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Abstrakt

Two binary operations on the real line are given satisfying some conditions.

The IE - property is proved with regard to the operations and with respect to

a state on IF-sets. The main instrument for the proof are IE-property theorem

from [9, 10] and IF-state representation theorem from [5, 6].

Keywords:

1 Introduction

The classical inclusion exclusion property says that

m(A ∪B) = m(A) +m(B)−m(A ∩B),

whenever the domain of M is closed under the union A ∪ B, the intersection

A ∩ B, and the difference A \ B of any two sets A,B, and m is additive on this

domain. Of course, the property can be extended to any three sets A,B,C, (+)

m(A ∪B ∪ C) = m(A) +m(B) +m(C)−m(A ∩B)−
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−m(A ∩ C)−m(B ∩ C) +m(A ∩B ∩ C),

to any four sets A,B,C,D

(++)

m(A ∪B ∪ C ∪D) = m(A) +m(B) +m(C) +m(D)−m(A ∩B)−

−m(A∩C)−m(A∩D)−m(B∩C)−m(B∩D)−m(C∩D)+m(A∩B∩C)+

+m(A ∩B ∩D) +m(A ∩ C ∩D) +m(B ∩ C ∩D)−m(A ∩B ∩ C ∩D),

etc.This property was generalized for fuzzy sets, first probably in [8]. It was rea-

lized actually for IF -sets, i.e. such pairs

A = (µA, νA)

of functions µA, νA : Ω → [0, 1] such that

µA + νA ≤ 1.

The function µA : Ω → [0, 1] is called the membership function of A, the function

νA : Ω → [0, 1] is called the non - membership function of A. The fuzzy set is a

special case of IF -set, where νA = 1− νA.

The paper consists of three parts. In the first part we present the Kelemenová

IE - theorem. The theorem works with a mapping m : F → H , where (H,+) is

a semigroup. There are given two operations �,△ on H satistfying the following

properties:

(1)m(a ⊔ b) +m(⊓b) = m(a) +m(b),

(2)m((a ⊔ b) ⊓ c) +m(a ⊓ b ⊓ c) = m(a ⊓ c) +m(b ⊓ c).

As a consequence of the Kelemenová theorem a special case is considered

where (H,+) is a commutative group.

The second part is dedicated to the states on IF - sets. Using the Cignoli re-

presentation theorem the assumptions (10) and (2) stated above are proved.

Finally in the third part thye interval valued states are considerede and the

IE-property is obtained for them.
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2 The Kelemenová inclusion - exclusion theorem

In [9, 10] a simple but original idea is used. E. g. instead of (+) to use the equality

m(A ∪B ∪ C) +m(A ∩B) +m(A ∩ C) +m(B ∩ C) =

= m(A) +m(B) +m(C) +m(A ∩B ∩ C),

instead of (++) the equality

m(A ∪B ∪ C ∪D) +m(A ∩B) +m(A ∩ C) +m(A ∩D)+

+m(B ∩ C) +m(B ∩D) +m(C ∩D) +m(A ∩B ∩ C ∩D) =

= m(A) +m(B) +m(C) +m(D) +m(A ∩B ∩ C)+

+m(A ∩B ∩D) +m(A ∩ C ∩D) +m(B ∩ C ∩D).

Let us to present the Kelemenovâ theorem.

Theorem 1. Let (G,⊔,⊓) be an algebraic system, where ⊔,⊓ are binary ope-

rations, ⊔ being commutative and associative ⊓ being associative. Let )H,+) be

a commutative subgroup. Let m : G → H be a mapping satisfying the following

two conditions:

(1)m(a ⊔ b) +m(⊓b) = m(a) +m(b),

(2)m((a ⊔ b) ⊓ c) +m(a ⊓ b ⊓ c) = m(a ⊓ c) +m(b ⊓ c).

Then for every n there holds

(3)m(
n
⊔

k=1

ak) + Σk≤n,k−evenΣ1≤i1<i2<...<ık≤nm(ai1 ⊓ ai1 ⊓ ... ⊓ ai1) =

= Σk≤n,k−oddΣ1≤i1<i2<...<ık≤nm(ai1 ⊓ ai1 ⊓ ... ⊓ ai1).

Proof. See [10], Theorem 2.3.

Of course, if (H,+ is a group, we can return again to the naturaql operationb

− and to present (3) in the usuaql form. as a corrolary of Theorem 1 we obtain the

following assertion.

Theorem 2. Let (G,⊔,⊓) be an algebraic system, where ⊔,⊓ are binary ope-

rations, ⊔ being commutative and associative ⊓ being associative. Let )H,+) be

a commutative group. Let m : G → H be a mapping satisfying the following two

conditions:

(1)m(a ⊔ b) +m(⊓b) = m(a) +m(b),

(2)m((a ⊔ b) ⊓ c) +m(a ⊓ b ⊓ c) = m(a ⊓ c) +m(b ⊓ c).
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Then for every n there holds

(4)m(
n
⊔

k=1

ak) = Σn
i=1m(ai)−Σi<jm(ai ⊓ aj) +Σi<j<km(ai ⊓ aj ⊓ ak) + ...+

+Σ1≤i1<i2<...<ik≤n(−1)km(aik⊓ai2⊓...⊓aik)+...+(−1)n+1m(a1⊓a2⊓...⊓an).

Proof. Using the group operations we can express the element

m(a1 ⊔ a2 ⊔ ... ⊔ an)

as the sum of all sums

Σ1≤i1<...<ik≤nm(ai1 ⊓ ... ⊓ aik)

with k odd minus the sum

Σ1≤i1<...<ik≤nm(ai1 ⊓ ... ⊓ aik)

with k even. So at the end of the sequence of the sums we obtain

m(a1 ⊓ a2 ⊓ ... ⊓ an)

with the sign + if n is odd, or sign −, if n is even. Therefore the last element in

the sequence is

(−1)n+1m(a1 ⊓ a2 ⊓ ... ⊓ an).

3 Cignoli representation

Let X be a non-empty set, A be the σ-algebra of subsets of X . An IF -vent is a

pair

A = (µA, νA)

of Borel measurable functions

µA, νA : X → [0, 1]

such that

µA + νA ≤ 1.

Let F be the set of all IF -events. We shall use use the Lukasiewicz operations on

F :

A⊕B = ((µA + µB) ∧ 1, (νA + νB − 1) ∨ 0),

A⊙B = ((µA + µB − 1) ∨ 0, ((νA + νB) ∧ 1).

Definition 1. A mapping m : F → [0, 1] is an IF -state if the following

properties are satisfied:
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(i) m((1X , 0X)) = 1,m((0X , 1X)) = 0,

(ii) m(A⊕B) = m(A) +m(B)−m(A⊙B),

(iii) An ր A =⇒ m(An) ր m(A).

The main instrument in our investigations is the following representation the-

orem.

Theorem 3. Let m : F → [0, 1] be an IF -state. Then there exist probability

measures P,Q : A → [0, 1] and α ∈ R such that

m(A) =

∫

X

µAdP + α(1−

∫

X

(µA + νA)dQ)

for all A ∈ F .

Proof. See [5, 6, 16].

Now let us return to our general binary operations ⊔,⊓ on R. We shall say that

⊔,⊓ forms an IF -pair, if the following identities are satisfied:

a ⊔ b = a+ b− a ⊓ b,

(a ⊔ b) ⊓ c = a ⊓ c+ b ⊓ c− a ⊓ b ⊓ c.

We define the corresponding operations on F :

A ⊔B = (µA ⊔ µB, 1− (1− νA) ⊔ (1− νB)),

A ⊓B = (µA ⊓ µB, 1− (1− νA) ⊓ (1− νB)).

Of course, we assume that A ⊔B ∈ F , A ⊓B ∈ F whenever A,B ∈ F . It is

satisfied if ⊔,⊓ are monotone, i.e.

a ≤ b =⇒ a ⊔ b ≤ a ⊔ c, a ⊓ b ≤ a ⊓ c.

Indeed, since µA + νA ≤ 1, µB + νB ≤ 1, and

A ⊔B = (µA ⊔ µB, 1− (1− νA) ⊔ (1− νB)),

we obtain

µA ⊔ µB + 1− (1− νA) ⊔ (1− νB) ≤

≤ (1− νA) ⊔ (1− νB) + 1− (1− νA) ⊔ (1− νB) = 1,

hence

A,B ∈ F =⇒ A ⊔B ∈ F .
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Similarly it can be proved that

A,B ∈ F =⇒ A ⊓B ∈ F .

Theorem 4. Let (⊔,⊓) be an IF -pair of operations on R, m : F → [0, 1] be

an IF -state. Then

(∗)m(A ⊔B) +m(A ⊓B) = m(A) +m(B),

(∗∗)m((A ⊔B) ⊓ C) +m(A ⊓B ⊓ C) = m(A ⊓B) +m(A ⊓ C).

Proof. The main instrument is Theorem 3:

m(A) =

∫

µAdP + α(1−

∫

(µA + νA)dQ,

m(B) =

∫

µBdP + α(1−

∫

(µB + νB)dQ,

m(A ⊔B) =

∫

µA⊔BdP + α(1−

∫

(µA⊔B + νA⊔B)dQ,

m(A ⊓B) =

∫

µA⊓BdP + α(1−

∫

(µA⊓B + νA⊓B)dQ,

Of curse,

µA⊔B = µA ⊔ µB, µA⊓B = µA ⊓ µB,

and therefore

µA + µB = µA ⊔ µB + µA ⊓ µB = µA⊔B + µA⊓B,

hence
∫

µAdP +

∫

µBdP =

∫

µA⊔BdP +

∫

µA⊓BdP,

∫

µAdQ+

∫

µBdQ =

∫

µA⊔BdQ+

∫

µA⊓BdQ.

On the oher hand

νA⊔B + νA⊓B = 1− (1− νA) ⊔ (1− νB) + 1− (1− νA) ⊓ (1− νB) =

= 2− (1− νA + 1− νB) = νA + νB,

hence also
∫

νAdQ+

∫

νBdQ =

∫

νA⊔BdQ+

∫

νA⊓BdQ.
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Summarizing all the equalities we obtain

m(A) +m(B) = m(A ⊔B) +m(A ⊓B).

Similarly the identity (**) can be proved.

As a consequence of Theorem 2 and Theorem 4 we obtain the following result.

Theorem 5. Let (⊔,⊓) be an IE-pair of binary operations on R, m : F →
[0, 1] be an IF -state. Then for any n ∈ N and any Ai ∈ F(i = 1, 2., , , , n)

m(
n
⊔

i=1

Ai) = Σn
k=1(−1)k+1Σ1≤i1<i2<...<ik≤n(−1)km(Aik ⊓Ai2 ⊓ ... ⊓Aik)

Of courese, one can choose some special IE - operations on R.

Theorem 6. Put a ∨ b = max(a, b), a ∧ b = min(a, b) for any a, b ∈ R. Let

m : F → [0, 1] be an IF -state. Then

m(
n
∨

i=1

Ai) = Σn
k=1(−1)k+1Σ1≤i1<i2<...<ik≤n(−1)km(Aik ∧Ai2 ∧ ... ∧Aik)

for any n ∈ N and any A1, ..., An ∈ F .

Proof. Evidently

a ∨ b+ a ∧ b = a+ b

and

(a ∨ b) ∧ c+ a ∧ b ∧ c = a ∧ c+ b ∧ c,

hence (∨,∧) is an IE-pair.

Theorem 7. Put aσb = a+ b−a.b, aπb = a.b for any a, b ∈ R. Let m : F →
[0, 1] be an IF -state. Then

m(σn
i=1Ai) = Σn

k=1(−1)k+1Σ1≤i1<i2<...<ik≤n(−1)km(AikπAi2π...πAik).

for any n ∈ N and any A1, ..., An ∈ F .

Proof. Evidently

aσb+ aπb = a+ b− a.b+ a.b = a+ b,

and

(aσb)πc+ aπbπc = (a+ b− a.b).c+ a.b.c = a.c+ b.c = aπc+ bπc,

hence (σ, π) is an IE-pair.
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4 Grzegorzewski’s concept of IF - probability

P. Grzegorzewski defined ([7]) the probability of an IF-event A = (µA, νA) as a

compact interval

P(A) = [

∫

X

µAdP, 1−

∫

X

νAdP ].

Axiomatically the probability was defined in [13] by the following way:

Definition 2. A mapping P : F → J , where J = {[a, b]; a, b ∈ R, a ≤ b} is

IF-probability, if the following conditions are satisfied:

1. P((1, 0)) = [1, 1],P((0, 1)) = [0, 0],
2. A⊙B = (0, 1) =⇒ P(A⊕B) = P(A) + P(B),
3. An ր A =⇒ P(An) ր P(A).
Recall that [a, b] + [c, d] = [a + c, b + d], and [an, bn] ր [a, b] means an ր

a, bn ր b. On the other hand An = (an.bn) ր A = (a, b) means µAn ր
µA, νAn ց νA.

Theorem 8. Let P : F → J be a probability. Denote P(A) = [P1(A),
P2(A)]. Then P is an IF-probability if and only if P1,P2 are states.

The proof is straightforward.

Theorem 9. Let (⊔,⊓) be an IE-pair of binary operations on R. Let P : F →
J be an IF-probability. Then

P(
n
⊔

i=1

Ai) = Σn
k=1(−1)k+1Σ1≤i1<i2<...<ik≤n(−1)kP(Aik ⊓Ai2 ⊓ ... ⊓Aik).

Proof. It follows by Theorem 8 and Theorem 5 if we use the formula [a, b] −
[c, d] = [a− c, b− d].

5 Conclusion

In the paper the Kelemenová inclusion exclusion theorem ([10]) is applied to the

Atanassov intuitionistic fuzzy system ([1]). Similarly as in [4] two binary opera-

tions ⊔,⊓ on the family of all IF-events are considered satisfying the identity

(∗∗)m((A ⊔B) ⊓ C) +m(A ⊓B ⊓ C) = m(A ⊓B) +m(A ⊓ C).

Recently in [13] it was proved that the identity

(A ⊔B) ⊓ C = A ⊓B ⊓ C +A ⊓B +A ⊓ C −A ⊓B ⊓ C
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implies

n
⊔

i=1

Ai = Σn
k=1(−1)k+1Σ1≤i1<i2<...<ik≤n(−1)kAik ⊓Ai2 ⊓ ... ⊓Aik .

for every t-norm ⊓ and every t-conorm ⊔. Therefore using Butnariu - Klement

representation theorem ([2, 3]) the inclusion - exclusion principle is proved for

fuzzy events. It would be interesting to use the Cignoli representation theorem for

proving the principle for IF-events. Moreover, recall that the assumption of the

Kelemenová theorem ( (1) and (2) in Theorem 1) are weaker that in [13].
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