F(x, y) = F(y, x). (6)

It has a neutral element e ∈ LI if

∀
x∈LI

F(x, e) = F(e, x) = x. (7)

It has a zero element z ∈ LI if

∀
x∈LI

F(x, z) = F(z, x) = z. (8)

The operation F is called increasing in (LI ,≤) if

∀
x,y,z∈LI

(x ≤ y) ⇒ (F(x, z) ≤ F(y, z), F(z, x) ≤ F(z, y)). (9)

Definition 7 ([6], [8]). A triangular norm T on LI is an increasing, commutative,

associative operation T : (LI)2 → LI with a neutral element 1LI .

A triangular conorm S onLI is an increasing, commutative, associative operation

S : (LI)2 → LI with a neutral element 0LI .

Example 2. The following are examples of t-norms on LI

inf(x, y) = [min(x1, y1),min(x2, y2)],
T (x, y) = [max(0, x1 + y1 − 1),min(x2, y2)],

and t-conorm on LI

sup(x, y) = [max(x1, y1),max(x2, y2)].
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Now, we recall one of the crucial definition for investigations in this paper.

Definition 8 ([11]). An operation F : (LI)2 → LI is called decomposable if

there exist operations F1, F2 : [0, 1]
2 → [0, 1] such that for all x, y ∈ LI

F(x, y) = [F1(x1, y1), F2(x2, y2)], (10)

where x = [x1, x2], y = [y1, y2].

The following lemma characterize certain family of decomposable operations

Lemma 1 (cf. [11]). Increasing operations F1, F2 : [0, 1]2 → [0, 1] in (10) gives

a decomposable operation F if and only if F1 ≤ F2.

Remark 1. If we use the triangular norms in the construction of decomposable

operation, then we obtain decomposable triangular norm. The same situation we

have if we use triangular conorms, uninorms or nullnorms. Moreover decompos-

able triangular norms, triangular conorms, uninorms, nullnorms are also called

t-representable triangular norms, triangular conorms, uninorms and nullnorms.

Example 3. The operation

T (x, y) = [max(x1 + y1 − 1, 0),max(x2 + y2 − 1, 0)]

is a t-representable t-norm, with the Łukasiewicz t-norm.

Below we give the relationship between properties of decomposable operation

and the properties of its component operations.

Theorem 1 (cf. [11]). Let F : (LI)2 → LI be decomposable binary operation

such that F = [F1, F2]. Decomposable operation F has neutral element [e, e] if

and only if operations F1 and F2 have the neutral element e.

Theorem 2 (cf. [11]). Operations F1, F2 : [0, 1]2 → [0, 1] are increasing if and

only if, decomposable operation F is increasing.

Theorem 3 (cf. [11]). Operations F1, F2 : [0, 1]2 → [0, 1] are commutative if

and only if, decomposable operation F is commutative i.e.,

F(x, y) = F(y, x)forx, y ∈ LI .

Theorem 4 (cf. [11]). Operations F1, F2 : [0, 1]
2 → [0, 1] are associative if and

only if, decomposable operation F is associative i.e.,

F(x,F(y, z)) = F(F(x, y), z)forx, y, z ∈ LI .
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Corollary 1. Let F : (LI)2 → LI be t-representable binary operation such that

F = [F1, F2]. t-representable operation F is t-norm (t-conorm) if and only if F1

and F2 are t-norms (t-conorms) and F1 ≤ F2.

Theorem 5 (cf. [11]). Operations F1, F2 : [0, 1]
2 → [0, 1] are idempotent if and

only if, decomposable operation F is idempotent i.e.,

F(x, x) = xforx ∈ LI .

Directly from above we obtain

Corollary 2. Let F : (LI)2 → LI be an t-representale t-norm (t-conorm). If the

operation F is idempotent, then F = ∧ (F = ∨).

There are many properties of binary operation preserved by decomposable

operations, e.g.

Theorem 6 ([9]). Let F ,G : (LI)2 → LI be two decomposable binary operations

such that F = (F1, F2), G = (G1, G2). Operation F is left (right) distributive

over the operation G if and only if operation F1 is left (right) distributive over the

operation G1 and operation F2 is left (right) distributive over the operation G2.

The other properties can be found in [11].

The another method of construction of binary operation is given as follows

Definition 9 (cf. [6]). The t norm T (t-conorm S) is called pseudo-t-represen-

table if

T (x, y) = [T (x1, y1),max(T (x1, y2), T (x2, y1))]

(S(x, y) = [min(S(x1, y2), S(x2, y1)), S(x2, y2)]) .

Theorem 7. If T and S are arbitrary binary operation on [0, 1] then operation

given above preserve commutativity, associativity and isotonicity.

Remark 2. Pseudo-t-representable t-norms and t-conorms not preserve idempo-

tency.

The another generalization of decomposable operations are

T (x, y) = [min(T (x1, y2), T (x2, y1)), T (x2, y2)]

S(x, y) = [S(x1, y1),max(S(x1, y2), S(x2, y1))]
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Definition 10 (cf. [6]). The t norm T is called generalized pseudo-t-representable

if

TT1,T2,t(x, y) = [T1(x1, y1),max(T2(t, T2(x2, y2)), T2(x1, y2), T2(x2, y1))],

where T1 and T2 additionally satisfy, for all x1, y1 ∈ [0, 1],

T2(x1, y1) > T2(t, T2(x1, y1)) ⇒ T1(x1, y1) = T2(x1, y1).

We will consider the following generalization of pseudo t-representable t-

norms

T (x, y) = [T (x1, y1), S(T (x1, y2), T (x2, y1))] (11)

Theorem 8. Function T in (11) is a t-norm if and only if S = max.

Proof. If S = max, then T is a pseudo t-representable t-norm.

If T is a t-norm, then

T (x, 1LI ) = [T (x1, 1), S(T (x1, 1), T (x2, 1))] = [x1, S(x1, x2)] = [x1, x2].

So, for all x1 ≤ x2 we have S(x1, x2) = x2, therefore S = max.

Remark 3. Operation given by (11) preserve isotonicity and commutativity.

4 Uninorms

In this section we recall the definition and properties of a uninorms on [0, 1] and

next we describe the uninorms on LI . First we show the relationship with t-

norms and t-conorms onLI and next we describe some properties of representable

uninorms on LI , e.g. we discuss the possible values of the neutral element and

zero element for these uninorms some properties of these operations.

Definition 11 ([17]). Operation U : [0, 1]2 → [0, 1] is called a uninorm if it is

commutative, associative, increasing and has the neutral element e ∈ [0, 1].

Theorem 9 ([12]). If a uninorm U has the neutral element e ∈ (0, 1), then there

exist a triangular norm T and a triangular conorm S such that

U(x, y) =

{
T ∗(x, y) if x, y ≤ e,

S∗(x, y) if x, y ≥ e,
(12)

where
{
T ∗(x, y) = ϕ−1 (T (ϕ(x), ϕ(y))) , ϕ(x) = x/e, x, y ∈ [0, e]
S∗(x, y) = ψ−1 (S (ψ(x), ψ(y))) , ψ(x) = (x− e)/(1− e), x, y ∈ [e, 1]

.

(13)
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U |[0,e]2

U |[e,1]2min≤U≤max

min≤U≤max

0 e

e

1

1

Figure 3: The structure of uninorms on [0, 1].

Lemma 2 (cf. [12]). If U is a uninorm with the neutral element e ∈ (0, 1) then

min(x, y) ≤ U(x, y) ≤ max(x, y) for x ≤ e ≤ y or y ≤ e ≤ x. (14)

Lemma 3 (cf. [12]). If U is an uninorm with the neutral element e ∈ (0, 1) then

U(0, 1) ∈ {0, 1} and U(0, 1) is the zero element of operation U .

Definition 12 (cf. [7]). Operation U : (LI)2 → LI is called a uninorm if it is

commutative, associative, increasing and has the neutral element e ∈ LI .

In Theorem 9 there is given the structure of uninorms on [0, 1] which show

the relationship with t-norms and t-conorms. To provide a similar description we

define the following sets on LI :

Ee = {x ∈ LI : x ≤LI e},

E′

e = {x ∈ LI : x ≥LI e},

D = {[x, x] : x ∈ [0, 1]}.

Theorem 10 (cf. [7]). Let e ∈ LI \ {0LI , 1LI}. If e /∈ D, then there does not

exist an increasing bijection Φe : L
I → Ee such that Φ−1

e is increasing and there

does not exist an increasing bijection Ψe : L
I → E′

e such that Ψ−1
e is increasing.

Because of the above theorem there is no a description of uninorms with t-

norms and t-conorms on LI when neutral element is outside the the set D. How-

ever, if the neutral element is from the set D we obtain the following description
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Theorem 11 (cf. [7]). If a uninorm U has the neutral element e = [e1, e1] ∈
D \ {0LI , 1LI}, then there exist a t-norm T and a t-conorm S such that

U(x, y) =

{
T ∗(x, y) if x, y ≤ e

S∗(x, y) if x, y ≥ e
,

where





T ∗(x, y) = Φ−1
e (T (Φe(x),Φe(y))) ,

Φe(x) = (e1x1, e1(x2)), x, y ∈ Ee;
S∗(x, y) = Ψ−1

e (S (Ψe(x),Ψe(y))) ,
Ψe(x) = (e1 + x1 − e1x1, e1 + (1− e1)x2) x, y ∈ E′

e.

(15)

Lemma 4 (cf.[10]). If U is a uninorm with the neutral element e ∈ LI then for

all x, y ∈ LI such that x ≤ e ≤ y we have

x ≤ U(x, y) ≤ y.

Lemma 5 (cf.[10]). If U is a uninorm with the neutral element e ∈ LI then for

all x, y ∈ LI such that x ≤ e ≤ y or y ≤ e ≤ x we have

min(x, y) ≤ U(x, y) ≤ max(x, y).

Lemma 6 (cf. [7]). If U is a uninorm with the neutral element e ∈ LI \{0LI , 1LI}
then for all x ∈ LI we have

U(0LI , 1LI ) = U(U(0LI , 1LI ), x),

i.e. U(0LI , 1LI ) is a zero element of uninorm U .
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Lemma 7 (cf. [7]). If U is a uninorm with the neutral element e ∈ LI \{0LI , 1LI}
then U(0LI , 1LI ) = 0LI or U(0LI , 1LI ) = 1LI or U(0LI , 1LI )‖e.

Example 4. Let U1, U2 be uninorm given by

U1(x, y) =

{
max(x, y), if x, y ∈ [0.1, 1],
min(x, y) else,

U2(x, y) =

{
min(x, y), if x, y ∈ [0, 0.1],
max(x, y) else,

then for uninorm

U(x, y) = [U1(x1, y1), U2(x2, y2)]

we have U(0LI , 1LI ) = [U1(0, 1), U2(0, 1)] = [0, 1] and U is neither conjunctive

nor disjunctive.

We can also consider decomposable uninorms.

Example 5. Let U be a uninorm given by

U(x, y) =

{
max(x, y), if x, y ∈ [0.5, 1]
min(x, y), otherwise

.

Operation

U(x, y) = [U(x1, y1), U(x2, y2)]

is decomposable uninorm.

Example 6. Let U be an arbitrary uninorm. Operation

U(x, y) = [min(U(x1, y2), U(y1, x2)), U(x2, y2)]

is not decomposable.

For arbitrary uninorm the zero element is equal 0LI , 1LI or it is incomparable

with neutral element. If we consider decomposable uninorm then we have the

following results

Lemma 8. If U is a decomposable uninorm with the neutral element e ∈ LI then

U(0LI , 1LI ) = 0LI or U(0LI , 1LI ) = 1LI or U(0LI , 1LI ) = [0, 1].

Proof. Since U is decomposable, then there exist U1 and U2, such that

U(x, y) = [U1(x1, y1), U2(x2, y2)].

We consider the four possible cases:
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• U1(0, 1) = 0, U2(0, 1) = 0, then U(0LI , 1LI ) = [U1(0, 1), U2(0, 1)] = [0, 0] =
0LI

• U1(0, 1) = 0, U2(0, 1) = 1, then U(0LI , 1LI ) = [U1(0, 1), U2(0, 1)] = [0, 1]

• U1(0, 1) = 1, U2(0, 1) = 1, then U(0LI , 1LI ) = [U1(0, 1), U2(0, 1)] = [1, 1] =
1LI

• U1(0, 1) = 1, U2(0, 1) = 0 not occur, according to the Lemma 1.

Remark 4. We cannot use the pair of disjunctive and conjunctive uninorms for

construction of a decomposable uninorm, because this leads to the fourth case in

the above lemma.

Supposition 1. If is a uninorm U has the neutral element e ∈ D then

U(0LI , 1LI ) = 0LI or U(0LI , 1LI ) = 1LI or U(0LI , 1LI ) = [0, 1].

Supposition 2. If is a uninorm U has the neutral element e ∈ LI then

U(0LI , 1LI ) = 0LI or U(0LI , 1LI ) = 1LI or U(0LI , 1LI ) = [0, 1].

If we consider decomposable uninorms, then we obtain some dependencies

between neutral elements of its components uninorms.

Theorem 12. If a uninorm U is decomposable then e1 ≥ e2, where e1 and e2 are

the neutral element of uninorms U1 and U2.

Proof. Let e1 and e2 be the neutral element of uninorms U1 and U2. Then

U([e1, e1], [e2, e2]) = [U1(e1, e2), U2(e1, e2)] = [e2, e1] ∈ LI .

So, e2 ≤ e1.

Since [e1, e2] ∈ LI , then directly from above we obtain

Theorem 13. If U is a decomposable uninorm with a neutral element e = [e1, e2],
then e ∈ D.

Supposition 3. If U is a uninorm with a neutral element e ∈ LI , then e ∈ D.
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5 Nullnorms on L

I

Another generalization of triangular norms and conorms are nullnorms.

Definition 13 ([3]). An operation V : [0, 1]2 → [0, 1] is called a nullnorm if it is

increasing, commutative, associative, has a zero element z ∈ [0, 1], and satisfies

V (0, x) = x for all x ≤ z, (16)

V (1, x) = x for all x ≥ z. (17)

Remark 5. In previous definition we may omit the assumption that the element

z is the zero element of operation V , because it follows from the conditions (16)

and (17).

Theorem 14 ([3]). Let z ∈ (0, 1). A binary operation V is a nullnorm with a zero

element z if and only if there exist a triangular norm T and a triangular conorm

S such that

V (x, y) =






S∗(x, y) if x, y ∈ [0, z]
T ∗(x, y) if x, y ∈ [z, 1]
z otherwise

, (18)

where 




S∗(x, y) = ϕ−1 (S (ϕ(x), ϕ(y))) ,
ϕ(x) = x/z, x, y ∈ [0, z],
T ∗(x, y) = ψ−1 (T (ψ(x), ψ(y))) ,
ψ(x) = (x− z)/(1− z), x, y ∈ [z, 1].

(19)

We may straightforward transform the definition of nullnorm from [0, 1] into

the lattice LI .

Definition 14. Operation V : (LI)2 → LI is called a nullnorm if it is commuta-

tive, associative, increasing and has a zero element z ∈ LI and satisfies

V(0LI , x) = x for all x ≤ z, (20)

V(1LI , x) = x for all x ≥ z. (21)

Theorem 15. If a nullnorm V has a zero element z ∈ D \ {0LI , 1LI}, then there

exist a t-norm T and a t-conorm S such that

V(x, y) =

{
T ∗(x, y) if x, y ∈ E′

z

S∗(x, y) if x, y ∈ Ez
(22)
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Figure 5: The structure of nullnorm

where

{
S∗(x, y) = Φz

(
S
(
Φ−1
z (x),Φ−1

z (y)
))
, x, y ∈ Ez

T ∗(x, y) = Ψz

(
T
(
Ψ−1

z (x),Ψ−1
z (y)

))
, x, y ∈ E′

z

. (23)

and Ψz , Φz are given as in (15).

Remark 6. Similarly as for ordinary nullnorm we may omit in the above definition

the assumption that z is a zero element of operation V .

Lemma 9. Let V : (LI)2 → LI be an increasing, associative operation. An

element z ∈ LI is the zero of operation V if and only if

z = V(0, 1) = V(1, 0). (24)

We can also consider the decomposable nullnorms.

Example 7. Let V be nullnorm given by

V (x, y) =






max(x, y), if x, y ∈ [0, 0.5],
min(x, y) if x, y ∈ [0.5, 1],
0.5 otherwise,

then the operation

V(x, y) = [V (x1, y1), V (x2, y2)]

is a decomposable nullnorm.
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If we consider decomposable nullnorms, then we obtain some dependencies

between zero elements of its component, which are similar to those obtained for

the neutral element of decomposable uninorm.

Theorem 16. If a nullnorm V is decomposable then z1 ≥ z2, where z1 and z2 are

the zero element of nullnorms V1 and V2.

Proof. Let z1 and z2 be the zero element of nullnorms V1 and V2. Then

V([z1, z1], [z2, z2]) = [V1(z1, z2), V2(z1, z2)] = [z2, z1] ∈ LI .

So, z2 ≤ z1.

Since [z1, z2] ∈ LI , then directly from above we obtain

Theorem 17. If V is a decomposable nullnorm with a zero element z = [z1, z2],
then z ∈ D.

Supposition 4. If V is a nullnorm with a zero element z ∈ LI , then z ∈ D.
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