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the places

Velin Andonov

Institute of Biophysics and Biomedical Engineering

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria

e-mail: velin andonov@yahoo.com

Abstract

Generalized nets for which the transfer of tokens from input to output place

of a given transition depends on the total number of tokens in the two places

are discussed. When the number of tokens in the pair of places reaches a

predefined limit no tokens can be transferred through the arc connecting the

places. The basic cases of transitions with such restriction are studied. This

restriction may cause problems related to the flow of the tokens into the net.

Solutions to these problems are proposed.

Keywords: generalized nets, pairwise capacity, transfer of tokens.

1 Introduction

The focus of this paper is on Generalized Nets (GNs) for which if the number of

tokens in a pair of places — one input and one output for a given transition —

exceeds a fixed number then no tokens can be transferred through the arc connect-

ing them. In a standard GN a token can be transferred from input place to output

place of a given active transition if the respective predicate of the Index Matrix

(IM) of the transition’s conditions has truth value true and the capacities of the

arc and the output place allow the transfer. In the modelling of real process we can

encounter a situation where an upper limit for the sum of the tokens in a pair of

input-output places must be set. This limit is determined by the modelled process
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and reflects its characteristics. Here we study the case where this limit restricts

only the transfer of the tokens from the input to the output place in the pair in a

sense that the number of tokens in the pair can exceed the limit but if the limit

is reached then transfer cannot occur. In such GN depending on the structure of

the transitions problems related to the flow of the tokens may appear. Before we

proceed with the discussion of these problems let us remind the basic notation.

A transition Z is the seven-tuple

Z = 〈L′, L′′, t1, t2, r,M,�〉 .

A GN E is the ordered four-tuple

E = 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K,πK , θK〉, 〈T, t0, t∗〉, 〈X,Φ, b〉〉 .

For detailed definition of transition and GN as well as the algorithms for their

functioning the reader can refer to [1, 2]. Let l′i be an input and l′′j be an output

place for arbitrary transition Z (see Fig. 1).

...

...

...

...

l′1 ❧ ✲

l′i ❧ ✲

l′m ❧ ✲

Z
❄

...

...

...

...

l′′1❧✲

l′′j❧✲

l′′n❧✲

Fig. 1

Let the capacities of the places l′i and l′′j be c(l′i) = ni and c(l′′j ) = nj . Let

ni,j be the maximum number of the sum of the tokens in places l′i and l′′j beyond

which the transfer of tokens from l′i to l′′j is not allowed. This means that if all

other conditions for successful transfer are present but there are too many tokens

in the pair of places the tokens will not be transferred. Here and below ni, nj

and ni,j are natural numbers. In order for the restriction over the sum of the

capacities to make sense, we should further impose the condition ni,j < ni + nj .

If ni,j ≥ ni + nj , then the additional restriction for the sum of the capacities is

useless because the tokens in the two places can not be more than ni +nj and the

transfer will be possible when all other conditions allow it. What is important is

that even when the capacity of the output place l′′j is not reached but the sum of

2



the tokens in the pair is greater or equal to ni,j no tokens can be transferred. It is

useful to give the following definition:

Definition 1. Pairwise capacity of a pair of one input and one output place for

a given transition is an integer number n, n > 1 such that when the sum of the

tokens in the two places is greater or equal to it no tokens can be transferred

through the arc connecting the places.

We do not impose the condition that the pairwise capacity be less than the sum of

the capacities of the places. The pairwise capacity can be given by some function

and this definition allows us to extend the function, if needed, over all pairs of

input-output places by defining its value to be the sum of the capacities of the

places for the pairs which do not have pairwise capacity.

2 Possible problems related to the flow of the

tokens

The pairwise capacity of the places can cause some problems related to the flow

of the tokens in the net. In the present paper we shall consider that the splitting of

tokens is not allowed. Let again l′i and l
′′

j be two places with capacities ni and nj

and pairwise capacity ni,j . When the pairwise capacity of the places is reached,

depending on the GN model, the tokens in place l′i may or may not be transferred

to other output places for the transition. If the transfer of the tokens from l′i to

other output places is not possible or the number of tokens leaving l′i is too small

compared to the number of the incoming tokens, then the place l′i may reach its

capacity very fast. As a result the flow of the tokens through this place will be

interrupted, i.e. the transfer of tokens from other places to l′i will be impossible.

For brevity we shall say that the set of places {li, lj , ..., lk} forms a cycle if a

token can pass consecutively through each of them, starting from li and ending

again there. If the cycle consists of only one place, we will call it a 1-cycle and

generally a cycle with n places will be referred to as n-cycle. With ki we denote

the number of tokens in place li at the beginning of the current time moment

TIME. With ki,j we denote the number of tokens that has been transferred from

li to lj at the current time step. First we study some basic cases of transitions with

pairwise capacity.

2.1 Pairwise capacity with no cycle

In the simplest case we consider the three transitions presented in Fig. 2.

Z1 = 〈{l1}, {l2}, t
1
1, t

1
2, r1,M1,�1〉 ,
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Z2 = 〈{l2}, {l3}, t
2
1, t

2
2, r2,M2,�2〉 ,

Z3 = 〈{l3}, {l4}, t
3
1, t

3
2, r3,M3,�3〉 .

Z1

��❅❅

Z2

��❅❅

Z3

��❅❅
l1

✖✕
✗✔ l2

✖✕
✗✔ l3

✖✕
✗✔ l4

✖✕
✗✔

✲ ✲ ✲✲ ✲ ✲

Fig. 2

Let n2,3 be the pairwise capacity of the pair of places 〈l2, l3〉. In this simplest case

the transition Z2 has only two places and they have pairwise capacity. At the end

of the current time step the number of tokens in the pair is

k2 + k1,2 − k2,3 + k3 + k2,3 − k3,4 = k2 + k1,2 + k3 − k3,4.

If the pairwise capacity has been reached, then k2,3 = 0 and the number of tokens

in place l2 becomes k2 + k1,2. In such case l2 may reach its capacity very fast.

When this capacity is reached no tokens can be transferred from l1 to l2. The

following two cases should be considered:

C1. The pairwise capacity is less than the capacity of the first place of the

pair.

C2. The pairwise capacity is greater than the capacity of the first place of

the pair.

In the first case the flow of the tokens through l2 can not be restored within

the net. This is an example of a conflict situation in GNs that should be avoided

when constructing the net. To resolve the problem modification of the transitions’

components is required. In the second case the flow of the tokens through l2 can

possibly be restored within the net. If sufficiently enough tokens leave place l3
so that the number of tokens in the pair drops below the pairwise capacity, then

the tokens from l2 can be transferred to l3 and as a result the number of tokens

in l2 becomes less than its capacity which may eventually allow the transfer of

tokens from l1 to l2. However, a change in the transitions’ components may still

be needed.

A more general case of pairwise capacity with no cycle is presented in Fig.

3. Again we consider three transitions with pairwise capacity n2,3 for the pair

〈l2, l3〉 but now Z2 has one more output place. This new place l4 can be input for
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Z3, for another transition or output for the whole net. We shall not distinguish

between these possibilities because they are not related to the problem discussed

here. What is important is that the presence of place l4 may have impact on the

number of tokens in l2 (if the predicate allows it).

Z1

��❅❅

Z2

��❅❅

Z3

��❅❅
l1

✖✕
✗✔ l2

✖✕
✗✔ l3

✖✕
✗✔

l4

✖✕
✗✔

l5

✖✕
✗✔

✲ ✲ ✲

✲

✲ ✲✲✲

Fig. 3

At the end of the current time step the number of tokens in the pair 〈l2, l3〉 is

k2 + k1,2 − k2,3 − k2,4 + k3 + k2,3 − k3,5 = k2 + k1,2 − k2,4 + k3 − k3,5.

If the pairwise capacity has been reached, at the end of the current time step the

number of tokens in place l2 becomes

k2 + k1,2 − k2,4.

In this case, depending on the modelled proccess, some of the tokens may leave

l2 even though the pairwise capacity is reached. The number of tokens leaving l2
and going to l4 may be enough to compensate for the reached pairwise capacity.

This should be taken into account when we look for ways to restore the flow of

the tokens through l2.

2.2 Pairwise capacity with 2-cycle

Let us consider two transitions Z1 and Z2 (see Fig. 4).

Z1 = 〈{l1, l4}, {l2}, t
1
1, t

1
2, r1,M1,�1〉 ,

Z2 = 〈{l2}, {l3, l4}, t
2
1, t

2
2, r2,M2,�2〉 .
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Z1

��❅❅

Z2

��❅❅
l1

✖✕
✗✔ l2

✖✕
✗✔ l3

✖✕
✗✔

l4

✖✕
✗✔

✲ ✲

✲

✲

✲ ✲

Fig. 4

The set {l2, l4} forms a 2-cycle. As before, let the capacities of l2 and l4 be

n2 and n4 respectively and their pairwise capacity be 1 < n2,4 < n2+n4. During

the active state of the first transition, at a single time step and when the conditions

for the transfer allow it, some tokens from l1 and l4 will enter place l2. Let us

denote their numbers by k1,2 and k4,2. During the active state of Z2 some of the

tokens in place l2 enter places l3 and l4. Let us denote their numbers by k2,3 and

k2,4 respectively. At the end of the current time step the sum of the tokens in l2
and l4 is

k2 + k4 − (k2,3 + k2,4 + k4,2) + (k1,2 + k4,2 + k2,4) = k2 + k4 − k2,3 + k1,2.

While the number of tokens in place l2 is

k2 + k1,2 + k4,2 − k2,3 − k2,4.

If the pairwise capacity n2,4 has been reached, then k2,4 = 0. At the current

time step it does not have an effect on the first sum. The second sum however

becomes

k2 + k1,2 + k4,2 − k2,3.

Now if the transfer of tokens from l2 to l3 is also not possible or k2 + k1,2 + k4,2
is sufficiently greater than k2,3, then place l2 will reach its capacity and the flow

of the tokens from l1 and possibly other input places of the transition to l2 will be

interrupted, i.e.

k2 + k1,2 + k4,2 − k2,3 = n2 ,

where n2 is the capacity of the place l2. The reason for this is that once the

pairwise capacity has been reached, all tokens from l4 can only be transferred to

l2 but no tokens from l2 can be transferred to l4.
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2.3 Pairwise capacity with 1-cycle

We consider two transitions (see Fig. 5)

Z1 = 〈{l1}, {l2}, t
1
1, t

1
2, r1,M1,�1〉 ,

Z2 = 〈{l2, l4}, {l3, l4}, t
2
1, t

2
2, r2,M2,�2〉 .

Z1

��❅❅

Z2

��❅❅
l1

✖✕
✗✔ l2

✖✕
✗✔ l3

✖✕
✗✔

l4

✖✕
✗✔

✲ ✲

✲✲

✲ ✲

Fig. 5

For the transition above {l4} is a 1-cycle. Let again the pairwise capacity of l2
and l4 be n2,4. At the end of the current time step the number of tokens in the pair

〈l2, l4〉 is

k2 + k4 − (k2,3 + k2,4 + k4,3) + (k1,2 + k2,4) = k2 + k4 + k1,2 − k4,3 − k2,3.

If k4,3 and k2,3 are small compared to k1,2, i.e. the number of ingoing tokens for

the pair 〈l2, l4〉 is greater than the number of outgoing tokens, then the pair 〈l2, l4〉
may reach its pairwise capacity very fast. At the end of the the current time step

the number of tokens in place l2 is

k2 + k1,2 − k2,3 − k2,4.

If the pairwise capacity has been reached, then k2,4 = 0. And if k1,2 is sufficiently

greater than k2,3, i.e. the number of ingoing tokens for place l2 is greater than the

number of outgoing tokens, place l2 will reach its capacity:

k2 + k1,2 − k2,3 = c(l2) .

The transfer of tokens from l1 to l2 will not be possible. In this case the reason

for the break of the flow of the tokens from l1 to l2 is that tokens are not leaving

place l2 fast enough due to the pairwise capacity of the pair 〈l2, l4〉.

7



3 Managing the flow of tokens in GN with

pairwise capacities

We now proceed with the analysis of possible solutions to the problems described

in the previous section. Only the basic cases described there will be discussed.

The more general cases in which the transitions have more input and output places

are treated analogously. For instance, the case when transition Z1 in Fig. 3 has

more input places is not different with regard to the pairwise capacity. The more

input places may lead to more tokens entering place l2 which can be viewed as

greater value of k1,2 in our basic case. The other more general cases can be treated

similarly.

3.1 The case of pairwise capacity with 2-cycle

In the case discussed in 2.2 (see Fig. 4) place l2 reaches its capacity because

the tokens in this place cannot be transferred to l4 (since the pairwise capacity is

reached) and the tokens going to l3 are not enough to compensate for the tokens

entering l2. There are different ways to maintain the flow of tokens through l2.

Let us discuss some of them.

3.1.1 Change in the duration of the active state of the transitions

When the pairwise capacity is reached during the active state of Z2 tokens can

only be transferred from l2 to l3. This reduces the number of tokens in l2. There-

fore, if we change the duration of active state of Z2 so that it is still active when

Z1 is not, the number of tokens in l2 will be reduced enough to make the transfer

of tokens from l1 to l2 possible when Z1 becomes active. Formally,

Z ′
2 = 〈{l2}, {l3, l4}, t

2
1, t

2,∗
2 , r2,M2,�2〉 ,

where t
2,∗
2 > t22. Another way to restore the flow of tokens through l2 is to make

the duration of the active state of Z1 shorter: Formally,

Z ′
1 = 〈{l1, l4}, {l2}, t

1
1, t

1,∗
2 , r1,M1,�1〉 ,

where t
1,∗
2 < t12. In this way less tokens may enter l2.

Alternatively, we can shorten the duration of the active state of Z1 and at the

same time prolong the duration of the active state of Z2.
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3.1.2 Change in the priorities of the transitions

If the priority of Z1 is greater than that of Z2, then it makes sense to change these

priorities. We would like to transfer the tokens from l2 to l3 first to reduce the

number of tokens in l2. This can be achieved by increasing the priority of Z2 or

decreasing the priority of Z1 so that πA(Z2) > πA(Z1).

3.1.3 Change in the capacities of the arcs

Another way to restore the flow of tokens through l2 is to control the number of

ingoing and outgoing tokens to place l2 by means of the capacities of the arcs. If

the sum of the capacities of the arcs (l4, l2) and (l1, l2) is greater than the capacity

of the arc (l2, l3), we can decrease this sum by decreasing the capacity of the

arc (l4, l2) or that of (l1, l2). Alternatively, we can decrease the capacities of both

arcs. The same result can be achieved if we increase the capacity of the arc (l2, l3).
Depending on the model, one of these solutions can be better than the other.

3.1.4 Change in the priorities of the places

The reason for the pair 〈l2, l4〉 to reach its pairwise capacity can be the priorities

of the output places of Z2. If the priority of place l4 is greater than that of l3, more

tokens will remain in the pair 〈l2, l4〉 and this may be the reason for the pair to

reach its pairwise capacity. By decreasing the priority of l4 or increasing that of

l3 so that πL(l3) > πL(l4) we can keep the number of tokens in the pair 〈l2, l4〉
lower. Once however the pairwise capacity has been reached, this change in the

priorities of the places will not have effect on the number of tokens in the pair

because no tokens can be transferred from l2 to l4 regardless of the priorities of

the output places. Therefore the change of the priorities of the output places may

only be used to prevent the pair from reaching its pairwise capacity and in this

way indirectly maintain the flow the tokens through l2.

3.1.5 Use of additional place

Again we consider the two transitions

Z1 = 〈{l1, l4}, {l2}, t
1
1, t

1
2, r1,M1,�1〉 ,

Z2 = 〈{l2}, {l3, l4}, t
2
1, t

2
2, r2,M2,�2〉 ,

with pairwise capacity for the pair 〈l2, l4〉 (see Fig. 4). We add an extra place to

Z1 so that it becomes (see Fig. 6)
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Z ′
1 = 〈{l1, l4, l5}, {l2, l5}, t

1
1, t

1
2, r

′
1,M

′
1,�

′
1〉 .

Z′

1

��❅❅

Z2

��❅❅
l1

✖✕
✗✔ l2

✖✕
✗✔ l3

✖✕
✗✔

l4

✖✕
✗✔

l5

✖✕
✗✔

✲ ✲

✲

✲

✲✲

✲✲

Fig. 6

The new place l5 plays the role of a buffer for l2. The temporal components t11
and t12 remain the same. The other components are obtained as follows.

The IM of the transition’s conditions is

r′1 =

l2 l5
l1 r′1,2 r′1,5
l4 r′4,2 r′4,5
l5 r′5,2 r′5,5

,

where

r′1,5 = false,

r′1,2 = r1,2,

r′4,2 = r4,2&“c(l2) > k2 +m′
4,2”,

r′4,5 = r4,2&“c(l2) ≤ k2 +m′
4,2”,

r′5,2 = ”c(l2) > k2 +m′
5,2”,

r′5,5 = ¬r′5,2.

Here ri,j is the predicate corresponding to the i-th input and j-th output place

of the original transition and m′
i,j is the capacity of the arc between the i-th input

and j-th output place of the modified transition. The IM of the capacities of the

arcs is

10
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M ′
1 =

l2 l5
l1 m′

1,2 m′
1,5

l4 m′
4,2 m′

4,5

l5 m′
5,2 m′

5,5

,

where

m′
1,2 = m1,2,

m′
4,2 = m′

4,5 = m′
5,2 = m4,2,

m′
5,5 = ∞ .

Here mi,j is the capacity of the arc from the i-th input place to the j-th output

place of the original transition.

�
′
1 = ∨(�1, l5) .

The priority of the new place l5 should satisfy the condition πL(l5) > πL(l4) so

that the tokens that entered l5 on previous steps be transferred before the tokens

in l4.

Another way to control the number of tokens in place l2 is by adding an extra

place to Z2 (see Fig. 7).

Z ′
2 = 〈{l2, l5}, {l3, l4, l5}, t

2
1, t

2
2, r

′
2,M

′
2,�

′
2〉

r′2 =

l3 l4 l5
l2 r′2,3 r′2,4 r′2,5
l5 r′5,3 r′5,4 r′5,5

,

where

r′2,3 = r2,3 ,

r′2,4 = r2,4 ,

r′2,5 = “k2 + k4 ≥ n2,4”&“k2 = c(l2)” ,

r′5,3 = r2,3 ,

r′5,4 = r2,4 ,

r′5,5 = ¬r′5,3&¬r′5,4 .

11



Z1

��❅❅

Z′

2

��❅❅
l1

✖✕
✗✔ l2

✖✕
✗✔ l3

✖✕
✗✔

l4

✖✕
✗✔

l5

✖✕
✗✔

✲ ✲

✲

✲

✲✲

✲ ✲

Fig. 7

The additional place l5 place the role of a buffer for l4. The IM of the capaci-

ties of the arcs is:

M ′
1 =

l3 l4 l5
l2 m′

2,3 m′
2,4 m′

2,5

l5 m′
5,3 m′

5,4 m′
5,5

,

where

m′
2,3 = m′

5,3 = m2,3 ,

m′
2,4 = m′

2,5 = m′
5,4 = m′

5,5 = m2,4 .

�
′
2 = ∨(�2, l5) .

The priority of the new place l5 must satisfy the condition πL(l2) < πL(l5) so

that the tokens that has entered l5 on the previous steps be processed before the

tokens that can be transferred from l2 to l4 and l3. In place l5 the tokens do not

obtain new characteristics.

3.2 The case of pairwise capacity with 1-cycle

In the case discussed in 2.3 (see Fig. 5) the reason for place l2 to reach its capacity

is that when the pairwise capacity is reached the number of tokens transferred

from l2 to l3 is not enough to compensate for the tokens entering place l2. We

proceed with discussion of different ways to restore the flow of the tokens through

place l2.
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3.2.1 Change in the duration of the active state of the transitions

When the pairwise capacity is reached at the end of the current time step the

number of tokens in place l2 depends only on the tokens entering l2 through l1
and leaving l2 to l3. If place l2 reaches its capacity because the number of ingoing

tokens is greater than that of the outgoing as a result of the limitation imposed

by the pairwise capacity, we can change the duration of the active states of the

transitions to reduce the number of tokens in l2. As in the case with pairwise

capacity and 2-cycle we can reduce the duration of the active state of Z1:

Z ′
1 = 〈{l1}, {l2}, t

1
1, t

1,∗
2 , r1,M1,�1〉 ,

where t
1,∗
2 < t12 or prolong the duration of the active state of Z2:

Z ′
2 = 〈{l2, l4}, {l3, l4}, t

2
1, t

2,∗
2 , r2,M2,�2〉 ,

where t
2,∗
2 > t22.

In the first case less tokens can enter l2 while in the second more tokens can

leave l2. Alternatively, the shortening of the duration of active state of Z1 can be

combined with prolonging of the duration of the active state of Z2.

3.2.2 Change in the priorities of the transitions

If the priorities of the transitions are such that πA(Z1) > πA(Z2), it makes sense

to change the priorities of Z1 and Z2 so that πA(Z1) < πA(Z2). Now, if the other

conditions allow it, the tokens from l2 to l3 will be transferred before the tokens

from l1 (and possibly other input places for Z1) to l2. In this way the number

of tokens in l2 may drop below the capacity of l2 which would allow transfer of

tokens from l1 to l2 at the current time step.

3.2.3 Change in the capacities of the arcs

As in the case with pairwise capacity and 2-cycle we can increase the capacity of

the arc (l2, l3) to allow more tokens to leave l2. More formally,

Z
′

2 = 〈{l2, l4}, {l3, l4}, t
2
1, t

2
2, r2,M

′

2,�2〉

M ′
2 =

l3 l4
l2 m′

2,3 m′
2,4

l4 m′
4,3 m′

4,4

,
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where m′
2,4 = m2,4, m′

4,3 = m4,3, m′
4,4 = m4,4 and m′

2,3 > m2,3. The exact

increase of the capacity depends on the modelled process. Alternatively, we can

decrease the capacity of the arc (l1, l2) so that less tokens can enter l2.

Z
′

1 = 〈{l1}, {l2}, t
1
1, t

1
2, r1,M

′

1,�1〉

M ′
2 =

l2
l1 m′

1,2
,

where m′
1,2 < m1,2. Or we can combine these two changes. These changes of the

capacities of the arcs in some sense neutralize the effect of the pairwise capacity

on the flow of the tokens through l2.

3.2.4 Change in the priorities of the places

Again we consider the case when the pairwise capacity has been reached and as a

result place l2 has reached its capacity. It makes sense to change the priorities of

the places in such way that πL(l3) > πL(l4). In this way more tokens are allowed

to leave the pair 〈l2, l4〉.

3.2.5 Use of additional place

Again as in the case of pairwise capacity and 2-cycle, we study the possibility of

maintaining the flow of tokens through l2 with the help of additional place which

is both input and output for the transition Z2 in Fig. 5. We denote the new transi-

tion by Z ′
2 (see Fig. 8).

Z ′
2 = 〈{l2, l4, l5}, {l3, l4, l5}, t

2
1, t

2
2, r

′
2,M

′
2,�

′
2〉

14
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Z1

��❅❅

Z′

2

��❅❅
l1

✖✕
✗✔ l2

✖✕
✗✔ l3

✖✕
✗✔

l4

✖✕
✗✔

l5

✖✕
✗✔

✲ ✲

✲

✲

✲

✲

✲ ✲

Fig. 8

The temporal components t21 and t22 remain the same.

r′2 =

l3 l4 l5
l2 r′2,3 r′2,4 r′2,5
l4 r′4,3 r′4,4 r′4,5
l5 r′5,3 r′5,4 r′5,5

,

where

r′2,3 = r2,3 ,

r′2,4 = r2,4 ,

r′4,3 = r4,3 ,

r′4,4 = r4,4 ,

r′2,5 = “k2 = c(l2)”& “k2 + k4 ≥ n2,4” ,

r′4,5 = false ,

r′5,3 = r2,3 ,

r′5,4 = r2,4 ,

r′5,5 = ¬r5,4&¬r5,3 .

The IM of the capacities of the arcs is:
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M ′
2 =

l3 l4 l5
l2 m′

2,3 m′
2,4 m′

2,5

l4 m′
4,3 m′

4,4 m′
4,5

l5 m′
5,3 m′

5,4 m′
5,5

,

where

m′
2,3 = m′

5,3 = m2,3 ,

m′
4,3 = m4,3,m

′
4,4 = m4,4,m

′
4,5 = 0 ,

m′
2,5 = m′

2,4 = m′
5,4 = m2,4 ,

m′
5,5 = ∞ .

�
′
2 = ∨(�2, l5) .

The priority of the places should satisfy the conditions

πL(l3) > πL(l5) > πL(l2) ,

and

πL(l4) > πL(l5)

so that the tokens that entered l5 on previous steps be transferred before the tokens

in l2. In l5 the tokens do not obtain new characteristics.

3.3 The case of pairwise capacity with no cycle

In the case discussed in Section 2.1(see Fig. 3), the two places on which pairwise

capacity is set, take part in three transitions. The pair 〈l2, l3〉 has reached its

pairwise capacity n2,3 and as a result of this place l2 has reached its capacity.

3.3.1 Change in the duration of the active state of the transitions

One way to restore the flow of tokens through l2 is to prolong the duration of

active state of Z2. In this way more tokens may be transferred from l2 to l4 and

the number of tokens in l2 will drop below the capacity of the place. Formally,

Z ′
2 = 〈{l2}, {l3, l4}, t

2
1, t

2,∗
2 , r2,M2,�2〉 ,

where t
2,∗
2 > t22. Another solution may be to reduce the duration of active state of

Z1 so that less tokens enter place l2:

Z ′
1 = 〈{l1}, {l2}, t

1
1, t

1,∗
2 , r1,M1,�1〉 ,

16



where t
1,∗
2 < t12. The number of tokens in l2 can also be reduced indirectly by

prolonging the duration of active state of Z3 :

Z ′
3 = 〈{l3}, {l5}, t

3
1, t

3,∗
2 , r3,M3,�3〉 ,

where t
3,∗
2 > t32. This may lead to more tokens leaving l3 and the number of

tokens in the pair 〈l2, l3〉 may drop below its pairwise capacity. Once this happens

the transfer of tokens from l2 to l3 will be possible and the number of tokens in l2
will be reduced.

3.3.2 Change in the priorities of the transitions

If πA(Z1) > πA(Z2), no tokens can be transferred to l2 at the current time step.

The number of tokens in l2 can be reduced directly if we change the priorities of

the transitions so that πA(Z2) > πA(Z1). In this way tokens can be transferred

from l2 to l4 freeing space for tokens to enter l2. However, if the transfer of

tokens from l2 to l4 is not possible, this change of the priorities of the transitions

will not have effect on the flow of the tokens. This is so because no tokens can be

transferred from l2 to l3 due to the pairwise capacity. In such case the priorities

of the transitions should be changed so that πA(Z3) > πA(Z2) > πA(Z1). Now

enough tokens may leave place l3 so that the number of tokens in 〈l2, l3〉 drops

below the pairwise capacity. As a result, tokens from l2 can be transferred to l3
and the number of tokens in l2 will drop below its capacity.

3.3.3 Change in the capacities of the arcs

As in the cases of pairwise capacity with 1-cycle and 2-cycle, the flow of the

tokens can be maintained by means of the capacities of the arcs. Increasing the

capacity of the arc (l2, l4) can directly reduce the number of tokens in l2. Once

the pairwise capacity is reached, change in the capacity of the arc (l2, l3) does not

have effect on the flow of the tokens. The number of tokens in l2 can be decreased

indirectly by increasing the capacity of (l3, l5) which may allow more tokens to

leave place l3 so that the number of tokens in (l2, l3) drops below the pairwise

capacity. This would allow transfer of tokens from l2 to l3 and the number of

tokens in l2 would drop below the capacity of the place.

3.3.4 Change in the priorities of the places

Once the pairwise capacity is reached and πL(l3) > πL(l4), changing these prior-

ities so that πL(l3) < πL(l4) will not have effect on the flow of the tokens. Such

17



change can be used to prevent the pair 〈l2, l3〉 from reaching its pairwise capacity

and in this way indirectly maintain the flow through l2.

3.3.5 Use of additional place

In the cases of pairwise capacity with 1-cycle and 2-cycle we showed how an ad-

ditional place can be used to maintain the flow of the tokens through the first place

in the pair with pairwise capacity. The same method can also be applied in the

case of pairwise capacity with no cycle. We add a new place l6 to Z2 which is

both input and output for the transition. We denote the new transition by Z ′
2 (see

Fig. 9).

Z ′
2 = 〈{l2, l6}, {l3, l4, l6}, t

2
1, t

2
2, r

′
2,M

′
2,�

′
2〉 .

Z1

❄

Z′

2

❄

Z3

❄
l1

✒✑
✓✏ l2

✒✑
✓✏ l3

✒✑
✓✏
l4

✒✑
✓✏
l6

✒✑
✓✏

l5

✒✑
✓✏

✲ ✲ ✲ ✲

✲

✲

✲ ✲

✲

Fig. 9

The time components remain the same as in the original transition Z2.

r′2 =

l3 l4 l6
l2 r′2,3 r′2,4 r′2,6
l6 r′6,3 r′6,4 r′6,6

,

where

r′2,3 = r2,3 ,

r′2,4 = r2,4 ,

r′2,6 = “k2 = c(l2)”& “k2 + k3 ≥ n2,3 , ”
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r′6,3 = r2,3 ,

r′6,4 = r2,4 ,

r′6,6 = ¬r6,3&¬r6,4 .

The IM of the capacities of the arcs is:

M ′
2 =

l3 l4 l6
l2 m′

2,3 m′
2,4 m′

2,6

l6 m′
6,3 m′

6,4 m′
6,6

,

where

m′
2,3 = m2,3 ,

m′
2,4 = m′

2,6 = m′
6,4 = m2,4 ,

m′
6,6 = ∞ .

�
′
2 = ∨(�2, l6) .

The priority of the new place l6 must be such that πL(l4) > πL(l6) > πL(l2) so

that the tokens that entered l6 on previous steps be transferred before the tokens

in l2 and also πL(l3) > πL(l6). The capacity of the new place can be chosen to

be equal to that of place l2, i.e. c(l6) = c(l2). In place l6 the tokens do not obtain

new characteristics.

4 A way to include the pairwise capacity in GNs

Up to now we have been studying the effect of the pairwise capacity on the flow

of the tokens into the net on transition level. However, it is necessary to see how

the pairwise capacitities of the places can be included in the GN’s components.

Suppose we have a transition (see Fig. 1)

Z = 〈L′, L′′, t1, t2, r,M,�〉

of some ordinary GN E. One way to impose a restriction in the sense of pairwise

capacity for the pair 〈l′p, l
′′
q 〉 is by juxtaposing to Z the transition Z∗ (see Fig. 10).

Z∗ = 〈L′∗, L′′∗, t1, t2, r
∗,M∗,�∗〉 .

The modified transition Z∗ is obtained from Z with the addition of a place lZ
which is both input and output. In the initial time moment a token αZ stays in this

place and it has initial characteristic

“〈l′p, l
′′
q 〉, np,q” ,
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where np,q is the pairwise capacity imposed on the pair 〈l′p, l
′′
q 〉. Place lZ has the

lowest priority among the places of the transition. The temporal components t1
and t2 remain the same.

...

...

...

...

l′1 ❧ ✲

l′i ❧ ✲

l′m ❧ ✲

Z∗

❄

...

...

...

...

l′′1❧✲

l′′j❧✲

l′′n❧✲

lZ❧✲✲

Fig. 10

L′∗ = L′ ∪ {lZ},

L′′∗ = L′′ ∪ {lZ},

�
∗ = ∧(�, lZ).

If

r = pr5Z = [L′, L′′, {rli,lj}]

has the form of an IM, then

r∗ = pr5Z
∗ = [L′ ∪ {lZ}, L

′′ ∪ {lZ}, {r
∗
li,lj

}],

where

(∀li ∈ L′ \ {l′p})(∀lj ∈ L′′ \ {l′′q})(r
∗
li,lj

= rli,lj );

(∀li ∈ L′)(r∗li,lq = rli,lq);

(∀lj ∈ L′′)(r∗lp,lj = rlp,lj );

(∀li ∈ L′)(∀lj ∈ L′′)(r∗li,lZ = r∗lZ ,lj
= “false”);

r∗lZ ,lZ
= “true” ;

r∗lp,lq = rlp,lq & “the number of tokens in the pair 〈lp, lq〉 is less than np,q” .

If

M = pr6Z = [L′, L′′, {mli,lj}]
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has the form of an IM, then

M∗ = pr6Z
∗ = [L′ ∪ {lZ}, L

′′ ∪ {lZ}, {m
∗
li,lj

}],

where

(∀li ∈ L′)(∀lj ∈ L′′)(m∗
li,lj

= mli,lj );

(∀li ∈ L′)(∀lj ∈ L′′)(m∗
li,lZ

= m∗
lZ ,lj

= 0);

m∗
lZ ,lZ

= 1 .

The αZ token in place lZ does not obtain new characteristics during the function-

ing of the net. The new place lZ has the lowest priority among the input places

of the modified transition. All other components of the net remain the same. If

pairwise capacity should be imposed over more than one pair of the transition,

the pairwise capacities of all pairs can be given by the initial characteristic of the

αZ token. Suppose that the pairs are 〈l′i,1, l
′′
j,1〉, 〈l

′
i,2, l

′′
j,2〉, ..., 〈l

′
i,k, l

′′
j,k〉 then the

initial characteristic of the αZ token is a list of all pairs with their corresponding

pairwise capacities:

“〈〈l′i,1, l
′′
j,1〉, ni,1,j,1〉, 〈〈l

′
i,2, l

′′
j,2〉, ni,2,j,2〉, ..., 〈〈l

′
i,k, l

′′
j,k〉, ni,k,j,k〉” .

The other components of the transition in this case are obtained in a similar way

as in the case of one pair.

5 Conclusions

In future we intend to study the problem discussed in this paper in the case when

splitting of tokens is allowed. Other types of restrictions for the transfer of tokens

from input to output place which are related to the number of tokens in the pair

or, more generally, to the total number of tokens in the transition should also

be studied. Results in this direction can be applied to the verification of object-

oriented programs using GNs (see [3, 4, 5]).
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