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Abstract

There exists a number of methods for solving of uncertain interval-equations

(normal or fuzzy intervals). Particular methods deliver different solutions of

one and the same problem. It causes confusion, pessimism and doubts as

to value of proposed solution methods among scientists and engineers. To

check correctness of particular solving-methods a testing-method for them

is necessary. It seems, such method has not existed until now. The paper

presents such method that was called testing-point method (TP-method). It

was applied for correctness checking of solutions of fuzzy-interval equation

A + BX = C delivered by the interval-modal method of R.J. Bhivani and

B.M. Patre [1]. It was shown that this method delivers generally incorrect

results. The paper presents also a solution method of interval-equations

based on multidimensional RDM interval-arithmetic. This method delivers

a solution that satisfies all conditions and requirements imposed on solution

of the investigated uncertain equation.

Keywords: uncertainty theory, interval arithmetic, fuzzy arithmetic, granu-

lar computing, soft computing.
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1 Introduction

Uncertainty theory [10] can be considered to be science of the future because

it tries to find solutions of problems with uncertain inputs, parameters and un-

certain model of the problem. In the reality uncertainty occurs very frequently.

However, in scientific investigations it is mostly assumed that precise, crisp data

and precise model is at disposal. Then conventional mathematics is used for the

problem solving. Solutions achieved in this way are called in scientific literature

”academic” or ”laboratory” solutions because they mostly cannot be applied in

the practice. Therefore mathematical methods are rarely used in firms and institu-

tions. Uncertainty theory enables change of this situation. However, development

of uncertainty theory is very rendered. The simplest method of uncertainty mod-

eling are normal or fuzzy intervals. Arithmetic operations on normal intervals are

formulated by interval arithmetic [13, 14] and on fuzzy intervals by fuzzy arith-

metic [7, 8, 15]. If realization methods of simple arithmetic operations are known,

then solution of more difficult and complicated interval problems is very difficult

or sometimes even impossible. As Dymova writes in [6], difficulties and para-

doxes occur even at solving the simplest uncertain equations as A + X = B or

AX = B, where A and B are usual or fuzzy intervals. Thus, there exists a great

interest among scientists in solving of uncertain equations. A number of methods

was elaborated. E.g.: Klir and Yuan proposed in [9] α-cut method. Mazarbhuiya

et al in [12] proposed superimposition-method. Other methods proposed Buck-

ley in [4, 5], Boukezzoula et al in [3]. Dymova and Sevastjanov in [6, 21] pro-

posed extended-zero method and Propkopowicz in [20] a method based on OFN-

numbers (ordered fuzzy numbers). The number of methods for uncertain equation

solving is much higher and they all cannot be discussed here. Particular methods

differ one from another and in the general case they deliver different solutions for

one and the same problem. It causes confusion among users of these methods

and doubts concerning their correctness. They ask themselves: Which method is

correct?, Which solution is more precise?. Additionally, incessantly new meth-

ods are elaborated and proposed in the literature. Does there exist one correct

solving-method of (fuzzy-) interval-equations? To answer above questions a test-

ing method is necessary that would enable checking whether equation-solutions

generated by given method are correct or not. It seems that such method has not

been existed until now. If it has been existed then the number of various solv-

ing methods of interval equation would be minimal at present. This paper will

present a method for correctness checking of solutions generated by various solv-

ing methods of fuzzy and not-fuzzy interval equations. This method was called

testing-points’ method (TP-method). Further on the method will be used for cor-
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rectness checking of solvings delivered by the modal-interval method proposed

by R.J. Bhiwani and B.M. Patre in [1].

2 Modal-interval method of solving first-order

fuzzy-equations

Further on, this method will shortly be called MI-method. Its full description

is given in [1] and in this chapter the method will be presented only shortly and

mainly in form of citations. ”The MI-method is a natural extension of the classical

interval analysis where the concept of interval is widened in following way. The

modal interval [a, b] is defined by (1).

X = [a, b] :=

{

([a, b]′, ∃) if a ≤ b

([a, b]′, ∀) if a ≥ b
(1)

The quantifiers ∃ and ∀ are called as proper and improper selection of modal-

ity, respectively. For example, the classical interval [4, 7] corresponds to modal

interval ([4, 7]′, ∃) and [8, 5] corresponds to ([5, 8]′, ∀). If a ≤ b we speak about

an interval with ”proper” modality (or proper interval also called existential in-

terval) and if a ≥ b we speak about interval with the ”improper” modality (or

improper interval also called universal interval). Proper and improper intervals

are related by the ”dual” operator (2).”

dual[(a, b)] = [b, a] (2)

Authors of the MI-method described in [1] operations of addition, subtraction,

multiplication and division of intervals and gave a method for solving fuzzy linear

equation of type A+BX = C. This method will be presented in the sequence.

”Let us assume A, B and C are fuzzy intervals and 0 /∈ B, which means B

is either positive or negative. The fuzzy linear equation A + BX = C can be

expressed by the α-cuts of A, B, C and X , where α ∈ [0, 1], which leads to the

following interval equation (3).

Aα +BαXα = Cα (3)

Where Aα = [a−α , a
+
α ], Bα = [b−α , b

+
α ], Cα = [c−α , c

+
α ], and Xα = [x−α , x

+
α ] are

α-cut intervals. The exact solution for the above equation (3) is not (4).

Xα = [Cα −Aα] /Bα (4)
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Although classical interval arithmetic gives a guaranteed enclosure of the so-

lution, it is overestimated interval. Our objective is to find the exact solution of

equation (3). Using modal interval arithmetic the solution can be found very eas-

ily. It is given by (5), (6), (7).”

Aα +BαXα = Cα (5)

BαXα = Cα − dual (Aα) = Dα (6)

∴ Xα =
Dα

dual (Bα)
(7)

Solving equation (7) for various α-levels, α ∈ [0, 1] one achieves a fuzzy

number X being solution of equation (3). Next, authors if the MI-method show

its application in solving of a concrete equation. ”Let A, B and C be triangular

membership functions of equation (3).

A = tri[0.5, 0.7, 0.9]
B = tri[0.3, 0.5, 0.7]
C = tri[1.0, 1.5, 2.0]

(8)

The membership functions are plotted in Fig. 1.

Figure 1: Membership functions of A, B, C and X .

The simulation examples are taken from [2], in which the author has proposed

an existence condition for exact solution to exist. For the above example it is

said the existence condition is not satisfied, hence there exists no result. Actually

the result obtained is an improper interval. By using modal interval arithmetic

approach proposed here we get the same results and they can be interpreted using

semantics in the following way (9).
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(

∀
[

dp, D
′
p

]) (

∀
[

bp, B
′
p

])

(∃ [xi, X
′
i])xα = f (dα, bα)

(

∀dp ∈
[

dp, dp

])(

∀bp ∈
[

bp, bp

])

(

∃xi ∈
[

xi, xi
])

xα = f (dα, bα)
(9)

The plot of result with α varying from 0 to 1 in the steps of 0, 1 is given in

Fig. 1. ”Condition (9) can be semantically interpreted in the following way: ”for

each dp ∈
[

dp, dp

]

and for each bp ∈
[

bp, bp

]

there exists such xi ∈
[

xi, xi
]

which satisfies condition xα = f (dα, bα) concerning the cut on level α.”

3 Checking the solution delivered by the model-interval

method

Authors of the MI-method show its applications to solving few examples. In

Chapter 2 example 1 was presented. Authors’ solution of this example is shown

in Fig. 1. The authors called it ”exact solution”. On the level of supports of

fuzzy numbers (α = 0) the solution has character of improper interval x ∈
[5/3, 11/7] = [1.67, 1.57]. On this level fuzzy equation A + BX = C can

be formulated as (10).

A0 + C0X0 = C0

[0.5, 0.9] + [0.3, 0.7]X0 = [1.0, 2.0]
(10)

According authors of the MI-method the exact solution is the improper inter-

val X0 = [1.67, 1.57]. To check correctness of this solution the test-point method

can be used. The test-point method can be characterized as follows:

1. Determine test-points TPi(a0i ∈ A0, b0i ∈ B0, x0i = (c0i − a0i)/b0i), i =
1, 2, . . . , that satisfy all interval conditions and dependences concerning

the problem, and then check whether solutions delivered by the examined

interval-equation solving-method also delivers for these test-points results

satisfying all conditions and dependences imposed on the problem.

2. Determine test-points TPj , j = 1, 2, . . . , that do not satisfy at least one

of interval- and dependence conditions imposed on the problem. Results

delivered by examined solving-method of interval-equations also should not

satisfy the same conditions.

Let us apply the test-point TP1(a0, b0, c0, x0) = TP1(0.51, 0.31, 1.11, x0).
Particular coordinates of these test-point satisfy the problem conditions: a0 =
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0.51 ∈ [0.5, 0.9] = A0, b0 = 0.31 ∈ [0.3, 0.7] = B0, c0 = 1.11 ∈ [1.0, 2.0] =
C0, x0 = (c0 − a0)/b0.

The test-point TP1 is corresponded by value x0 given by (12) that was cal-

culated from the crisp equation (11). The analyzed interval-equation (10) A0 +
B0X0 = C0 is the interval extension of equation (11) in which the crisp parame-

ters a0, b0, c0 were replaced by uncertain, interval-parameters A0, B0, C0.

a0 + b0x0 = c0 (11)

x0 = (c0 − a0)/b0 = (1.11− 0.51)/0.31 = 1.935 (12)

The achieved value x0 = 1.935 is not contained in the interval X0 = [1.67, 1.57]
suggested by authors of the MI-method as the ”exact” solution of equation (10).

Now, let us investigate the test-point TP2(a0, b0, c0, x0) = TP2(0.70, 0.69,
1.90, x0). All coordinates of this point satisfy conditions of the problem, i.e.:

a0 = 0.70 ∈ [0.5, 0.9] = A0, b0 = 0.69 ∈ [0.3, 0.7] = B0, c0 = 1.90 ∈
[1.0, 2.0] = C0, x0 = (c0 − a0)/b0.

The test-point TP2 is corresponded by value x0 = 1.739 calculated (13) from

equation (11) being basis for the intervally extended equation (3) A0 + B0X0 =
C0.

x0 = (c0 − a0)/b0 = (1.90− 0.70)/0.69 = 1.739 (13)

The achieved value x0 = 1.739 also is not contained in the interval X0 =
[1.67, 1.57] given by the MI-method as the ”exact” solution of the support-equa-

tion. The ”exact” solution x0 = [1.67, 1.57] is exact only in the sense of semantic

interpretation (9) of the solution assumed by the authors. However, this interpre-

tation is far insufficient for practical aims and it gives solutions that are strongtly

underestimated, which will be shown in Chapter 4.

4 Solution of the example with multidimensional RDM

interval-arithmetic

Multidimensional RDM interval-arithmetic, which idea had been conceived by

A. Piegat, was presented in [16, 17, 18, 19]. In the analyzed example interval-

equation (14) is to be solved.

A0 + C0X0 = C0

[0.5, 0.9] + [0.3, 0.7]X0 = [1.0, 2.0]
(14)
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Intervals A0, B0, C0 are modeled with use of RDM-variables (Relative-Dis-

tance-Measure) αa0 ∈ [0, 1], αb0 ∈ [0, 1], αc0 ∈ [0, 1]. Fig. 2 explains sense of

RDM-variable αa0 .

Figure 2: RDM-variable as measure of the relative distance of a0-value from the

lower interval-limit a0.

With use of RDM-variables intervals A0, B0, C0 can be described in form of

equations (15), (16), (17).

A0:
a0 = a0 + αa0

(

a0 − a0
)

, αa0 ∈ [0, 1]
a0 = 0.5 + 0.4αa0

(15)

B0:

b0 = b0 + αb0

(

b0 − b0
)

, αb0 ∈ [0, 1]
b0 = 0.3 + 0.4αb0

(16)

C0:
c0 = c0 + αc0

(

c0 − c0
)

, αc0 ∈ [0, 1]
c0 = 1 + αc0

(17)

With use of RDM-variable the support-interval-equation (14) can be trans-

formed in (18).

A0 +B0X0 = C0

(0.5 + 0.4αa0) + (0.3 + 0.4αb0)x0 = 1 + αc0

αa0 ∈ [0, 1], αb0 ∈ [0, 1], αc0 ∈ [0, 1]
(18)

On the basis of (18) solution X0 can be calculated.

X0 =
C0−A0

B0
=

0.5−0.4αa0+αc0
0.3+0.4αb0

αa0 ∈ [0, 1], αb0 ∈ [0, 1], αc0 ∈ [0, 1]
(19)

The solution X0 is not interval! As formula (19) shows solution of equation

(18) is not a function of only one variable but of 3 variables αa0 , αb0 , αc0 , or,

which is tantamount, of 3 constrained variables a0, b0, c0. Table 1 shows x0values
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Table 1: Values of variable x0 for border values of RDM-variables αa0 , αb0 for

αc0 = 0.
αa0

0 0 1 1

a0 0.5 0.5 0.9 0.9

αb0
0 1 0 1

b0 0.3 0.7 0.3 0.7

x0 5/3 5/7 1/3 1/7

≈ 1.67 ≈ 0.71 ≈ 0.33 ≈ 0.14

Table 2: Values of variable x0 for border values of RDM-variables αa0 , αb0 for

αc0 = 1.
αa0

0 0 1 1

a0 0.5 0.5 0.9 0.9

αb0
0 1 0 1

b0 0.3 0.7 0.3 0.7

x0 5 15/7 11/3 11/7

≈ 2.14 ≈ 3.67 ≈ 1.57

for border values of the RDM-variables αa0 , αb0 for αc0 = 0 and Table 2 for

αc0 = 1.

Solution of the interval-equation (14) A0+B0X0 = C0 for supports of fuzzy-

equations (13) A+BX = C is visualized in Fig. 3.

Figure 3: Non-regular, non-rectangular solution granule (also the solution-

domain) of the support equation A0 + B0X0 = C0 (equation (14) and

(15)) achieved wit use of multidimensional RDM interval-arithmetic, test-points

TP1(a0, b0, c0, x0) = (0.51, 0.31, 1.11, 1.935), TP2(0.70, 0.69, 1.9, 1.739).

For comparison, Fig. 4 shows the 1D-solution of the problem achieved with

the MI-method.

As can be seen in Fig. 3 solution domain of equation (14) is a set of an in-

finitive number of point-solutions contained in the non-regular, non-rectangular
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Figure 4: One-dimensional solution of support-equation A0 + B0X0 = C0

achieved with the modal-interval method (the solution domain)

solution-granule. The minimal value of variable x0 contained in the solution-

domain equals 0.14 and the maximal value equals 5. Thus, the domain X0 =
[1.67, 1.57] suggested by the MI-method is not correct: it creates only a small

fragment of possible values of variable x0. However, the main error of the MI-

method is suggesting that the solution-domain is of 1-dimensional character, that

shows Fig. 4. Really, the solution domain of equation (14) is not an interval but a

multidimensional information-granule. This granule can be described with formu-

las (20). All particular solution-points contained in this granule satisfy conditions

(20).

a0 = 0.5 + 0.4αa0 , αa0 ∈ [0, 1]
b0 = 0.3 + 0.4αb0 , αb0 ∈ [0, 1]
c0 = 1 + αc0 , αc0 ∈ [0, 1]

x0 =
0.5−0.4αa0+αc0

0.3+0.4αb0

(20)

An alternative way of defining the solution domain is using the lower x0 and

the upper x0 limit of the multidimensional solution-domain (21).

x0 ∈
[

x0(αa0 , αb0 , αc0 = 0), x0(αa0 , αb0 , αc0 = 1)
]

x0 =
0.5−0.4αa0
0.3+0.4αb0

, x0 =
1.5−0.4αa0
0.3+0.4αb0

a0 = 0.5 + 0.4αa0 , αa0 ∈ [0, 1]
b0 = 0.3 + 0.4αb0 , αb0 ∈ [0, 1]
c0 = 1 + αc0 , αc0 ∈ [0, 1]

(21)

In Fig. 3 the lower limit x0(αa0 , αb0 , αc0 = 0) is the left wall of the solution

granule and the upper limit x0 the right wall (the walls are darkened). It means

that in the multidimensional approach to interval solutions similarly as in the 1-

dimensional approach lower and upper limits also occur: the difference consists

only in dimensionality of the limits. In solving uncertain equations a very impor-

tant thing is determining the notion of ”problem solution”. What is the solution?

Which requirements has the solution to satisfy? In case of a problem without

uncertainty solution of equation A0 + B0X0 = C0 is a point. E.g. equation

2 + 3x = 5 has the one-dimensional solution x = 1. This solution seems to be
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independent. However, it can be presented in following way:

IF(a0 = 2)AND(b0 = 3)AND(c0 = 5)AND(a0 + b0x0 = c0)
THEN(x0 = 1)
or(x0 = 1 | a0 = 2, b0 = 3, c0 = 5, a0 + b0x0 = c0)

From the above one can see that the equation (a0 + b0x0 = c0)-solutions are

dependent on parameter values and on type of dependence connecting them. Thus,

they are not independent but dependent. Similarly as solutions of crisp equations

also solutions of interval-equations are dependent on imposed conditions and they

all should be taken into account in uncertain-problem solving. If we have to do

with the uncertain interval-equation [0.5, 0.9] + [0.3, 0.7]X0 = [1.0, 2.0] then so-

lution is not a one-dimensional interval but a multidimensional interval being set

of points satisfying all conditions (20) imposed on the solution. These conditions

(requirements or constraints) create our knowledge about the problem and the so-

lution has to be consistent with these conditions. Let us notice that the test-point

TP1(a0, b0, c0, x0) = TP1(0.51, 0.31, 1.11, 1.935) satisfies all conditions (20)

imposed on the problem (0.51 ∈ [0.5, 0.9], 0.31 ∈ [0.3, 0.7], 1.11 ∈ [1.0, 2.0],
x0 = (c0 − a0)/b0 = 1.935), similarly as the test-point TP2(0.70, 0.89, 1.90,
1.348), Fig. 3. Thus, both points belong to the solution domain defined by for-

mulas (20) and shown in Fig. 3. This multidimensional solution-domain cannot

be in any way precisely represented by 1-dimensional interval. Each such trial re-

sults either in overestimation or underestimation of the correct granular-solution

S consisting of an infinitive number of quadruples (a0, b0, c0, x0) expressed by

(22).

S = {(a0, b0, c0, x0) : a0 ∈
[

a0, a0
]

, b0 ∈
[

b0, b0
]

, c0 ∈
[

c0, c0
]

,

x0 = (c0 − a0)/b0}
(22)

5 Conclusions

The paper presented the method of test-points that can be used for correctness

checking of solutions of uncertain fuzzy and interval equations delivered by var-

ious methods proposed for solving of such equations. The testing-point method

was presented on example of examining results delivered by the interval-modal

method published by R.J. Bhivani and B.M. Patre and published in [1]. It was

shown that the method delivers incorrect solution domain. This feature results

from the 1-dimensional character of solutions delivered by this method. The pa-

per also presented a multidimensional RDM method of solving interval-equations,
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which delivers correct solutions satisfying all conditions and requirements im-

posed on solutions.
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