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Abstract

The paper uses a new approach published in [4] by E. Szmidt, J. Kacprzyk

and P. Bujnowski for data expressed in terms of Atanassov’s intuitionistic

fuzzy sets. It is shown that it can be expressed also in terms of the classical

correlation coefficient.

1 Introduction

Consider the probabability space (Ω,S, P ) in the Kolmogorov sense, i.e. Ω is a

nonempty set, S is a σ-algebra of subsets of Ω and P : Ω → [0, 1] is a probability

measure. Let ξ : Ω → R be a random variable, Pξ : B(R) → [0, 1] its probability

distribution defined by

Pξ(A) = P (ξ−1(A)), A ∈ B(R),
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where B(R) is the σ-algebra of all Borel subsets of R. Then the mean value Eξ)
can be defined as the integral

E(ξ) =

∫

Ω

ξdP =

∫

R

tdPξ(t),

if the integral exists. The dispersion is defined as

σ2(ξ) =

∫

Ω

(ξ − E(ξ))2dP =

∫

R

(t− E(ξ))2dPξ(t),

if the function ξ is square integrable. If ξ, η > Ω → R are two random variables

then the correlation coefficient r(ξ, η) is defined by the equality

r(ξ, η) =
1

σ(ξ)σ(η)

∫

Ω

(ξ − E(ξ)(η − E(η))dP =

=
1

σ(ξ)σ(η)

∫

R

(u− E(ξ)((v − E(η))dPT (u, v),

where PT : B(R2) → [0, 1] is defined by the equality

PT (A) = P (T−1(A)), A ∈ B(R2);

here B(R2) is the σ-algebra of all Borel subsets of R2, and T : Ω → R2 is defined

by the equality

T (ω) = (ξ(ω), η(ω)).

Of course, the concept can be realizede not only on Boolean algenras but also in

multilogic case of MV -algebras, and especially in Atanassov intuitionistic fuzzy

sets.

2 Intuitionistic fuzzy sets

An IF -set is a couple A = (µA, νA) of two fuzzy sets such that

µA : Ω → [0, 1], νA : Ω → [0, 1],

and

µA + νA ≤ 1.

We shall call µA : Ω → [0, 1] the membership function, νA : Ω → [0, 1] tho

non-membership function, and πA : Ω → [0, 1] the hesitation margin. Let F be

the family of all IF -sets on Ω. We write

A ≤ B ⇐⇒ µA ≤ µB, νA ≥ µB.
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Then (1Ω, 0Ω) is the greatest element of F , (0Ω, 1Ω) is the smallest element of

F . We shall use three binary operations on F : the union of IF -sets A,B (the

disjunction of corresponding assertions)

A⊕B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0),

the intersection of A,B (the conjunction of corresponding asertions)

A⊙B = (µA + µB − 1) ∨ 0, (νA + νB) ∧ 1),

and the product of A,B

A.B = (µA.µB, 1− (1− νA).(1− νB)) =

= (µA.µB, νA + νB − νA.νB).

Instead of a probability measure we consider a state m : F → [0, 1] satisfying

the following properties:

(i) m(1Ω, 0Ω) = 1,m(0Ω, 1Ω)) = 0,
(ii) A⊙B = 0Ω, 1Ω) =⇒ m(A⊕B) = m(A) +m(B),
(iii) An ր A(i.e.µAn

ր µA, νAn
ց νA) =⇒ m(An) ր m(A).

Instead of a random variable we shall consider an observable what is a map-

ping x : B(R) → F satisfying the following properties:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω),
(ii) A ∩B = ∅ =⇒ x(A)⊙ x(B) = (0Ω, 1Ω), x(A ∪B) = x(A) + x(B),
(iii) An ր A =⇒ x(An) ր x(B).
If ξ : Ω → R is a random variable, then x : B(R) → S defined by x(A) =

ξ−1(A) has the properties stated above.

Theorem 1. If x : B(R) → F is an observable and m : F → [0, 1] is a state,

then mx : B(R) → [0, 1] defined by mx(A) = m(x(A)) is a probability measure.

Proof is straightforward.

Theorem 1 gives a possibility to define moments. We asume that there is given

a fixed state m : F → [0, 1].
Definition 1. If x : B(R) → F is an observable, then the mean value E(x) is

defined by the formula

E(x) =

∫

R

tdmx(t),

if the integral exists. If there exists
∫
R
t2dmx(t), then we define the dispersion

σ2(x) =

∫

r

(t− E(x))2dmx(t).
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For defining the correlation coefficient we need the notion of the joint observ-

able. The notion corresponds to the notion of a random vector.

Theorem 2. For any observables x, y : B(R) → F there exists their joint

observable h : B(R2) → F , hence the following properties are satisfied:

(i) h(R2) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω),
(ii) A ∩B = ∅ =⇒ h(A)⊙ h(B) = (0Ω, 1Ω), h(A ∪B) = h(A) + h(B),
(iii) An ր A =⇒ h(An) ր h(B).
(iv) C,D ∈ B(R) =⇒ h(C ×D) = x(C).y(D).
Proof. [2], Theorem 2.

Theorem 3. Let h : B(R2) → F be the joint observable of observables

x, y : B(R) → F . Define mh : B(R2) → [0, 1] by mh(A) = m(h(A)). Then

mh is a probability measure.

Definition 2. If x, y : B(R) → F are observables, and h is their joint observ-

able, then we define the correlation coefficient r(x, y) by the formula

r(x, y) =
1

σ(x)σ(y)

∫ ∫

R2

(u− E(x))(v − E(y))dmh(u, v).

3 PCA and Correlation Coefficient

According to [4] consider a finite set Ω = {x1, x2, ..., xn} and two Atanassov

intuitionistic fuzzy sets

A = (µA, νA), B = (µB, νB),

where

µA : Ω → [0, 1], νA : Ω → [0, 1], µB : Ω → [0, 1], νB : Ω → [0, 1],

and

µA + νA ≤ 1, µB + νB ≤ 1.

Consider further

πA = 1− µA − νA, πB = 1− µB − νB.

In [4] the correlation coefficient rA−IFS(A,B) between A and B in Ω is

rA−IFS(A,B) =
1

3
(r1(A,B) + r2(A,B) + rt3(A,B)),

where

r1(A,B) =
Σn
i=1

(µA(xi)− µA)(µB(xi)− µB)

(Σn
i=1

(µA(xi)− µA)2)0.5(Σn
i=1

(µB(xi)− µB)2)0.5
,
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r2(A,B) =
Σn
i=1

(νA(xi)− νA)(νB(xi)− νB)

(Σn
i=1

(νA(xi)− νA)2)0.5(Σn
i=1

(νB(xi)− νB)2)0.5
,

r3(A,B) =
Σn
i=1

(πA(xi)− πA)(πB(xi)− πB)

(Σn
i=1

(πA(xi)− πA)2)0.5(Σn
i=1

(πB(xi)− πB)2)0.5
.

The main result of our paper is a presentation of all three coefficients r1, r2, r3
by terms of correlations in the sense of Definition 2. We shall find for any A,B ∈
F such observables x, y : B(R) → F that

r(x, y) = r1(A,B),

and similarly for r2(A,B), and r3(A,B).
The main instrument in our investigations will be the state representation the-

orem from [3].

Theorem 4. To any state m : F → [0, 1] there exist α ∈ R and probability

measures P,Q : S → [0, 1] such that

m(A) =

∫

Ω

µAdP + α(1−

∫

Ω

(µA + νA)dQ).

for any A ∈ F .

4 Membership correlation coefficient

Theorem 5. To any Atanassov intuitionistic fuzzy sets A,B ∈ F there exist

observables x, y : B(R) → F such that

r1(A,B) = r(x, y).

Proof. In Theorem 4 put α = 0 and define P : 2Ω → [0, 1] by the equality

P (K) =
1

n
cardK,

hence

P ({xi}) =
1

n
, i = 1, 2, ..., n

We want to define an observable x : B(R) → F . Let C ∈ B(R). Then we put

µx(C) =
1

n
card{i;µA(xi) ∈ C},

and

νx(C) = 1− µx(C).
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Then

m(x(C)) =

∫

Ω

µx(C)dP =
1

n
card{i;µA(xi) ∈ C},

hence

m(x({µA(xi)}) =
1

n
.

Therefore

E(x) =

∫

R

tdmx(t) = Σn
i=1

∫

{µA(xi)}

tdmx(t) =

= Σn
i=1µA(xi)

1

n
=

1

n
Σn
i=1µA(xi) = µA.

Similarly

σ2(x) =

∫

R

(t− E(x))2dmx(t) =
1

n
Σn
i=1(µA(xi)− µA)

2.

Similarly it can be defined an observable y : B(RE) → F suh that

m(y({µB(xi)})) =
1

n
,

E(y) = µB, σ(y)
2 −

1

n
Σn
i=1(µB(xi)− µB)

2.

Let h : B(R2) → F be the joint observable of observables x, y. Then

mh({(µA(xi), µB(xi))}) = m(h({(µA(xi), µB(xi))})) =

= m(h({µA(xi)} ×R))−m(h({µA(xi)} × (R \ {µB(xi)}))) =

= mx({µA(xi)})− 0 =
1

n
.

Put Qi = (µA(xi), µB(xi)), and compute

∫ ∫

R2

(u− E(x))(v − E(y))dmh(u, v) =

= Σn
i=1

∫ ∫

{Qi}

(u− µA)(v − µB)dmh(u, v) =

= Σn
i=1(µA(xi)− µA)(µB(xi)− µB)

1

n
=

=
1

n
Σn
i=1(µA(xi)− µA)(µB(xi)− µB).
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Therefore

r(x, y) =
1

σ(x)σ(y)

1

n
Σn
i=1(µA(xi)− µA)(µB(xi)− µB)

=
1

n
Σn
i=1

(µA(xi)− µA)(µB(xi)− µB)√
1

n
Σn
i=1

(µA(xi)− µA)2
√

1

n
Σn
i=1

(µB(xi)− µB)2
= r1(A,B)

5 Non-membership correlation coefficient

Theorem 6. To any Atanassov intuitionistic fuzzy sets A,B ∈ F there exist

observables x, y : B(R) → F such that

r2(A,B) = r(x, y).

Proof. In Theorem 4 put α = 1, and P = Q,P (K) = 1

n
cardK,K ⊂ Ω. Let

C ∈ B(R). Define x(C) ∈ F by the formulas

νx(C) = 1− card{i; νA(xi) ∈ C},

µx(C) − 1− νx(C).

Then by Theorem 4

m(x(C))) =

∫

Ω

µx(C)dP + 1−

∫

Ω

(µx(C) + νx(C))dP =

=

∫

Ω

(1− νx(C))dP =
1

n
card{i; νA(xi) ∈ C},

hence

mx({νA(xi)}) =
1

n
, i = 1, 2, ..., n.

Therefore

E(x) =

∫

R

dmx(t) = Σn
i=1

∫

{νA(xi)}

tdmx(t) = Σn
i=1νA(xi)

1

n
= νA.

The rest of the proof can be realized similarly as in Theorem 5.
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6 Hesitation margin correlation coefficient

Theorem 7. To any Atanassov intuitionistic fuzzy sets A,B ∈ F there exist

observables x, y : B(R) → F such that

r3(A,B) = r(x, y).

Proof. In Theorem 4 put α = 1, and P = Q,P (K) = 1

n
cardK,K ⊂ Ω. Let

C ∈ B(R). Define x(C) ∈ F by the formulas

µx(C) = 0,

nux(C) =
1

n
card{i;µA(xi) ∈ C}.

Then

m(x(C)) = 1−

∫

Ω

νx(C)dP =
1

n
card{i;πA(xi) ∈ C},

hence

mx({πA(xi)}) =
1

n
, i = 1, 2, ..., n.

Therefore

E(x) =

∫

R

tdmx(t) = Σn
i=1

∫

{πA(xi)}

tdmx(t) =

= Σn
i=1πA(xi)frac1n = πA.

The rest of the proof can be realized similarly as in Theorem 5.

7 Conclusions

We have shown that tehe three correlation components r1, r2, r3 can be expressed

by the general correlation coefficient. It could have two possible applications.,

Firstly some general results could be applied to the case studied in [4]. Secondly,

in the concept presented in [4] it could be studied not only discrete case, but e.g.

the continuous case of A-IFS.
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