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Abstract

An iterative procedure for estimation of the area surrounded by a simple

closed curve in the real 2D space is proposed. We employ the Pick’s For-

mula for calculating the area surrounded by a special types of polygons.

Starting from an initial grid-step and ending up with a smaller grid-step -

satisfactory to be able to build the inner and outer polygons. We propose in

this paper also a formula for intuitionistic fuzzy estimation for the area sur-

rounded the curve. The proposal is a numerical method allowing to program

the algorithm in any procedural language. The iterative process stops when
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a satisfactory small enough limit between the upper and lower estimation

has been reached.

Keywords: Square hull, inner and outer polygon, intuitionistic fuzzy esti-

mation.

1 Introduction

We propose in this paper a formula for intuitionistic fuzzy estimation for the area

surrounded by a continuous simple closed curve in the real 2D space, i.e. the

area of its interior. By a simple curve we mean that it has no self intersections

and if, moreover, the curve is continuous, this implies that its interior is a simply

connected domain (cf. Munkres [6], Ch. 9). In contrast with Marinov et al. [5],

the algorithm introduced in this paper employs the Pick’s formula. Pick’s theorem

provides a simple formula for calculating the area S surrounded by this polygon

in terms of the number I of grid-points in the interior of the polygon, i.e. not

touching any of the sides, and the number B of grid-points on the boundary, i.e.

placed on the polygon’s perimeter. Assuming that we have a grid with grid-step

equal to one, Pick’s formula provides the number of unit squares through the

following expression:

S = I +
B

2
− 1 (1)

Therefore, assuming a grid-step equal to l0, the formula provides

S(l0) = l0

(

I +
B

2
− 1

)

(2)

for the area surrounded by the given polygon.

Given a 2D Cartesian coordinate system Oxy and a simple curve

parametrized by

~r(t) = (r1(t), r2(t)) : [0, 1] → R× R (3)

we are going to split the underlying space to a grid with lines parallel to the two

axes (see Fig 1.). This mesh has to be fine enough for a good estimation of the

given curve. To be explained later what exactly “fine enough grid” means. We

will, moreover, at the end consider only the smallest part of the grid with borders,

consisting of lines parallel to the two axes, which enclose the curve. In order to

define the intuitionistic fuzzy measure of the area enclosed by the initial curve,

we are going to introduce an algorithm that provides a special type of polygon

surrounding the initial curve ~r. We suppose that the given parametrization ~r of

the curve provides a positive orientation, which means anti-clockwise orientation.
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Figure 1: Simple curve and a grid with lines parallel to the two axes.

That is, following the path of ~r on the figure, the outer part will be on the right-

hand side, while the inner one will lie on the left-hand side. Applying the same

procedure for the curve −→r −1(t) = ~r(1 − t), for which the inner part of −→r −1

coincides with the outer one of ~r, while its outer part coincides with the inner

part of ~r. Therefore, in order to build an inner and outer polygon enclosing the

given initial curve, it suffices to describe only the outer (surrounding) polygon

of ~r. These two polygons will be of use to build a hull of the curve, which is

analogous of the square hull introduced in [5]. We will afterwards present an

intuitionistic fuzzy estimation through the produced hull of polygons introduced

in the following section.

2 Building the outer polygon of ~r

Taking initially the grid with a step of length l0, supposed to be sufficiently small,

we pass along the curve with ~r(t) letting the parameter t vary from 0 to 1 and,

as assumed in the previous section, the curve is positively oriented. Along its

path, ~r(t) intersects the lines of the grid in different points and may pass through

various squares of the grid leaving/entering them through their vertices or edges.

2.1 Basic notions and definitions

Considering squares, we mean by default the square taken with its boundary, i.e.

together with the four corresponding edges and vertices as we did in [5]. In [5], we
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Figure 2: Minimal rectangle with edges parallel to the axis part of the grid con-

taining the curve. The area of this rectangle is S(~r, l0) = 20× 16× l0.

took the approximated square hull to consist of squares only, while now through

the inner and outer polygons we introduce a better approximation considering the

diagonals of the squares as well. The main atom-figure, i.e. particle of the grid

which can not be further split, building the hull will be taken to be the family of

all triangles of the grid build up by the squares split by their two diagonals.

Let us take all the nodes of the grid to be marked as white in the beginning.

Then, passing through some nodes while the procedure is running, they will be

marked as “black” or “not-allowed”, i.e. nodes already lying in the P − stack

(program stack). For a more detailed definition of the notion P−stack, the reader

may consult [5]. Briefly, the procedure passes through some nodes building the

outer polygon by edges and diagonals of squares of the grid putting them in the so

called P − stack. Let us mention that every node N of the grid has exactly eight

neighbors because the node belongs to exactly four squares. These four squares

have 4× 4 = 16 nodes (vertices), four of them taken two times in the sum and the

node in consideration is counted four times as well. Therefore, the neighbor nodes

of the node in consideration are exactly 16− 4− 4 = 8. They can be diagonal or

edge nodes in respect of the current vertex, i.e. four diagonal neighbors and four

edge neighbors as well – to be denoted DiagN(N) and EdgeN(N), respectively

(see Fig. 3). Let us denote NeighborN(N) = DiagN(N) ∪ EdgeN(N) and

define the square consisting of all this neighbor nodes as the neighbor square of
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Figure 3: The vertex N with the neighbor square NeighborS(N) and the border

∂NeighborS(N) in bold.

the current node and denote it by NeighborS(N). The border of the neighbor

square consists of eight sides, to be denoted by ∂NeighborS(N). There are

also four inner sides of length the grid-step l0 and for diagonal sides (edges) of

length
√
2l0, denoted by StraightE(N) and DiagE(N), respectively. Let us

denote by InnerE(N) = StraightE(N) ∪ DiagE(N) all the inner sides of

NeighborS(N). We can also consider NeighborS(N) as the union of eight right

isosceles triangles, i.e. triangles with a right angle (12π), and also two equal angles

(sides). The family of these eight triangles will be denoted by NeighborT (N).
The grid is principally infinite but for the sake of simplicity we will concen-

trate ourselves, as already done in [5], on the minimal part of the grid, which

contains the curve as shown on Fig 2. This constraint is important because on the

basis of this picture we are going to introduce intuitionistic fuzzy estimation in

the next section.

Just after a node (vertex) has been colored “black” and put into the P −stack,

consider only the “allowed” ones of its neighbors as candidates to be taken as

“next node” when building the oriented polygon. The orientation of the closed

polygon enclosing ~r will be the same as the one of ~r, i.e. anti-clockwise. Starting

by the first vertex lying near the curve in the outer part of ~r, we are going to

describe a procedure which will add new nodes to the P − stack in a sequence

building correctly the outer polygon. If, according to the rules of the algorithm,
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we come to a step where the ”next“ node, say N ′′, which should be added to the

stack, would be such one that the atomic particle N ′N ′′ of the polygon crosses

the curve, we stop the procedure and start again with a twice shorter grid-step l0
2n

if the current grid-step is l0
2(n−1) . In what follows, with N ′ we will always denote

current node, i.e. the last node in the P − stack. In case that in the current step of

the procedure we cross some part of the polygon already built and lying within the

P − stack, we break and start the procedure again with a twice shorter grid-step

than the current one.

Let us suppose that at the beginning of the procedure we have a list of the

vertices (nodes), which lie in the inner part of the initial curve - InnerN(~r). In

what follows, we will denote the nodes lying outside of or on ~r by OuterN(~r),
where OuterN(~r) are the points lying outside of the closed curve.

And therefore, we can check if a node lies inside the curve, outside or on it.

For example, there are many fast and efficient algorithms employing the theory of

the winding number of a point with respect to a closed curve.

2.2 Algorithm producing the outer polygon of ~r

Let us now describe the procedure in a meta-programming style, as done in [5].

We take as initial grid-step a sufficiently small number l0 and start from a point

N ∈ OuterN(~r) as shown on Fig. 4. Supposing that the procedure has already

accomplished few steps and N is the last node in the P−stack, let us describe the

next step. In what follows, by R(t) we will denote the point from the curve ~r at

t ∈ [0, 1], i.e. ~r(t) = OR(t) where O is the origin of the coordinate system. For

the point N (see Fig. 4) we want that for some t0 ∈ [0, 1] the point R(t0) lies on

some edge from StraightE(N) and therefore we have that d(R(t0), N) ≤ l0. Let

for t1 ≥ t0 the point R(t) enters the inside of some of the four neighbor triangles

T ∈ NeighborT (N). Suppose that R(t) then goes outside of the triangle T and

enters T again, i.e. there are t3 > t2 > t1 such that R(t1), R(t3) ∈ T while

R(t2) /∈ T . If this happens, then we break and start the procedure again with a

grid-step l0
2 . Therefore, we can suppose that the grid-step l0 is small enough so

that the above situation can not happen, i.e. for any right angle triangle T with

vertices - three neighbor nodes on the grid, it is not possible that

(∃t1, t2, t3 ∈ [0, 1])(R(t1), R(t3) ∈ T &R(t2) /∈ T ).

Let us go back to the current last point N in the P − stack with R(t0) lying

on one of the StraightE(N). Then, we have two cases

• IF R(t0, 1) lies in the neighbor square of N, i.e. NeighborS(N). That

means that the first point from the P − stack, N1, belongs to
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Figure 4: The vertex N with the neighbor square and all the neighbor nodes A,

B, C, D, E, F , G and H . This is the right lower corner from the main figure.

NeighborS(N), i.e. N1 ∈ NeighborN(N). If all the points of NN0

lie in the outside of ~r, then the procedure finishes successfully in letting

N be the last node in the P − stack. Otherwise, if NN0 has a point be-

longing to the inside of ~r, then break and restart the procedure with a

grid-step l0
2 .

• ELSE there is t′ ∈ (t0, 1] for which R(t′) ∈ ∂NeighborS(N). If all the

points of NR(t′) lie in the outside part of ~r, then the procedure continues

in letting R(t′) be the current last node in the P − stack. Otherwise, if

NR(t′) has a point belonging to the inside of ~r, then break and restart the

procedure with a grid-step l0
2 .

Under the assumptions made in this section and all the denotations from the

last section, the whole procedure of finding an outer polygon square has been

described very easily. As we have already mentioned, we may apply the same

procedure for the curve −→r −1(t) = ~r(1 − t), for which the inner part of −→r −1

coincides with the outer one of ~r, while its outer part coincides with the inner part

of ~r. Let us suppose that the procedure has stopped successfully with a grid-step
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Figure 5: The vertices N1, N2, N3, which are the first three nodes from the P −
stack. This is the right lower corner from the main figure.

l0
2n1 in finding the outer polygon and l0

2n2 for the inner polygon. We then take

the minimum of the two grid-steps to be l0
2j0

(j0 = max(n1, n2)) and start the

procedure again to find a new outer polygon (if n1 > n2) or to find a new inner

polygon (if n1 < n2). Therefore, we get the outer (in blue) and inner polygons

(in green) in the same grid with grid-step l0
2j0

as shown on Fig. 6 and Fig. 7.

3 Intuitionistic fuzzy estimation of the inner area

Let us now give an instuitionistic fuzzy estimation of the initial curve based on the

inner and outer polygons produced by the algorithm proposed in the last section.

The notion of intuitionistic fuzzy set (or abbreviated as IFS) provides a very

intuitive and natural tool for an adequate estimation of the area enclosed by a

simple continuous curve. As an application of this method we give an estimation

for the area of a forest fire spread.

A fuzzy set in X (cf. Zadeh [8]) is given by

A
′

= {〈x, µA
′ (x)〉|x ∈ X} (4)
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Figure 6: The inner and outer polygons with the end grid-step l0
2j0

. This is the

right lower corner from the main figure.

where µA
′ (x) ∈ [0, 1] is the membership function of the fuzzy set A

′

. As opposed

to the Zadeh’s fuzzy set (abbreviated FS), Atanassov extended its definition to an

intuitionistic fuzzy set (IFS) (cf. [2] and [3]) A, given by

A = {〈x, µA(x), νA(x)〉|x ∈ X} (5)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ µA(x) + νA(x) ≤ 1 (6)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-

membership of x to A, respectively. An additional concept for each IFS in X , that

is an obvious result of (5) and (6), is called

πA(x) = 1− µA(x)− νA(x) (7)

the degree of uncertainty, expressing a lack of knowledge of whether x belongs to

A or not (cf. [2]). It is obvious that 0 ≤ πA(x) ≤ 1, for each x ∈ X . Hesitation

margins turn out to be relevant for both applications and the development of theory
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Figure 7: The whole picture of the inner and outer polygons with the end grid-step

l1 = l0
2j0

of the first iteration. The inside area of the inner polygon is 205.5 while

the area of the outer one is 252.5.

of IFSs. For instance, distances between IFSs are calculated in the literature in

two ways, using two parameters only (cf. Atanassov [2]) or all three parameters

(cf. Szmidt and Kacprzyk [7], Atanassov et al. [4]). Both ways are proper from

the point of view of pure mathematical conditions concerning distances, but one

cannot say that both ways are equal when assessing the results obtained by the

two approaches.

As described in the previous section, the iterative procedure starts with inputs

- the simple continuous curve ~r(t), an initial sufficiently small grid-step l0. The

algorithm ends up at an iteration, say j(~r, l0) = j0, where we may assume that

j0 is the maximum of the numbers of iterations producing the inner and outer

polygons at first approximation of the procedure. And therefore, the end grid

step becomes l1 = l0
2j0

. In what follows, we denote the already defined Sj0 =

S(~r, l0
2j0

), for the fixed curve and initial step l0. Let us give, on the basis of the

already defined Ao and Ai, an intuitionistic fuzzy estimation.

The area enclosed by the inner and outer polygons for the given grid-step will

be denoted by Ai(~r, l0
2j0

) and Ao(~r, l0
2j0

), respectively. The areas Ai and Ao can be

calculated by Pick’s formula (2). Moreover, the numbers I and B of the interior

and boundary vertices for any of the polygons can be determined, for instance,

with the algorithm given by D. Alciatore and R. Miranda in [1].
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Definition 1 In the above notations let us define

µ(~r,l0)(0) =
Ai(~r, l0

2j0
)

Sj0

and ν(~r,l0)(0) =
Sj0 −Ao(~r, l0

2j0
)

Sj0

,

µ(~r,l0)(1) =
Ai(~r, l0

2j0+1 ))

Sj0

and ν(~r,l0)(1) =
Sj0 −Ao(~r, l0

2j0+1 )

Sj0

.

More generally, let us inductively define for any positive integer k,

µ(~r,l0)(k) =
Ai(~r, l0

2j0+k ))

Sj0

and ν(~r,l0)(k) =
Sj0 −Ao(~r, l0

2j0+k )

Sj0

.

Taking in consideration the last definition we may write down the degree of

uncertainty for the kth step as π(~r,l0)(k) = 1− µ(~r,l0)(k)− ν(~r,l0)(k). Therefore,

we have that

π(~r,l0)(k) =
Ao(~r, l0

2j0+k )−Ai(~r, l0
2j0+k )

Sj0

,

which is exactly the intuitionistic fuzzy estimation of the degree of uncertainty for

the corresponding grid-step l0
2j0+k . It can be proved that for k1 < k2 we have that

π(~r,l0)(k1) > π(~r,l0)(k2), which means exactly that π(~r,l0) is a decreasing function

on the set of positive integer numbers N. Therefore, we may suppose that we are

given a small enough positive real number ǫ0 based on the curve ~r, which inside

is supposed to be estimated. Through the described algorithm, we are computing

then iteratively upper and lower estimations (through outer and inner polygons)

until a positive integer k has been reached for which 0 ≤ π(~r,l0)(k) ≤ ǫ0. The k-th

iteration provides then a satisfactory intuitionistic fuzzy estimation of the curve.

This also means that Ao(~r, l0
2j0+k ) and Ai(~r, l0

2j0+k ) provide a corresponding sat-

isfactory upper and inner estimations of the area surrounded by the curve.

Example 1 An example of a curve ~r has been provided through the pictures of

this paper. (see Fig. 7). According to the Pick’s formula, for the corresponding

areas we have, (say after the end of the procedure started for first time with a

grid-step l0 and finishing with end grid-step l1 =
l0
2j0

), that

• S(~r, l1) = Sj0 = 320× l1,

• Ai(~r, l1) =
(

178 + 57
2 − 1

)

×l1 = 205.5× l1,

• Ao(~r, l1) =
(

223 + 61
2 − 1

)

×l1 = 252.5× l1.
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Therefore, for the intuitionistic fuzzy estimations after the first application of

the procedure, we have that

• µ(~r,g,l0)(1) =
205.5
320 ,

• ν(~r,g,l0)(1) =
320−252.5

320 = 67.5
320 ,

• π(~r,g,l0)(1) =
252.5−205.5

320 = 47
320 .

Let us remark that, as done in [5], for the second, third etc. time repeating the

initial procedure producing the polygons, we use the same S0 which is the output

from the first start of the procedure with grid-step l0.

4 Conclusion

We see now that the described procedure and the intuitionistic fuzzy estimation

give an iterative numerical algorithm, which can be implemented in any procedu-

ral programming language.

The method described in this paper can be adequately applied to the estimation

of the area of a forest fire spread. The reader may compare the proposed algorithm

with the one described in [5]. In a next research, we will discuss a modification

of the Pick’s formula for 3D-figures.
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